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Dispersion of Bound Electronic Nonlinear Refraction
in Solids
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and Eric W. Van Stryland, Senior Member, IEEE

Abstract—A two-band model is used to calculate the scaling
and spectrum of the nondegenerate nonlinear absorption Aa(w,;
w,). From this, the bound electronic nonlinear refractive index
n, is obtained using a Kramers-Kronig transformation. We in-
clude the effects of two-photon and Raman transitions and the
ac Stark shift (virtual band blocking). The theoretical calcu-
lation for n, shows excellent agreement with measured values
for a five order of magnitude variation in the modulus of 7, in
semiconductors and wide-gap optical solids. We also present
new measurements of n, in semiconductors using the Z-scan
method. The observed change of sign of n, midway between the
two-photon absorption edge and the fundamental absorption
edge is also predicted. Thus, we now have a comprehensive the-
ory that allows a determination of n, at wavelengths beneath
the band edge, given only the bandgap energy and the linear
index of refraction. Such information is useful for a variety of
applications including optical limiting, laser-induced damage,
and all-optical switching. Some consequences for all-optical
switching are discussed, and a wavelength criterion for the ob-
servation of switching is derived.

I. INTRODUCTION

ECENTLY we reported measurements of the nonlin-

car refractive index 7, of a variety of solids using
beam distortion methods (Z-scan technique) [1], [2] and
four-wave mixing [3]. These data show a strong system-
atic dispersion of the bound electronic nonlinearity (elec-
tronic Kerr effect n,) near the two-photon absorption
(2PA) edge. This eventually turns from positive to nega-
tive at higher frequencies. We found that by using a Kra-
mers-Kronig (KK) integral based on the degenerate 2PA
spectrum as predicted by a two-parabolic band model, we
could predict the observed universal dispersion, scaling,
and values of n, that range over four orders of magnitude
and change sign [2]. This KK analysis relates the real and
imaginary parts of the third-order susceptibility. The re-

Manuscript received October 19, 1990: revised February 7, 1991. This
work was supported by the National Science Foundation under Grant ECS
8617066, by DARPA/CNVEO, and by the Florida High Technology and
Industry Council.

M. Sheik-Bahae and D. C. Hutchings are with the Center for Research
in Electro-Optics and Lasers (CREOL), University of Central Florida, Or-
lando, FL 32826.

D. J. Hagan is with the Center for Research in Electro-Optics and Lasers
(CREOL) and the Department of Physics. University of Central Florida.
Orlando, FL 32826.

E. W. Van Stryland is with the Center for Research in Electro-Optics
and Lasers (CREOL) and the Departments of Physics and Electrical En-
gineering, University of Central Florida, Orlando. FL 32826.

IEEE Log Number 9144871.

sulting scaling rule correctly predicted the value of n, for
the 26 different materials we had examined at that time,
except very near the gap where there was a systematic
departure of the data from the theory towards larger neg-
ative n, values. More recent data taken at wavelengths
closer to the gap show an even larger departure from the
predictions of the 2PA model. We had speculated in [2]
that the bandgap resonant ac Stark effect might make | n,|
larger near the gap. Here, we present a model that in-
cludes the ac Stark effect and the electronic Raman effect,
as well as 2PA. Indeed, the inclusion of these new effects
does explain the large negative increase in n, near the gap.

There are two distinct frequency regimes for nonlinear
optics in semiconductors which correspond to real and
virtual excitation. Most studies have primarily concen-
trated on bandgap resonant effects which result in real ex-
citation [4], [5]. The very large nonlinear effects observed
are the saturation of interband and excitonic absorption
due to photoexcited free carriers and excitons. Real ex-
citations usually result in a reduction of the refractive in-
dex at frequencies of interest. In contrast, by exciting op-
tical solids at frequencies much less than the gap, a
considerably smaller, but faster, positive nonlinear re-
fractive index n, due to bound electronic effects is ob-
served [6]. This n, arises from the real part of the third-
order susceptibility ¥, and is defined through the refrac-
tive index change An where

|E.)

An(w) = y(@)1, = ny(w) S (D
with /, and E, being the irradiance and electric field at
frequency w, respectively, and n, o Re x® /n,. The lin-
ear refractive index is ng, and y and n, are related by n,
(esu) = cnyy /407 (SI) where c is the speed of light. The
magnitude and dispersion of n, is of interest because of
its importance in applications such as nonlinear propaga-
tion in fibers, fast optical switching, self-focusing and
damage in optical materials, and optical limiting in semi-
conductors [7]-[9].

Measurements of wide bandgap dielectrics show that n,
> 0, which explains catastrophic self-focusing damage
in such materials as NaCl and SiO, [8]. Our measure-
ments in semiconductors below or near the 2PA edge (hw
= E,/2) also show positive n,. However, we found re-
cently that for wavelengths substantially above the 2PA
edge, n, is negative [1]. We performed measurements on
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a large number of other materials, including semiconduc-
tors and dielectrics, above and below the 2PA edge. As a
result, we have been able to clearly demonstrate the dis-
persion of n,.

Our measurements utilized a newly developed sensitive
technique (Z scan) [1], [10] that accurately determines the
magnitude and sign of n,, even in the presence of 2PA
where it also gives the 2PA coefficient 8. For example we
found a negative n, in materials such as ZnSe at 0.523 pm
where 2PA is present, and a positive n, at 1.064 pm where
2PA is absent. The values obtained for 3 were in excellent
agreement with our earlier measurements using standard
transmission experiments [11]. We also performed pico-
second degenerate four-wave mixing (DFWM) measure-
ments which showed this third-order response to be fast
(time resolution limited by the 30 ps pulsewidth). At
wavelengths where 2PA was present, this fast third-order
nonlinearity was dominant at low irradiance (e.g., up to
0.5 GW /cm? in ZnSe at 532 nm), while at higher irra-
diance, the slowly decaying 2PA-generated free-carrier
refraction (self-defocusing) became important [3]. DFWM
studies in other semiconductors and other wavelengths
showed this to be a universal phenomenon [12].

It has previously been predicted that x' should vary as
E;“ [13]. Using this scaling and the relation between n,
and x® that includes the linear index ny, we can remove
the E, and n, dependencies from the experimental values
of n, by multiplying them by noEj. In Fig. 1, a plot of
our experimentally determined scaled values of n, as a
function of w/E, is shown. We also divide the data by
a constant K’ which we explain in what follows. We show,
on the same plot, several data for large-gap optical crys-
tals obtained from recent measurements by Adair er al.
using a ‘‘nearly degenerate three-wave mixing’’ scheme
[6]. Our own measurements of several of the same ma-
terials studied in [6] show excellent absolute agreement.
Assuming that there are no other relevant parameters
unique to each material other than bandgap and index, this
plot should be general to all optical solids. Upon exami-
nation of Fig. 1, we immediately see a trend giving small
positive values for low ratios of photon energy to bandgap
energy which slowly rises to a broad resonance peak at
the 2PA edge and then decreases, eventually turning neg-
~ ative between the two-photon and single-photon absorp-
tion edges. We should note that the scaling with E, hides
a variation in magnitude of n, of four orders of magnitude
so that the observation of a universal dispersion curve as
in Fig. 1 is quite remarkable. This dispersion curve is
qualitatively similar to the dispersion of the linear index
around the single-photon absorption edge [14]. As these
linear quantities are related by causality via a KK relation,
it seems logical to investigate whether the observed dis-
persion of n, can be calculated using a nonlinear KK re-
lation between the real and imaginary parts of x*. In-
deed, as we showed in [2], making some reasonable
assumptions, the observed tendencies as well as the ab-
solute magnitudes of this dispersion are well predicted by
such a calculation. The solid line in Fig. 1 as reproduced
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Fig. 1. Data of n, scaled as ny o E:,/K’ versus hw /E, from [2]. Note that
the definition of the constant K" in this reference differs slightly from that
used in this paper. These data include measurements of n, at 1.06 pm in
{6]. as well as our own measurements at 1.06 and 0.53 um. Recent mea-
surements have revised some of the semiconductor 7 values shown in this
figure (see Fig. 5). The solid line demonstrates the fit obtained in [2] using
a quasi-degenerate 2PA.

from [2] is the direct result of such a calculation, includ-
ing only the degenerate 2PA contribution to the imaginary
part of x'. It should be noted that since the 2PA spectrum
was previously determined [11], [13], [15], no additional
fitting parameter was used in this calculation.

II. KraMERS-KRONIG (KK) RELATION

Most theoretical calculations of n, have been confined
to the zero-frequency limit [16]-[20]. Of these, semi-em-
pirical formulations have been the most successful in pre-
dicting the magnitude of n, [19], [20]. For example, the
formula obtained by Boling, Glass, and Owyoung (BGO)
in relating n, to the linear index (ro) and the dispersion of
ny in terms of the Abbe number has been successfully ap-
plied to a large class of transparent materials [6], [20].
Their theory predicts the low-frequency magnitude of n,,
but does not give the dispersion. The KK method predicts
the dispersion as well as the magnitude of n,. While the
calculation presented in [2] only included 2PA in the
imaginary part of x?, the present calculation includes all
other relevant contributions, that is, from electronic Ra-
man and the ac Stark effect (‘‘virtual band blocking’’).
We, however, do not include possible effects from exci-
tonic enhancement [21].

Based on the principle of causality, KK relates the re-
fractive index and the absorption coefficient for any linear
material [22]: ‘
—%‘(—‘"—)—2 de'. 2)

0 W —w

=)
c
nwy — 1 =— S
T
We now introduce some perturbation £ into the system,
and consider the change in the refractive index resulting
from the effect of £. The KK transformation states that a
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change in the refractive index (An) at w is associated with
changes in the absorption coefficient (Aa) throughout the
spectrum (w’) and vice versa. We write this as

T Ax(w'; §)

An(w; §) = ; SO — do’ 3)

where £ is a parameter (or parameters) denoting the
““cause’’ of change in the absorption.

The cause need not be of optical origin, but of any ex-
ternal perturbation. For example, this method has been
used to calculate the refractive index change resulting
from an excited electron-hole plasma [23] and a thermal
shift of the band edge [24]. For cases where an electron-
hole plasma is injected, the consequent change of absorp-
tion gives the plasma contribution to the refractive index.
In this case, the ¢ parameter is taken as the change in
plasma density (AN) regardless of the mechanism of gen-
eration of the plasma or the pump frequency. In the case
of 2PA, the change is due to the presence of a pump field
of frequency Q (i.e., £ = Q). The corresponding nonlin-
ear refraction is An(w; Q), which gives the index change
at 'due to the presence of light at Q. Although the cal-
culation as illustrated above gives the nondegenerate non-
linear refraction, in most cases we would set Q = w and
consider self-refraction. This gives what is commonly re-
ferred to as n,. Van Vechten and Aspnes [18] obtained
the low-frequency limit of n, from a similar KK transfor-
mation of the Franz-Keldysh electroabsorption effect
where, in this case, £ is the dc field. It is important to
note that we must set @ =  and not Q = w', otherwise
nonlinear KK relations do not apply as shown, for ex-
ample, for the two-level atom [25]. The bound electronic
contribution to x® can originate from various absorptive
counterparts that are quadratic functions of the pump field.
Effects of this order are 2PA, the electronic Raman effect,
and the optical Stark effect.

An alternative way of considering the nonlinear Kra-
mers-Kronig calculation is to examine the causality of the
system. By treating the system as consisting of the ma-
terial plus light, causality relations between the nonlinear
polarization and an additional light field give rise to re-
lations between the real and imaginary parts of x'® [26],
[27] in an analogous way to the usual “‘linear’’ Kramers—
Kronig relations. These resulting relations can be reex-
pressed in the form given above. One can therefore think
of the nonlinear KK relations as being not on a bare ma-
terial, but on a system consisting of the material and an
optical pump.

In order to perform the KK calculation, it is necessary
to know the nondegenerate absorption Aa(w, Q), which is
the absorption of light at frequency w when a light field
of frequency Q is applied to the material. This is neces-
sary even if only self-refraction is desired. In what fol-
lows, we calculate the nondegenerate absorption origi-
nating from x*, including the 2PA, ac Stark, and Raman
contributions. The degenerate 2PA result, found by set-
ting w = Q, will serve as a check against previous theo-
retical and experimental results.
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Although nondegenerate nonlinear absorption is re-
quired for the correct calculation of n,, an estimate can
be obtained by substituting the degenerate 2PA at the
mean frequency for the nondegenerate absorption:

Aa(w; w') — B(w * w)lw:.

> C))
This calculation was presented in [2]. We note that (4)
provides a good estimate of n,, except close to the band
edge where the ac Stark contribution becomes large. This
agreement reflects the fact that the denominator in the KK
integrand (3) has the effect of strongly weighting frequen-
cies close to ', so for self-refraction, Ao(w; w') needs
to be known accurately only for w in the vicinity of w’.
This approximation breaks down, however, when it is
necessary to include divergent terms such as the ac Stark
effect.

III. NONLINEAR ABSORPTION CALCULATION

Two-photon absorption processes require that pertur-
bation theory be taken to second order. A variation of this
is to use first-order perturbation theory on ‘‘dressed”’
states for the conduction and valence bands where the ef-
fect of the acceleration (tunneling) of the electrons due to
the oscillating electric field is already taken into account
[28]1, [29]. In all of the following, we shall use the dipole
approximation for the radiation interaction Hamiltonian:
- A-p )
myc

Jcinl =

where A is the magnetic vector potential, p is the electron
momentum operator, —e is the electron charge, and mj is
the free electron mass. We assume a two-beam interaction
with both beams linearly polarized in the same direction,
giving

A = @Ay cos (w,1) + Ay, cos (w,t + )] (6)
where @ is the unit vector in the direction of the optical
polarization. Following Keldysh [28], in the same manner
as [29], [30], such a dressed state can be approximated
by a Valkov-type wavefunction [31]:

ik, . 1) = uk, r) exp [z‘k e — % SD E(7) dr J o)

where i refers to either the conduction or valence band.
ui(k, r) are the usual Bloch wavefunctions which have the
same periodicity as the lattice. The effect of the optical
field is to alter the energy of the electrons and holes in the
final and initial states, respectively. Only the first- and
second-order ac Stark shifting of the bands give rise to a
x¥ effect:

Ez'(T) = E('O + AE('C(T) + AE{‘I' (8)

El'(T) = EI‘O + AE['I'(T) + AEI'(‘ (9)
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where, within the effective mass approximation,

%2

=E, +

Eeo = Eg + 50 (10)
hk?

E, = (11
2m,c

AE7) = = . A 12)
m;c

where we have defined the hole mass m, as being nega-
tive. AE,, and AE,, are the time-independent quadratic
ac Stark shifts of the bands, which are proportional to
| A|* and will be discussed in Section III-C. The transi-
tion rates will be calculated using an S-matrix formalism
[32], with

S = —% S_m dt S Aryik, r, XK, 1, D).

13)

The resulting S matrix for these processes is
ed * p, *
___Ih 6“‘, S dt

myc —o

- e[ Ay, cos (w ) + Agy COS (Wt + B)]

=L
" h
- exp [in; sin (wi?) + iny sin (w7 + @)] (14)

where p,. is the interband momentum matrix element
given by

Poc = % S d*r u¥k, ) Vu,k, r. (15)
We define
' h2k?
hw, = E; — AE,, + AEq + 5— (16)
2m,,

the reduced mass, by

1 1 1
—_—=——— a7
m,. m, m,
and
erjk -d
my=— (18)
My CW;

In order to perform the time integral, we make use of the
identity

exp [in sin (wf)] = _Z} J(ne™. (19)

On substitution and performing the time integral, the S

T

matrix becomes

S = .l_7£ u Z o Jm("')"ll(nz)

h myc mn=-

- {Ap[8((m + Doy + nwy + i)
+ 8((m — Dy + nwy + @,J]

+ Apld(mw, + (n + D, + @)

+ 6(mwl + (n - 1)‘*’2 + wvc)]}- (20)

A. Degenerate 2PA Calculation

The delta function terms in the above expression indi-
cate various combinations of multiphoton absorption pro-
cesses. From the S-matrix description, transition rates can
be determined [32] which lead to absorption coefficients.
We first consider 2PA at frequency , in order to deter-
mine the scaling. Therefore, consider the terms arising
from Ay, = 0, m = —1, n = 0. Using the lowest order
MacLaurin expansion term for the Bessel function J,(x)
= x"/2"n!, and ignoring the quadratic Stark shift terms
for now, the resulting change in the transition rate due to
2PA is

&’k ne’ A :
AW = > S Bt [—_L] a - 2
on J 27 [ 2mom,.c’w, @ pul

1 2k?
-Ik-d|2ﬁ6<Eg+Zm —-2hw|>. @2

A two-band model will be used in this paper for the cal-
culation of transition rates, consisting of a conduction
band and a valence band of opposite curvature (m, =
—m,), each of which is doubly degenerate in spin. We
will consider parabolic bands only. There is an angular
dependence in k space for the |d - Poc|? and |k - al?
terms, which results in a factor of 1 /5 when the angular
integral is performed, assuming that p,. is parallel to k.
For other cases, the resulting transition rate will have the
same functional form and only differ by a numeric factor.
For instance, in the Kane four-band model for the heavy-
hole band, p,. is perpendicular to k [33] and the numeric
factor is 2 /15.

Using the fact that A5 = 8wcl;/ njw; where I is the
irradiance (cgs) and n; is the linear index, the result for
the change in transition rate is
m:/2‘pl't‘l2 I%

AW = = s = T G Qhw, — Ep*/?

22)

from which the two-photon absorption rate can be deter-
mined; B(w) = 2hw AWI fz. In order to obtain a universal
scaling law, we make use of the identity

lpszIz -~ Eg

ma 2m.’

23)
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which is obtained using k - p theory [33]. The resulting
expression for the 2PA has exactly the same scaling and
frequency dependence as that calculated in [13], [15]
using the second-order perturbation approach, namely,

‘/E,, ho
Bw) = K m F, (E) (24)
where E, = 2|p,.|* /mq and
2x — 1>
Fy) = ¢ xm)s) (25)

Note that 8 o« w Im xP/no. The function F, is only a
function of the ratio of the photon energy /w to E,(ie.,
denoting the optically coupled states). The functional form
of F, reflects the assumed band structure and the inter-
mediate states considered in calculating the 2PA transi-
tion rate. E, is nearly material independent and possesses
a value E, = 21 eV for most direct gap semiconductors,
and K is a material-independent constant:

2°r &

K="
5 Jmyc?

(26)

which has a value of K = 1940 in units such that B is in
cm/GW and E, and E, are in eV. A wealth of experi-
mental and theoretical work regarding 2PA in semicon-
ductors and crystalline materials exists. The best fit to the
data of [11] using (24) anc (25) gave K = 3100 in the
same units as above, while Weiicr’s second-order pertur-
bation calculation for a four-band model gave K = 5200
for parabolic bands neglecting any coulomb interaction
[15]. When nonparabolicity was included, the predicted
values of 3 were on average only 26% higher than exper-
iment; however, the frequency dependence of 8 changed
very little. Interestingly, (24) and (25) also give a fair
estimate of B for a number of transparent materials mea-
sured using the third and fourth harmonics of picosecond
Nd:YAG laser pulses [34], [9]. In Fig. 2, @8 scaled by
n%/(K\/Esz) versus E, on a log-log plot is shown. The
slope of the straight line is —3, and it shows good agree-
ment with the data for semiconductors and is within a fac-
tor of =5, even for wide-gap dielectrics [9].

B. Nondegenerate 2PA and Raman Transitions

We now consider the case where one photon from each
of (w;, w,) is absorbed, i.e., terms which contain 0w, —
W — W), 6w, — w; + w,), and 0w, + w; — wy) in
(20). The first term corresponds to nondegenerate 2PA,
whereas the second and third terms correspond to Raman
transitions. On performing the integral over k space, it
can be shown that for 2PA, the change in the transition
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Fig. 2. A log-log plot of the scaled two-photon absorption coefficient
Bn3/K \/ET,,FZ versus energy gap from [9]. The solid line is a least squares
fit of the semiconductor data enclosed by the dashed box to a line of slope
—3. The fit also gives a good estimate of 2PA in wide-gap optical solids
(lower right) [34] and InSb (upper left) [35].

rate is given as

d3k l:ﬂ'ezAOlez:r I

AW:E}S@ a-p.llk-al

2mym,.c?
2 2,2
1 1 1 h-k
=+ =) — 6 E, + — — hw, — A
<w1 w2> 27h < ¢ 2m, @ w2>
24_7l' 34 mcl/zlpvrlz 1112

5 mmec® m§ (he)) (hw,)

1 1\ -
: <h—wl + h—w2> (hw, + hw, — Eg) ? @7

Using this expression for the transition rate, a change in
absorption of the w, beam due to the presence of w, is
calculated to have the general form

JE,
P F (hw] h(l)2>12 (28)

32\
nlang Eg Eg

AO(((.OI; 0)2) = 2K

where for nondegenerate 2PA, the F, function as obtained
from (27) is given by

2
o +x -2 /1 1
FifGapx) =—2 2 (L2} (29
2 (X5 x) 27x1x% P’ 5 (29)

Needless to say, F3™*, and hence 2PA, is zero when x
+x — 1) < 0.
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In a similar manner, the Raman terms can be calculated
to give a change in absorption as in (28) with

RAM/_ .
F3™ (s x)

x; — X3 — 1)3/2 —(—x + X% — 1)3/2

27x,x3

2
X1 X7,

The above expression contains the Raman transitions in
which an electron is excited from the valence band into
the conduction band via absorption of a photon at hw, and
emission of a photon at hw, and vice versa. Therefore,
the energy conservation terms corresponding to these
transitions denoted by the (- * )3/ 2 terms in (30) are zero
when their argument is negative.

The total Aa(w;; w,) from these multiphoton processes
is the sum of the 2PA and Raman terms. Note that 2PA
turns on when the sum of the frequencies is equal to the
bandgap, but the Raman term turns on when the difference
of the frequencies is equal to the bandgap so that one fre-
quency must exceed the bandgap.

C. Linear and Quadratic Stark Effects

In addition to multiphoton absorption processes which
involve the absorption or emission of a photon from both
light fields, there can be a change in the absorption coef-
ficient due to a shift in bandgap as a result of the ac Stark
effect. For example, a change in the linear absorption of
w, occurs when the bands are shifted due to the ac Stark
effect caused by w,. Two terms arise out of this as the A
- p radiation perturbation term couples 1) the conduction
(or valence) band to itself, which we will term the linear
Stark effect (LSE), and 2) the conduction band to the va-
lence band, which we will term the quadratic Stark effect

' (QSE). In a physical sense, the effect of the LSE on the

linear absorption is essentially a reduction of the oscilla-
tor strength by renormalizing the interband coupling due
to the acceleration of the electrons (or holes) in their final
dressed state. The QSE, on the other hand, alters the lin-
ear absorption through blue shifting the bandgap.

The linear Stark shift (self-coupling) can be obtained
from the previous calculation by expanding the zero-order
Bessel function to the next higher order term in (20), Jo(x)
= 1 — x?/4. This results in a modification to the S-ma-
trix term which describes the one-photon absorption. The
transition rate for the single-photon absorption of w, is
then modified as

3 2
W=ZS dk{ﬂ(ﬂ] lﬁ'Pvc|2
spin

@Qx)’ | myc
€A02 2 2]2
1 - — )
{ <2mvc Co)2> I k-a I
1 hk?

On performing this integral over k space and considering
the term proportional to I; I, the following is obtained for
the change in the transition rate:
2_51I'_ 6'4 m:‘/2|pm‘l2 Il 12

5 nmnyc? m} (hw) (han)’

- (hwy — E)*. (32)

The resultant change of absorption Aa can be given in
terms of (28) with F, given by

= = D

FB8;x) = — 553
’ 2°x1%

(33)
where the scaling is the same as in (28).

The quadratic Stark shift resulting from the coupling
between the conduction and valence bands due to is
given by

AE, = —AE,

2 212 -1
eAOZ ” 2 [ hk
= (£42) 14 p, 12| (E .y
<2moc> | - Pucl e T 2m,, W
h2k2 -1
+ (Eg + m + hw2> ].
ve

It should be expected that in the low-frequency limit Aw,
<< E,, the energy shift due to the QSE as given by the
above equations would approach the classical pondermo-
tive energy of the electron/hole in an oscillating electro-
magnetic field. This equivalence can indeed be simply
verified by substituting |p,.| from (23) into (34), which
would yield

(34

2 02
AE, = —AE, = 242 (35)
4m.c
This classical energy shift, which is also referred to as the
“‘mass energy shift,”” has been used in previous ‘‘dressed
state’” (tunneling) calculations of the interband transition
rate [28], [30].

Returning to the QSE energy shift, we note that this
energy term is time independent (i.e., nonoscillating).
Therefore, it only appears in the 8-function energy con-
servation terms. Thus, the one-photon transition rate is
modified to give

dk wer,T , 1
B sé‘:l S Q) [ mycC @ - pucl 27h

h2k?
. 6<Eg + + AE,, — AE,. — hw|>. (36)
2m

vc

On performing the integration and expanding to obtain the
term proportional to I, I, the change in the transition rate
is given as

4r ¢ m|p.|' _ LbL

5 "1"202 m?) (hwl)2 (flwz)2

. (hay — E, —1/2\:——_
(e ? hw, — hw,

AW = —

1
+ hwl + hwj'
(37N



1302

IEEE JOURNAL OF QUANTUM ELECTRONICS. VOL. 27, NO. 6, JUNE 1991

TABLE I
FREQUENCY DEPENDENCE OF THE NONDEGENERATE ABSORPTION Fy(ho,/E,; hw,/E,) As
DEFINED IN (28)

Contribution Fy(xy5 x3)
Two-Photon Ab i et 0T <l + 1)2
- t = 2 7 (=4
wo-Photon Absorption 2650 . o
R @ =% =Dy
aman 27X|X§ x, X
) (xx, — 1% 1
Linear Stark - _2(’x._x§ x_§

Quadratic Stark

1 1 1
+
210X1X%(X| -n' L] — X Xt xz]

T T T

ho,/E,=0.4

°
s
T

o
=}

Nonlinear Absorption Fz(hm,/E‘,ﬁwz/E‘)

-0.1 " 1 L
0.0 0.5 1.0 1.5 2.0

Frequency (hw,/E,)

Fig. 3. Theoretical frequency dependence of the nondegenerate nonlinear
absorption for two different ‘*pump’” frequencies he, [E, = 0.4, 0.6. Be-
low the fundamental absorption edge hw, < E,. only 2PA contributes to
the nonlinear absorption.

The resulting change in absorption coefficient is given by
(28) with

QSE,. _ 1 [ 1 1 J
Fs ) = 2% x50 — D2 [x, — x, * X+ x

(38)
Again, the total Ac(w;; w,) is given by (28) and using the
sum of all the F, terms for multiphoton and Stark shift
terms. These results for the spectrum of the nondegener-
ate absorption change for the two-band model with par-
allel optical polarization vectors and hw, < E, are sum-
marized in Table I.

The spectrum of the nonlinear absorption Fy(hw, /E,;
hw, /E,) is shown in Fig. 3 for two different ‘“‘pump”’
frequencies w,. Note that for 4w, < E,, the Raman and
Stark terms can only contribute to the nonlinear absorp-
tion for hw; > E,. The negative (i.e., decreasing absorp-
tion) divergence at the bandgap results from the quadratic
Stark shift causing a blue shift of the band edge. The
spectrum in Fig. 3 resembles that obtained by Yacoby
[36], who calculated the interband transition rate when
the modulating source (w,) is of very low frequency (i.e.,

RF excitation) and the resonant ac Stark effect is ne-
glected.

IV. NONLINEAR REFRACTION

In general, we can evaluate the nondegenerate refrac-
tive index change An(w; Q) as given by the Kramers—
Kronig dispersion relation:

= Aa(w’; Q)

An(w; @) = < S =
T Jo @

_— dw'. 39)
However, there are few experiments which measure this
quantity other than at @ = w. We therefore present in this
paper only the calculated results for the degenerate An(w;
w) which, in turn, will lead to the Kerr coefficients n, or
7 as defined by (1):

=k VE g (he (40)
YT WE E,
where the dispersion function G, is given by
2 (% Fyx); x,) dx
Galxy) = = § 2o dn @D
T Jo X7 — X3

We have neglected any dispersion in the linear refractive
index ny in the integral. The magnitude of the dispersion
is typically only 10% of the background refractive index
around the band edge of semiconductors, so we do not
anticipate any significant error. All that remains is for the
above integral to be evaluated for the various contribu-
tions to the nondegenerate absorption F,(x;; x,). All of
the integrals are performed in a similar manner and make

use of the identity
r x*ldx Tl — w)
Z e AT
0o (a+ x)" T'(n)
forn > p. The individual contributions are given in Table
II.

On examining the low-frequency limit, it is found that
these terms diverge as w — 0. In order to investigate such
unphysical *‘infrared’’ divergences, we go one step back
and examine the nondegenerate case as given by (39). This
equation indicates that, in general, An(w; ©) is not diver-
gent in w, and therefore any zero-frequency divergence
must be in the pump frequency Q as it appears in Aa.. To

(42)
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TABLE II
DiSPERSION OF THE NONLINEAR REFRACTION G,(fiw / E,) FOR FREQUENCIES BELOW THE BAND
EDGE As DEFINED IN (44). ©(x) 1s THE HEAVISIDE OR STEP FUNCTION.

Contribution

G,(x)

Two-Photon Absorption

@ex°L 8

1 3
[——xz(l -7V 4+ 3 - 02

—21 - »*? + 200 - 2001 - 2x)’/2]

Raman

il
@ex° 8

3
—2x20 + 072 = 3x(1 + 0\

—2(1 + 0¥ +2(1 + 21)3/2]

. ) 1
Linear Stark W 2 -

1
Quadratic Stark PP

- x)3/2 —_ (l + X)3/2]

{(1 -0 -+

—% A —x2 - ’—2‘ a+ x)‘”z}

Divergent Term

@x°

2
1 [_2_35,\' +

X _ _ -2
5 8(3x na —x

S3x(l =92+ (1 - 2+ % Gx + DA + 072

+ 3x(1 +

072+ + x)m]

further identify these divergences, An(w; Q) can be ex-
panded as a Laurent series around @ = 0. We find that
there exist terms which diverge as 874, 72, 272, and
Q! On summing these terms, however, all the diver-
gences vanish apart from a term proportional to Q72 leav-
ing the divergent term as

iv (w)
G =&

o @)
where g(w) has no divergence at w = 0. Now, by setting
Q = w, one arrives at the degenerate divergence function
as shown in Table II. This diverging term is expected as
A - p perturbation theory has been used in the transition
rate calculations, and it is well known that divergences of
this order can be introduced [37], whereas the comparable
E - r perturbation theory avoids such divergences. The
latter perturbation technique, however, is not suitable for
solids with extended wavefunctions, and simple scaling
rules cannot be easily derived. In a similar manner to Moss
et al. [38], we treat such a divergence as unphysical and
subtract it from the result for the nonlinear refraction.
The individual contributions to the nonlinear refraction
are shown in Fig. 4 as a function of frequency. The di-
vergence in each physically identifiable process has been
subtracted for clarity. It can be seen that the most signif-
icant contribution to the spectral dependence of G, arises
from the 2PA term, except close to the band edge where
the quadratic Stark term becomes dominant. The linear
Stark term arising from the self-coupling of the bands is
insignificant compared to the quadratic term. In terms of
second-order perturbation theory, this is a result of the
momentum matrix element being much larger when taken
between conduction and valence bands than between the

0.10 — T
4
5 0.05 |- 2pa -
o r RAM
2 \LSE
b=} j
[33
g 4
&  0.00 =
=}
o
3
1
Qo
=3
2
[=]
-0.05 | i
QSE
~0.10 { N 1 1 L 1
0.0 0.2 0.4 0.6 0.8 1.0

Frequency (hw/E,)

Fig. 4. Frequency dependence of the various contributions to the nonlin-
ear refractive index n,. Each contribution is derived from a Kramers-Kronig
transform of the various nonlinear absorption processes: two-photon ab-
sorption, Raman transitions, and linear and quadratic Stark shifts of the
band edge. The divergence of each term as w — 0 has been removed for
clarity.

same bands [13]. The only significance of the linear Stark
term in the present calculation is that it cancels terms
which diverge as w™* arising from the 2PA and Raman
contributions.

The general scaled form for n, is given by

VE, Goh JE
noE‘; 2( w g)

n, (esu) = K’ (44)
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where, using the value of K obtained from the fit to 2PA
in semiconductors (3100), the constant K’ = 1.50 x 1073
when E, and E, are defined in eV. Using the value of K
predicted by theory (no fitting) gives K' = 0.94 x 1078,
We note the E;‘ dependence for the magnitude of n,, cor-
responding to the scaling predicted by Wherrett [13].

A graphical comparison of the dispersion function
Gy(hw /E,) with measured values of n, is shown in Fig.
5(a). The values for semiconductors (squares) were ob-
tained from Z-scan measurements at 1.06 and 0.53 um
[11, [10] (as previously plotted in Fig. 1). Included in
these data are some new measurements. We also show
“‘nearly degenerate three-wave mixing’’ n, measurements
of large-gap optical materials [6] (solid circles) and a
measurement of 7, in silica at 249 nm [39] (diamond).

Fig. 5(b) shows the extension to Fig. 5(a) for frequen-
cies close to the band edge where the bound electronic
refractive nonlinearity shows a resonance due to the qua-
dratic ac Stark effect. This graph also includes recent
measurements of n, in AlGaAs by LaGasse et al. [40]
using femtosecond time-division interferometry tech-
niques (solid triangles). Table III shows the measured val-
ues for n, for the various semiconductors and wide-gap
optical solids which are plotted in Fig. 5. The data for the
semiconductor bandgaps and linear refractive index were
obtained from [41], [42]. From the theory presented here,
we also give the predicted values for n,. For the semicon-
ductor measurements at 1.06 and 0.53 pm (excluding
CdSe at 1.06 um whose 7, could not be measured with
any degree of accuracy because of the 2PA-induced band-
filling refractive nonlinearity), we find an average differ-
ence of less than 30% between the measured and pre-
dicted values. Including the measurements for dielectrics,
the average difference was less than a factor of 2. We
note, however, that the measured n, for these wide-gap
solids are consistently smaller than the predicted values.
One possible reason for this is that the absorption edge
has been used to determine the bandgap. The band struc-
ture for these materials is not well known, and the direct
gap may well be larger than this. We find, however, for
these wide-gap materials, that a good fit to the n, data can
be obtained by using a smaller value for the constant K’
=0.86 X 107%, as shown by the dashed line in Fig. 5(a).

For frequencies close to the band edge, the Stark effect
results in a divergence in the nonlinear refractive index of
—(E, — hw)™*/2. This region can be examined in more
detail by replotting data and theory in a log-log plot as
shown in Fig. 6. Note the straight line dependence for
small detunings, with a slope of -3/2 corresponding to
the above asymptotic relationship. From Figs. 5(b) and 6,
one notices an increasing deviation of the AlGaAs data
from the theory as the photon energy is approaching the
energy gap. One possible cause for this deviation is the
excitonic enhancement which becomes significant near the
band edge.

The Stark effect can also be described as virtual band
blocking since a blue shift of the band edge is equivalent

IEEE JOURNAL OF QUANTUM ELECTRONICS. VOL. 27, NO. 6. JUNE 199]

.10 T T T T

© ZnTe

o
o
o

o
o
S

-0.05

Nonlinear Refraction ngnoE,’/K'VE,

-0.1Q
0.0
0.00

a

%
>

4
K
*w —0.20

=

=3

=]

o

)

& -0.40 1
2

Q

@

13

T _0.60 1
g -o.

—

«

Q

g
= —-0.80F - 1
2

Q
z

-1.00 L L L
0.80 0.85 0.90 0.95 1.00
hw/E,

(b)

Fig. 5. (a) Dispersion of the nonlinear refractive index n,. Data for n, are
scaled as n,n, Ej/K’\/b_‘,,. The circles are measurements in [6]. the dia-
mond is from [39], and the squares are our own Z-scan measurements. We
have labeled the semiconductor data. The solid line is the Gy(hw /E,) func-
tion derived here for a two-band model of a semiconductor using the 2PA
data for the fit to the constant K’. The dashed line corresponds to a fit to
n for the wide-gap solids (K' = 0.86 X 10~*). (b) Extension of (a) to
frequencies close to the band edge. The triangles are n, measurements of
AlGaAs in [40].

to a reduction of optically coupled states at photon ener-
gies corresponding to the bottom of the band (in a similar
manner to the dynamic Burstein-Moss shift [43]). Indeed,
the direct saturation model [44] predicts exactly the same
frequency and material dependence of the nonlinear re-
fractive index just beneath the band edge. This allows a
conceptual link between below-gap (virtual carriers) and
bandgap resonant (real carriers) nonlinear optical effects
[45].

Hidden in Figs. 5 and 6 is the E;“ scaling of n, that
gives a variation of n, from 2.5 X 10~ '* esu for a material
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TABLE 11
LiST OF n, DATA SHOWING PARAMETERS USED IN THE CALCULATION (FROM [41], [42]) ALONG WITH THE EXPERIMENTALLY
MEASURED AND THEORETICALLY PREDICTED VALUES OF n,. THESE 1, DATA INCLUDE MEASUREMENTS IN 61, [39]. [40].
+ INDICATES WHERE WE HAVE USED THE DIRECT GAP RATHER THAN THE FUNDAMENTAL ABSORPTION EDGE. THE COLUMN
INDICATED BY * USES A FIT TO THE CONSTANT K’ FOR WIDE-GAP MATERIALS RATHER THAN THE FIT 7O 2PA IN SEMICONDUCTORS
[SEE FIG. 5(a)}

Wavelength Bandgap Refr. n, (Exp.) n, (Pred.) n, (Pred.)*

Material (pm) (V) Index x 107" (esu) x 107 "3 (esu) x 107" (esu)
Ge 10.6 0.87" 4.00 2700 4400
GaAs 1.06 1.35 3.47 —2700 —3100
CdTe 1.06 1.44 2.84 —2000 -2100
CdSe 1.06 1.74 2.56 -90 180
CdS, 5Sep 5 1.06 1.93 2.45 1000 720
ZnTe 1.06 2.26 2.79 830 540
Cds 0.53 2.42 2.34 —3400 - 1200
ZnSe 1.06 2.58 2.48 170 190
ZnSe 0.53 2.58 2.70 —400 —380
SBN 1.06 3.3 2.4 30 51 29
ZnS 1.06 3.54 2.40 48 36
KTP 1.06 3.54 1.78 13 49 28
BaF, 1.06 9.21 1.47 0.67 0.95 0.54
BaF, 0.53 9.21 1.47 0.85 1.10 0.63
AlGaAs 0.850 1.57 3.30 —2000 —2800
AlGaAs 0.840 1.57 3.30 —4000 —3300
AlGaAs 0.830 1.57 3.30 -7000 —3900
AlGaAs 0.825 1.57 3.30 — 10000 —-4300
AlGaAs 0.820 1.57 3.30 - 14000 —4900
AlGaAs 0.815 1.57 3.30 —20000 -5900
AlGaAs 0.810 1.57 3.30 —26000 —-7300
Cds 1.06 2.42 2.34 280 330
AgCl 1.06 3.10 2.07 23 81 46
ZnO 1.06 3.20 1.96 23 73 41
NaBr 1.06 5.63 1.64 33 6.6 3.8
CaCos, 1.06 5.88 1.60 1.1 5.6 3.2
KBr 1.06 6.04 1.56 29 5.1 2.9
KCl1 1.06 6.89 1.49 2.0 3.1 1.8
KDP 1.06 6.95 1.60 0.7 2.8 1.6
KH,PO, 1.06 7.12 1.50 0.8 2.7 1.5
NaCl 1.06 7.21 1.53 1.6 2.5 1.4
AlO, 1.06 7.30 1.75 1.2 2.1 1.2
KF 1.06 7.75 1.36 0.75 2.1 1.2
MgO 1.06 7.77 1.70 1.6 1.6 0.94
Si0, 1.06 7.80 1.40 11 2.0 1.1
SrF, 1.06 9.54 1.44 0.50 0.84 0.48
CaF, 1.06 9.92 1.43 0.43 0.72 0.41
MgF, 1.06 11.27 1.38 0.25 0.44 0.25
LiF 1.06 11.60 1.39 0.26 0.39 0.22
Si0, 0.249 7.80 1.60 1.7 2.4 1.4

such as MgF, at 1.06 um to —2.6 X 107" esu for AlGaAs
at 810 nm [40] and 2.7 x 107'° esu for Ge at 10.6 pum,
which we measured with a picosecond CO, laser. This
five orders of magnitude variation of n, is better displayed
by plotting n, scaled by ny and G, as a function of E, on
a log-log plot, as shown in Fig. 7. In spite of this very
large variation in the magnitude of n, (and the change in
sign), this extremely simple model gives good agreement
with the data for materials including both semiconductors
and insulators. It is found that the £, 4 scaling law holds
true over the five orders of magnitude variation in the
modulus of n, for the data presented here. Additionally
note that although the measured values of n, for ZnSe at
1.06 and 0.53 pum have different signs, both measure-
ments are consistent with the scaling law.

V. IMPLICATIONS FOR ALL-OPTICAL SWITCHING

One of the applications of the nonlinear refractive index
n, is in the role of all-optical switching. Some examples
are a nonlinear Fabry-Perot filter for image processing,
or parallel optical computing [46], [47], or coupled wave-
guides for communication switching networks [48], [7.
When it comes to optimizing devices for optical switch-
ing, it is important that optical losses in the system are
not too large. For instance, if optical absorption is t0o
large, then the change in refractive index will fall off rap-
idly as the optical beam propagates.

It can be shown that for any optical switching system,
one must achieve a refractive index change An such that

|An| > ¢y an 5)
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now plotted on a log-log scale to emphasize the asymptotic form n, o —~ (1
— hw/E,)~*/? as the frequency approaches the band edge. Again, the solid
line shows the predicted form.
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Fig. 7. A log-log plot showing the expected E,* dependence of n,. The
data points are identical to those in Figs. 5 and 6, but now are scaled by
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translates into a straight line of slope —4 on a log-log plot. The dashed
line indicates the fit to the wide-gap solids which also have the E;* depen-
dence.

where ¢, is a numeric constant of the order of unity
whose precise value depends on the exact switching
scheme. For example, using a Fabry-Perot filter, ¢, =
2 ~/§7r)" [49], whereas a nonlinear coupled waveguide
gives ¢, = 2 [50], [51].

Below the band edge, the principal contribution to the
absorption at irradiance levels of interest is two-photon
absorption, o = (1. In addition, the electronic Kerr effect
gives the change in refractive index An = /. Hence, in
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Fig. 8. Material-independent switching parameter as a function of fre-
quency. Also shown are the minimum limits for all-optical switching in
two different geometries: nonlinear directional coupler (NLDC) and Fa-
bry—Perot (FP) filter. For switching to be possible, the switching parameter
must exceed the relevant limit. The experimentally determined values of
this parameter are based on the semiconductor n, measurements here and
our 3 measurements in {11].

this regime, the requirement for all-optical switching is
(501

(46)

Y
3l
The theory presented in this paper gives the scaling and
dispersion for both § and vy, which are related through
nonlinear Kramers-Krénig relations. Inserting the func-
tional forms of B8 and v given here gives the frequency
dependence for the all-optical switching requirement:

@ |G2(hw/Eg)l
E, Fyho/E,)

Note that (47) has no explicit material dependence since
it is only a function of the ratio %w/E,. Thus, although
ny can be enhanced by using smaller gap materials, this
does not necessarily improve the conditions for switch-
ing. The left-hand side of (47) is plotted in Fig. 8. In the
same figure, we also show the experimentally measured
values for this parameter |27y /B\| for some semicon-
ductors using the n, values measured here and our 2PA
coeflicients from [11]. We note that there is a range of
optical frequencies where this quantity becomes too small
for optical switching, which is given approximately by
0.6 < Aw/E, < 0.9. This region is centered around the
point where there is a change of sign in n,, covering most
of the range of frequencies where 2PA is observed.
Therefore, given a certain wavelength of operation, this
immediately excludes certain materials from considera-
tion for all-optical switching. This was first noted by
Stegeman ez al. [50]. DeLong and Stegeman [52] recently
used the results of [2], which only included the 2PA con-
tribution to v, to give a similar requirement for all-optical

@7

TCoy-
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switching. Our result ignores free-carrier absorption and
refraction, exciton effects, and linear absorption which
may further restrict or enhance the choice of material.

This result can also be extended to other applications
for nonlinear optics. For instance, 2PA has been a prob-
lem in the observation of spatial optical solitons based on
the electronic Kerr effect [53]. We can use the above re-
sult as a rule of thumb in determining for what material/
frequency combination 2PA would cause problems for
nonlinear refractive applications.

VI. CONCLUSIONS

We have presented a simple two-band model calcula-
tion that gives a universal bandgap scaling and dispersion
of the electronic Kerr effect in solids. This simple model,
for the first time, draws a direct relationship between the
nonlinear refractive index n, and its nonlinear absorptive
counterparts, namely, two-photon absorption, Raman
transitions, and the ac Stark effect. We have also pre-
sented measurements of the bound electronic nonlinear
refractive index for various materials beneath the band
edge. Several new data, along with previously published
data, are compared to this theory, and remarkable agree-
ment is observed.

A wide range of theoretical papers exists where nonlin-
ear absorption is calculated by means of transition rates.
We used a nonlinear Kramers-Kronig transformation ap-
proach to obtain the nonlinear refraction in terms of this
electronic nonlinear absorption because this method cir-
cumvents a direct calculation of the complex nonlinear
susceptibility. However, it is necessary to know the non-
degenerate absorption in order to perform the calculation
(or refraction in the equivalent converse expression). That
is, we need expressions for the nonlinear absorption at all
frequencies w, when an optical field w, is applied. This
can be thought of as a pump-probe spectrum where, in
the present convention, w, would be the pump frequency
and w, the variable probe frequency. We calculated this
nondegenerate nonlinear absorption using a simple two-
band model for a direct gap semiconductor. The next stage
of complexity would be to do the same calculation for the
Kane four-band model of a semiconductor. It was neces-
sary to include transitions over all frequencies so that the
Raman and Stark shift terms are included, as well as two-
photon absorption.

We performed the Kramers-Kronig integral on the non-
degenerate nonlinear absorption to obtain analytic expres-
sions for the nonlinear self-refraction. In this calculation,
we set the two frequencies in the nonlinear refraction equal
to determine self-refraction, but in general the nondegen-
erate refraction can also be obtained, i.e., the change in
refractive index seen by the light of frequency « when the
light of frequency  is present.

Comparing the experimentally measured values of n, to
the theoretical dispersion presented here, we find that good
agreement is obtained over a wide range of frequencies
and materials, with only one fitting paramter K’ obtained

from 2PA measurements in semiconductors. We note,
however, that the theoretical value for this parameter is
only about 40% smaller than this fitted value for K’. This
is quite remarkable, and to some extent surprising as a
simple two-band model has been used to calculate the
nonlinear refraction with no account for the full-band
structure or excitonic effects. However, as has been shown
by earlier calculations of the 2PA coefficients in semicon-
ductors [15], the effect of nonparabolicity of the bands
becomes important only for small-gap semiconductors
such as InSb. Also ignored in this model is the contribu-
tion of higher bands (conduction or split-off valence
bands), and hence the effect of their specific structure.
This can be justified by noticing the strong inverse photon
energy dependence of the nonlinear transition rate as
shown in Table I. This is better illustrated in Fig. 3 where
the change in absorption becomes progressively smaller
at higher frequencies (hw/Eg > 1.5), and hence the near-
gap transitions will dominate. Including the effect of
higher bands in calculating the transition rate will contain
terms involving high-energy photons, and therefore, it
should have a negligible effect.

The other important simplification in our model has
been the exclusion of the coulomb interaction or excitonic
enhancement. Earlier calculations of the excitonic effects
on two-photon transition rates had indicated a significant
enhancement near the two-photon resonance fiw = E,/2
[15], [21]. For example, the underestimation of both n,
and the 2PA coefficient 3 of ZnTe at A = 1.06 pm may
well be due to this two-photon exciton resonance [11].
Similarly, for photon energies approaching the energy
gap, an excitonic enhancement of the quadratic Stark ef-
fect is expected. For example, nonlinear refraction can
occur due to the ac Stark shift of an exciton resonance
[54]. We also expect the contribution from the quadratic
Stark effect to be relatively larger when a four-band model
for a semiconductor is used since the density of the va-
lence band states is larger, which also may lead to a better
fit. Therefore, the deviation of the measured n, data on
CdS (at 532 nm) and AlGaAs (at ~ 800 nm) from the pre-
dicted values may be due to these other near-bandgap ef-
fects.

It is also remarkable that the theory gives a reasonable
fit to the data for large-gap optical materials, as well as
conventional semiconductors. However, it can be seen
that the predicted value for n, is consistently on the large
side for these materials. This may be due to the fact that
the absorption edge has been used to determine the direct
bandgap. We find that for Ge, as expected, it is necessary
to use the direct bandgap rather than the smaller indirect
gap in order to obtain a satisfactory fit, and the same
should be true for wide-gap solids. This is because the
transitions involving the lower indirect gaps require
phonon scattering, and thus they should have a smaller
oscillator strength than direct interband transitions. Un-
fortunately, the band structure of these materials is not
well known. We have also used the mean value of E, for
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semiconductors in order to predict n,, and this parameter
may also be quite different in other materials. We find that
for the wide-gap solid data presented here, a better esti-
mate for n, is obtained by replacing the K’ from the fit to
the semiconductor 2PA data with a smaller value, which
may be more appropriate for these wide-gap materials, as
indicated in Fig. 5(a) and Table III.

The change in sign of n, at about hw/E, = 0.7 is pre-
dicted and observed. It is also demonstrated that the ex-
pected E; * bandgap dependence holds true for a five or-
der of magnitude variation in the modulus of n,.

It is noted that the main contribution to the dispersion
of n, below the bandgap arises from the two-photon tran-
sition term, with the Stark shift term becoming dominant
close to the band edge. This partly explains the good fit
obtained by using the quasi-nondegenerate two-photon
absorption alone, as shown in a previous letter by the au-
thors [2]
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