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Abstract: The thermal blooming of a Thulium laser near 2𝜇m in an enclosed chamber is10

considered, as in [1]. The problem is modeled using the paraxial equation for the laser and the11

Navier–Stokes equations with a Boussinesq approximation for buoyancy driven effects. These12

equations are solved numerically in the steady experimental configuration. The numerical13

procedure uses Radial Basis Functions (RBFs) to approximate spatial derivatives and the hybrid14

Padé–Newton approach of [2] to solve the resulting system of nonlinear equations. Numerical15

simulations are compared to experimental results. The simulations explain the asymmetry of16

laser spots as the result of the influence of the tank’s boundary on the global convective flow.17

1. Introduction18

In this work, the steady thermal blooming of a laser beam propagating through a closed laboratory19

chamber is discussed. This study is a continuation of the work performed in Chapter 5 of the first20

author’s PhD thesis [3]. Thermal blooming is the process wherein a laser heats the propagation21

medium, causing temperature-based changes in the refractive index in the beam path [4, 5]. This22

thermal lensing reduces beam performance. Adaptive optics countermeasures can result in23

phase compensation instability (PCI) [6–8], where adaptive phase corrections at the aperture can24

reinforce intensity aberrations in the target plane.25

Numerical simulation of thermal blooming requires knowledge of the light field, the temperature26

distribution, and the fluid velocity. Historical studies prescribe the fluid velocity (either as a fixed27

wind or a statistical description) [9–14]. Recently, the time dependent nonlinear velocity field28

has been simulated directly including natural convection, from quiescent initial data [15, 16].29

Steady thermal blooming with natural convection has also been simulated [17,18]. Experimental30

studies in thermal blooming have considered beam propagation across a wide range of laser-fluid31

parameters such as beam power, beam wavelength, fluid medium, degree of turbulence, degree of32

cross-wind, and propagation distance [19–22]. While many of these studies are oriented towards33

understanding beam propagation through the atmosphere, there is scant discussion of the possible34

impact that the finite experimental domain may have on the beam wavefront via the laser-fluid35

interaction, especially in the steady-state regime. In this work the steady-state thermal blooming36

of a Gaussian laser with wavelength near 𝜆 ≈ 2𝜇m within a climate controlled, 5.3 meter long37

chamber is simulated and compared to experiment. The simulations result in asymmetric crescent38

shaped beam spots, providing an explanation for the observed asymmetries in the experiment.39

The influence of the experimental domain on the fluid dynamics of beam propagation is novel to40

the thermal blooming literature, with natural implications on experimental design for thermal41

blooming studies.42

Both simulation and experimentation come with unique challenges when attempting to account43

for the fully coupled physical processes involved in laser propagation through an absorbing fluid.44

The steady fluid dynamics in response to the absorption of the beam are often dominated by45

natural convection, yet historical simulations for laser propagation have relied on a prescription of46

the fluid velocity via scaling laws or enforced crosswind [4, 5, 23]. To fully model the convective47



flow dynamics within a prescribed domain, it is beneficial to directly simulate the flow response48

to the laser in a buoyancy-driven framework. A difficult limitation presented in the steady-state49

simulation [17, 18] is the reduction of computable laser forcing amplitudes of the fixed-point50

fluid solver as a function of increased domain size. Recent work by the authors, however, offers51

a composite Padé–Newton method to compute steady flow solutions for arbitrarily large laser52

forcing and domain size [2].53

The goal of this article is two-pronged with contributions in the simulation of steady-state54

thermal blooming and the presentation of experimental results that describe new physical55

phenomena. We investigate the steady-state thermal blooming of a Gaussian laser tuned to56

a water absorption wavelength within a climate controlled, 5.3 meter long chamber. The57

specific tuning of the laser wavelength allows for significant absorption of the laser into the58

surrounding fluid [1, 24, 25], a strategy which can be used to represent high-power lasers through59

an atmospheric transmission window. We present evidence to suggest that if the beam propagates60

horizontally off-center within the fluid domain, then the bloomed irradiance in the target plane61

will be skewed in the direction of the nearest wall. In an effort to simulate this phenomenon,62

we introduce a fully-coupled steady-state simulation for thermal blooming that builds off of63

recent work by the authors to permit simulation for significant laser absorption over the full64

size of the experimental propagation chamber. We show that, due to the horizontally transverse65

displacement of the beam center along the propagation path, the temperature fluctuations in the66

chamber will induce asymmetric blooming in the horizontal direction.67

The rest of the article is organized as follows. Section 2 details the experimental setup and68

Section 3 the formulation of the steady-state simulations. Section 4 is dedicated to the comparison69

of simulated and experimental results. We observe asymmetries in the bloomed irradiance70

profiles and present the fluid response to the tilted beam propagation. Section 5 summarizes the71

article and offers key takeaways for future experimental work in laser propagation.72

2. Experimental Setup73

The experimental setup depicting the propagation chamber is provided in Figure 1. The fiber74

laser architecture leading to the aperture is the same used in the experiments in [1]. The laser75

wavelength 𝜆 is tunable between 1.92 𝜇m and 2.01 𝜇m with a maximum average power of 80 W in76

continuous wave operation. In the following experiments, the variable power laser is a Gaussian77

beam with a radius of 2.25 mm and a fixed wavelength of 1944.867 nm to correspond to a water78

absorption band. After passing through the aperture, the beam enters the atmosphere-controlled79

propagation chamber with initially quiescent flow. The chamber is filled with air at atmospheric80

pressure, with the same conditions as the thermal blooming experiments in [1]. The relative81

humidity was 50% and the fluid temperature was 296 K. The beam reflects off of a movable82

ceramic backstop and the resultant irradiance profile is imaged with a FLIR camera through83

windows along the side of the chamber.84

In an attempt to remove optical backscatter, the beam is initially reflected twice such that85

the resulting path traveling through the chamber is tilted in the transverse, horizontal direction.86

Figure 2 diagrams a top-down view of the propagation chamber, depicting the initial reflections87

and the subsequent horizontal tilting of the beam. Figure 3 provides a detailed description of the88

(not to scale) geometry of the mirror arrangements within the chamber.89

The tilting angle 𝜃 is determined a posteriori via the horizontal separation of the beam spot90

between two propagation distances. We observe a horizontal shift in the beam spot of 1 cm91

for every 1 m of longitudinal propagation, so the effective tilting angle is 𝜃 ≈ 0.01 rad; small92

enough to maintain the validity of the paraxial model for beam evolution. The beam reflects off93

of the second mirror at a location of 𝑥0 = −8.9 cm relative to the transverse center of the domain94

and reflects off of the ceramic backstop at a location of 𝑥𝑓 = −4.9 cm for 5 m of propagation.95

The beam is centered vertically throughout the propagation chamber, with vertical variations96



Fig. 1. Side view of the propagation chamber with coordinate axes.

Fig. 2. Top down view of the chamber.

Fig. 3. Zoomed-in view of the chamber with the tilting angle 𝜃. Since the initial
reflections are not simulated, the first incident angle is not specified.

in intensity due exclusively to thermal blooming. The FLIR camera captures the time dynamic97

laser irradiance with a frequency of 100 Hz and a frame integration time of 928 𝜇s.98

3. Numerical Methods99

3.0.1. Governing Models100

The paraxial equation is used as a model for the laser propagation [26]. With the same order of101

accuracy as the paraxial scaling for the evolution of the laser, the fluid flow is two-dimensional102

in the transverse plane [15]. This simulation architecture forms the basis of the steady-state103

simulation developed in [18], where the steady-state flow is computed along two-dimensional slices104

across the propagation direction and the fluid temperature fluctuations are linearly interpolated105

between transverse slices.106

The fluid is assumed to be incompressible and governed by the Boussinesq approximation107

for buoyancy-driven flows. Since the simulated flow is two-dimensional, we solve the stream108



function-vorticity form of the nondimensional governing equations [27],109

(𝐮 ⋅ ∇)𝑇 = 1
Pe

∇2𝑇 + St|𝑉 |

2, (1a)

(𝐮 ⋅ ∇)𝜔 = 1
Re

∇2𝜔 + Ri𝜕𝑥𝑇 , (1b)

∇2𝜓 = −𝜔, (1c)
𝑢 = 𝜕𝑦𝜓, 𝑣 = −𝜕𝑥𝜓, (1d)

with vorticity 𝜔 = 𝜕𝑥𝑣 − 𝜕𝑦𝑢, stream function 𝜓 , temperature fluctuation 𝑇 , flow velocity110

𝐮 = (𝑢, 𝑣), and normalized laser irradiance |𝑉 |

2. The nondimensional parameters are, respectively,111

the Peclet (Pe), Reynolds (Re), Richardson (Ri), and Stanton (St) numbers defined below.112

Re =
𝐿𝑥
𝜈
, Pe =

𝐿𝑥
𝜇
, Ri = 𝑔𝐿𝑥, St =

𝛽𝑉 2
0 𝐿𝑥
𝜏0

. (2)

There is an implicit assumption of a characteristic velocity 𝑈 = 1 cm/s for each of the113

nondimensional parameters, which can be set arbitrarily without impacting the flow. The114

parameters to match the experiment are the length scale 𝐿𝑥 = 0.225 cm as the beam radius, the115

acceleration due to gravity 𝑔 = 981 cm/s2, the kinematic viscosity 𝜈 = 0.15 cm2/s, the thermal116

diffusivity 𝜇 = 0.2 cm2/s, the temperature scale 𝜏0 = 296 K, the laser-fluid absorption constant117

𝛽 = 4.02 cm2K
J , and the peak aperture laser intensity 𝑉 2

0 , which varies between 18.9 W/cm2 and118

68.3 W/cm2. The Re, Pe, and Ri numbers take on the values Re = 1.5, Pe = 1.125, and Ri = 220.7.119

The Stanton number can be thought of as a measure of the heat deposition from the laser into120

the flow, and thus depends on the product of the laser irradiance with the laser-fluid absorption121

constant 𝛽. This parameter is related to the more common extinction coefficient 𝛼 via 𝛽 = 𝛼
𝜌𝑐𝑝

,122

where 𝛼 = 0.48 m−1 is the estimate for the extinction coefficient the laser wavelength within the123

water absorption band, obtained from the previous experiments with the same chamber [1].124

The beam amplitude 𝑉 is evolved according to the paraxial equation in nondimensional125

units [28],126

𝜕𝑉
𝜕𝑧

=
(

𝑖
2𝑛0𝐹

∇2
⟂ − 𝑖𝐿𝑧𝑛1𝑘 −

𝐿𝑧
2
𝛼
)

𝑉 , (3)

where 𝐹 = 𝐿2
𝑥𝑘
𝐿𝑧

is the Fresnel number [4, 5], 𝐿𝑧 is the propagation distance of either 3 m or 5127

m, ∇2
⟂ is the Laplacian in the transverse (x,y)-plane, 𝑘 = 2𝜋

𝜆 = 3.23065 × 104 cm−1 is the laser128

wavenumber, 𝑛0 = 1.0003 is the ambient refractive index for air, and 𝛼 is the same extinction129

coefficient defined above. The refractive index fluctuation 𝑛1 is related linearly to the spatially130

varying fluid temperature fluctuations according to 𝑛1(𝑥, 𝑦, 𝑧) = (1 − 𝑛0)𝑇 (𝑥, 𝑦, 𝑧) [29]. The131

coupling of the beam response to the fluid is thus contained in this fluctuation. The normalized132

and nondimensional beam amplitude 𝑉0 at the beginning of propagation takes the form of a133

Gaussian with a Zernike tilt aberration [30] such that134

𝑉0(𝑥, 𝑦) = 𝑒𝑖𝐿𝑥𝑘𝜃𝑥𝑒
−
(

(

𝑥− 𝑥0
𝐿𝑥

)2
+𝑦2

)

. (4)

Table 1 summarizes each of the parameter values for the experiments and simulation.135

3.0.2. Solution Methods136

To solve for the steady flow solutions to the Boussinesq equations (1), a Padé–Newton procedure137

is used [2]. The method presented in [2] is extended to allow for irregular domains, using Radial138



Parameter Description Value Units

𝜆 Wavelength 1944.867 nm

𝑘 Wavenumber 3.23065 ⋅ 104 cm−1

𝐿𝑥 Beam Radius/Length Scale 2.25 mm

𝜏0 Ambient Temperature 296 K

𝜈 Kinematic Viscosity 0.15 cm2/s

𝜇 Thermal Diffusivity 0.2 cm2/s

𝑔 Gravitational Acceleration 981 cm/s2

𝛽 Laser-Fluid Absorption Constant 4.02 cm2K
J

𝛼 Extinction Coefficient 0.48 m−1

𝑛0 Ambient Refractive Index 1.0003 –

𝐷 Domain Width 42 cm

𝜃 Beam Tilt Angle 0.01 rad

𝑥0 Initial Beam Location -8.9 cm

Re Reynolds Number 1.5 –

Pe Peclet Number 1.125 –

Ri Richardson Number 220.7 –

Table 1. Fixed Parameters

Power 𝑉 2
0 St

1.5 W 18.9 W/cm2 0.0541

2.5 W 31.4 W/cm2 0.0901

3.5 W 44.0 W/cm2 0.1262

4.5 W 56.6 W/cm2 0.1622

5.43 W 68.3 W/cm2 0.1958

Propagation Distance Fr

3 m 5.45

5 m 3.27

Table 2. Variable Parameters

Basis Functions to approximate differential operators [16, 31, 32]. The flow is assumed to be139

two-dimensional along a transverse slice of the propagation chamber at the longitudinal location140

𝑧𝑗 .141

Spatial derivatives in the direction transverse to the beam propagation were approximated142

using Radial Basis Function generated Finite Differences (RBF-FD) [33–38]. RBF-FD methods143

are capable of efficiently handling problems that benefit from nonuniform discretizations. In144

particular, they are useful when attempting to resolve rapidly changing features in the solution145

to a PDE [31]. A description of their implementation is provided in the appendix, where the146

RBF interpolants used here utilize the Polyharmonic Spline RBF 𝜙(𝑟) = 𝑟7 and supplemental147



bivariate polynomials up to degree 𝑚 = 7. Figure 4 illustrates the 2D computational fluid domain148

with circular geometry.149

Fig. 4. Illustration of the computational fluid domain with meshless nodes used in the
RBF-FD method. The maximum node spacing depicted is ℎ = 1, but the simulations
were carried out with a more refined ℎ = 0.125.

The stream function and vorticity are enforced to be zero on the boundary, corresponding150

to a Navier slip boundary condition where the normal component of velocity at the boundary151

vanishes but the tangential component is not necessarily zero. We also enforce a zero boundary152

condition for the temperature fluctuation, that assumes perfect conduction of heat out of the153

chamber. Along the first fluid slice at 𝑧 = 0, we apply directly the Padé–Newton method by first154

expanding the flow variables in a perturbation series in the St number,155

𝑇 =
∞
∑

𝑛=0
St𝑛𝑇𝑛, 𝜔 =

∞
∑

𝑛=0
St𝑛𝜔𝑛, 𝜓 =

∞
∑

𝑛=0
St𝑛𝜓𝑛, (5)

where each term in the series is computed via the numerical solution to a linear Poisson equation156

using an RBF-FD discretization. This series representation is analytic only for small values of157

the St number, so we compute a functional Padé approximant in each flow variable of the form158

𝑟[𝑛∕2𝑘](𝑥, 𝑦; 𝜀) =
𝑝(𝑥, 𝑦;St)
𝑞(St)

. (6)

The numerator 𝑝(𝑥, 𝑦;St) and denominator 𝑞(St) polynomials are functions of the series terms for159

each respective flow variable. The spatial dependence in (𝑥, 𝑦) is contained only in the numerator160

polynomial while the denominator polynomial is strictly a scalar function of St.161

In our experiments, the St number is large enough that the functional Padé approximant on162

its own fails to represent the steady flow to a sufficient degree of accuracy. We thus use the163

functional Padé approximant as an initialization for a Newton iteration of the form164

𝐗𝑛+1 = 𝐗𝑛 − 𝐽
(

 (𝐗𝑛)
)−1 (𝐗𝑛), (7)

where 𝐗𝐧 = (𝑇𝑛, 𝜔𝑛, 𝜓𝑛),  (𝐗𝐧) contains the roots of the steady flow equations (1) with the initial165

laser intensity, and 𝐽 denotes the Jacobian of  at 𝑋𝑛.166

To evolve the beam amplitude 𝑉 via the Paraxial equation, we linearly interpolate the167

temperature fluctuations within the volumetric space between two fluid slices. A Fourier168

split-step scheme is used to evolve the numerical solution between slices in 𝑧.169

Given a known steady flow and beam amplitude at the slice 𝑧𝑗 , the computation of the fluid170

slice at the 𝑧𝑗+1 position requires an iteration in the temperature fluctuation and beam amplitude.171



Letting 𝑇 𝑘 and 𝑉 𝑘 be the temperature and laser amplitude at the 𝑘th fluid slice, a sequence of172

guesses for the temperature {𝑛} and the amplitude {𝑛} is produced at the next (𝑘 + 1)st slice173

with an initialization174

0 = 𝑇 𝑘, 0 = 𝑉 𝑘. (8)

These iterative variables are then evolved by implementing the paraxial and fluid solvers, where175

𝑇 ∗() is the steady temperature fluctuation obtained from the fluid equations for an irradiance176

||2 and 𝑉 ∗(𝑖, 𝑗) is the numerical solution to the paraxial equation between two slices with177

temperature fluctuations 𝑖 and 𝑗 , respectively. The iteration is defined by178

𝑛+1 = 𝑉 ∗(𝑇 𝑘, 𝑛), (9a)
𝑛+1 = 𝑇 ∗(𝑛+1). (9b)

The initialization for the Newton iteration in computing the step 𝑇 ∗(𝑛+1) is the previous179

flow solution 𝑇 ∗(𝑛). If any fluid computational step fails to converge, we apply numerical180

continuation in St for the same normalized amplitude  . Convergence is achieved when the fluid181

response and laser amplitude changes are less than a prescribed threshold, i.e.182

‖ − −1‖ < 𝛿𝑇 , ‖ − −1‖ < 𝛿𝑉 (10)

for 𝛿𝑇 = 𝛿𝑉 = 10−15. After convergence, the fluid temperature and laser amplitude at the183

(𝑘 + 1)th slice are then updated as184

𝑇 𝑘+1 =  , 𝑉 𝑘+1 =  . (11)

4. Results185

We apply the simulation outlined above to compare each of the propagation distances and beam186

powers performed in the experiment. The experimental results are captured in a time-dynamic187

image of intensity over a square window approximately 12 cm wide. The imaging is performed188

over a time window of 19.6 s, with a dead time of approximately 1 s before the laser is turned on189

at t = 0 s. The most significant time dynamics occur over a short time span of approximately 0.05190

s, with the beam approaching an observable steady-state intensity profile from near 0.25 s to the191

end of the imaging period at 18.7 s. Figure 5 depicts the time evolution of the experimental beam192

for propagation over 5 m at 5.43 W. The image plane is oriented such that the resultant crescent193

is biased away from the direction of the beam tilt and in the direction of the wall closest to the194

beam spot, as diagrammed in Figures 2 and 3.195

Since our simulation ignores optical aberrations such as turbulence, speckle, or jitter, we196

average the experimental intensity over the final 10 s of image capture. This approach provides197

a better basis of comparison for the predicted mathematical steady-state as any time dynamic198

fluctuations will be smoothed out. This averaging is performed for each experimental image199

depicted in Figures 6 and 7.200

In the simulation, the discretization of the fluid and the laser are treated differently due to201

considerations of computational cost and required resolution to resolve the frequency components202

arising from the beam tilt. Thus, the 2D fluid equations are solved through a discretization at203

one resolution, ℎ𝑓 = 0.125, while the beam is evolved in the solver for the paraxial equation204

between slices at a finer resolution ℎ𝐿 = 0.0039. This requires a transverse interpolation of205

the temperature fluctuation over the location of the beam wavefront on top of the volumetric206

interpolation between 2D slices, spaced according to Δ𝑧 = 1 cm. Applying this approach allows207

for the simultaneous computation of the steady flow over the full experimental domain with the208

highly resolved beam wavefront over a much smaller subdomain. Solutions were computed on a209

workstation with 12 Intel Xeon processors, each running at 3.30 GHz, and 96 GB of memory210



Fig. 5. The time evolution of the thermally bloomed beam within the experimental
chamber is depicted. Top Left: The beam spot at 𝑡 = 0 displays no visible blooming.
Top Right: The beam profile at 𝑡 = 0.03 s by which time most of the dynamics have
occurred. Bottom Left: The beam profile at 𝑡 = 0.25 s as the beam response approaches
steady state. Bottom right: The averaged beam profile at the final imaging frame is
essentially unchanging.

running MATLAB R2023b. The simulations ran for approximately four days for each beam211

power compared in Figures 6 and 7.212

Figures 6 and 7 provide a direct comparison between the steady-state experimental and213

simulated intensity after 3 m and 5 m of propagation, respectively, for each of the average laser214

powers. The irradiance spot is shown within a 6 cm × 6 cm window for both the experiment215

and the simulation with the same image orientation as Figure 5. Figure 8 gives a plot of the216

irradiance along a vertical centerline for the simulated and experimental beams.217

The general shape and size of the beam spots agree well between experiment and simulation.218

The width of the bloomed irradiance pattern increases with an increase in beam power to219

approximately 3.5 cm for the 5.43 W beam. Both display noticeable asymmetry in the intensity220

distribution in the horizontal direction. This is addition to the vertical deflection of the beam221

spot due to convection that is well-documented in the thermal blooming literature [22,39,40].222

Since our simulations directly solve for the fluid response to the laser heating within the full223

experimental chamber, this diagonal deflection of the beam intensity is due to corresponding224

asymmetries in the temperature fluctuation about the local wavefront within the propagation225

chamber. With increasing beam power, the crescent in the irradiance pattern becomes more226

pronounced, especially for the simulations. This is explained by the coupling between the227

temperature fluctuations and the beam evolution as determined by the paraxial equation (3).228

The temperature fluctuations surrounding the beam increase with increasing beam power, and229



(a) P = 1.5 W.

(b) P = 2.5 W.

(c) P = 3.5 W.

(d) P = 4.5 W.

(e) P = 5.43 W.

Fig. 6. Comparison between experiment (left) and simulation (right) after 3 m of
propagation.



(a) P = 1.5 W.

(b) P = 2.5 W.

(c) P = 3.5 W.

(d) P = 4.5 W.

(e) P = 5.43 W.

Fig. 7. Comparison between experiment (left) and simulation (right) after 5 m of
propagation.



Fig. 8. Irradiance profiles of the simulated and experimental beam at P = 5.43 W along
a vertical centerline. The y-axis measures the normalized irradiance, which is plotted
against the vertical deviation along the center of the beam spot. Overall, the deflection
of irradiance is well captured in the simulations, but the experimental profiles are wider
and have less pronounced annular distortions within the beam.

therefore the fluctuations in the index of refraction will also increase—leading to increased230

deflection of the beam intensity. Figure 11 depicts the simulated streamlines and temperature231

fluctuations at 𝑧 = 0 m and 𝑧 = 5 m for P = 5.43 W, and Figures 9 and 10 plot the steady fluid232

velocity and temperature fluctuation profiles along the 𝑦 = 0 centerline for the same power and233

distances. Figure 12 provides the peak irradiance and total power of the simulated beam as a234

function of propagation distance.235



-20 -10 0 10 20
x [cm]

-10

-8

-6

-4

-2

0

2

4

6
Velocity [cm/s] at z = 0 m

v
u

-20 -10 0 10 20
x [cm]

-4

-3

-2

-1

0

1

2

3
Velocity [cm/s] at z = 5 m

v
u

Fig. 9. The steady fluid velocities 𝑢 and 𝑣 are plotted as a function of the transverse-
𝑥 coordinate along the 𝑦 = 0 centerline. At 𝑧 = 0m and 𝑧 = 5m, the beam is
approximately centered at 𝑥 = −8.9 cm and 𝑥 = −4.9 cm, respectively. Both 𝑢 and
𝑣 are positive at the location of the beam spot for each distance, so the local velocity
vector points upward and to the right.
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Fig. 10. The steady temperature fluctuation 𝑇 is plotted as a function of the transverse-𝑥
coordinate along the 𝑦 = 0 centerline. The temperature fluctuation increases sharply
around the location of beam forcing, resulting in sharp refractive index changes as the
beam propagates through.



Fig. 11. The temperature fluctuation in degrees K and the streamlines in the fluid at
𝑧 = 0 m and 𝑧 = 5 m are provided, respectively. The fluid experiences the most heating
at the beginning of propagation before the beam loses energy due to absorption. The
asymmetric distribution of the temperature fluctuation about the local beam spot is the
mechanism for the deflection characteristic of thermal blooming.

The majority of heat deposition into the fluid occurs at the beginning of propagation within the236

chamber. The beam quickly loses intensity as it propagates over the length of the chamber, and237

thus the temperature fluctuation decreases as a function of 𝑧 over the transverse chamber domain.238

Since the beam is transversely localized in the negative x-direction, the temperature fluctuation239

induces a flow with a rightward component. The beam intensity will then deflect in the direction240

of the induced convective flow, which yields the asymmetric crescent in the negative-x direction.241

The departures between the experimental and simulated beam spots can be explained through242

several factors. The reflections of the beam off of the mirrors at the beginning of the chamber243

are not simulated, which is where the beam deposits the most energy along its propagation244

path. There is some uncertainty in the exact value of the absorption coefficient within the245

chamber, which directly influences the amount of energy deposition and subsequent temperature246

fluctuations around the beam spot. Further departures can be due to non ideal Gaussian beam247

quality in the experiment and some uncertainty in the geometry of the experimental setup. The248

largest source of disagreement, however, may come from the comparison between a time-averaged249

experimental beam and a simulated beam in a theoretical steady state. Although the chamber is250

climate controlled, there are still thermal fluctuations from the outside environment that can result251

in a less coherent distribution of temperature fluctuations around the beam spot. After performing252

the time-averaging, many of the irradiance fluctuations become smoothed out in the experimental253

beam, which has the effect of smoothing out some of the thermal distortions. This can partially254

explain the differences in the structure of the distortion rings seen between experiment and255

simulation, along with the other factors mentioned above. In future experiments, it would be256

beneficial to explore ways to reduce thermal fluctuations outside the chamber to achieve a more257

consistent steady fluid flow. To better match the experimental results, the simulation can be258

improved by increasing spatial resolution in the beam field and in the quasi-2D steady flow259
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Fig. 12. The peak transverse irradiance (blue) and the total beam power (red) are
shown as a function of the propagation distance for the 5.43 W simulated beam. The
total power decays exponentially according to the optical extinction coefficient, while
the peak irradiance is influenced by spreading, optical losses, and phase distortion.

representation, especially in rapidly changing regions in the temperature field.260

5. Conclusion261

The results of this investigation demonstrate that the flow response to a tilted beam propagating262

off-center within an experimental enclosure can induce asymmetries in the thermally bloomed263

beam spot about the vertical axis. These findings were studied experimentally and via simulation264

with a fully coupled model for laser-fluid interaction. The beam was tuned to a wavelength265

within a water absorption band with a Stanton number equivalent to a high power beam through266

a transmission window. Five different beam powers were investigated, with good agreement267

between the experiment and simulation with respect to the thermally bloomed beam size and268

crescent shape. The methodology of simulation can be used to predict steady-state irradiance269

patterns for future experiments in thermal blooming. Future work should examine thermal270

blooming through a chamber filled with aerosols and the thermal blooming of multiple beams271

combining at a target within a finite chamber.272

Appendix273

The following is a description of the RBF-FD method utilized to discretize the steady fluid274

equations. Consider the disk of diameter 𝐷
𝐿𝑥

as the computational domain Ω ⊂ ℝ2 in the275

transverse direction. The components of any 𝐱 in the domain are given by 𝐱 =
[

𝑥 𝑦
]𝑇

. At276

each element, 𝐱𝑘, of a set of discrete node locations, 𝑁 =
{

𝐱𝑘
}𝑁
𝑘=1, the spatial derivatives in277

(1) and (3) are approximated. This is completed by applying the action of the linear differential278

operators to local interpolants of 𝜓 , 𝜔, 𝑇 , 𝑢 and 𝑣 over 𝑘,𝑛 =
{

𝐱𝑘,𝑗
}𝑛
𝑗=1, which is the set of 𝑛279



points in 𝑁 nearest to 𝐱𝑘.280

Each local interpolant is a linear combination of (conditionally-) positive definite kernels, 𝜑,281

evaluated at the points in 𝑘,𝑛,282

𝜙𝑘,𝑛,𝑗(𝐱) ∶= 𝜑
(

‖

‖

‖

𝐱 − 𝐱𝑘,𝑗
‖

‖

‖2

)

, 𝑗 = 1, 2,… , 𝑛

and bivariate polynomial terms, {𝜋𝑘,𝑙(𝐱)}
𝑀𝑚
𝑙=1 , up to total degree 𝑚, with𝑀𝑚 = (𝑚+1)(𝑚+2)∕2.283

For instance, the local interpolant of a sufficiently smooth function 𝑓 ∶ ℝ2 ↦ ℝ is constructed as284

𝑠𝑘,𝑛,𝑚[𝑓 ](𝐱) ∶=
𝑛
∑

𝑗=1
𝜆𝑘,𝑛,𝑚,𝑗[𝑓 ]𝜙𝑘,𝑛,𝑗 (𝐱) +

𝑀𝑚
∑

𝑙=1
𝛾𝑘,𝑛,𝑚,𝑙[𝑓 ]𝜋𝑘,𝑙(𝐱).

To ensure that 𝑠𝑘,𝑛,𝑚[𝑓 ] interpolates 𝑓 at the set of points in 𝑘,𝑛, the set of coefficients is chosen285

to satisfy the interpolation conditions (𝑗 = 1, 2,… , 𝑛),286

𝑠𝑘,𝑛,𝑚[𝑓 ](𝐱𝑘,𝑗) = 𝑓 (𝐱𝑘,𝑗)

and the typical constraints to ensure existence of a unique interpolant (𝑙 = 1, 2,… ,𝑀𝑚) (see,287

e.g., [41])288

𝑛
∑

𝑗=1
𝜆𝑘,𝑛,𝑚,𝑗[𝑓 ]𝜋𝑘,𝑙(𝐱𝑘,𝑗) = 0.

The interpolant can alternatively be formulated through a change of basis as a linear combination289

of cardinal functions that span the same space. That is,290

𝑠𝑘,𝑛,𝑚[𝑓 ](𝐱) =
𝑛
∑

𝑖=1
𝜓𝑘,𝑛,𝑚,𝑖(𝐱)𝑓 (𝐱𝑘,𝑖),

where the new set of basis functions satisfy the cardinal property291

𝜓𝑘,𝑛,𝑚,𝑖(𝐱𝑘,𝑗) =
⎧

⎪

⎨

⎪

⎩

1 𝑖 = 𝑗

0 𝑖 ≠ 𝑗
.

The action of a linear operator  on 𝑓 at 𝐱𝑘 is then approximated by292

(𝑓 )(𝐱𝑘) ≈ (𝑠𝑘,𝑛,𝑚[𝑓 ])(𝐱𝑘) =
𝑛
∑

𝑖=1
𝑤𝑘,𝑖𝑓 (𝐱𝑘,𝑖),

with 𝑤𝑘,𝑖 = (𝜓𝑘,𝑛,𝑚,𝑖)(𝐱𝑘). Detailed discussion of the accuracy of this approximation is given293

in, for instance, [31]. The action of  at all points in 𝑁 can then be computed simultaneously294

through the matrix multiplication295

𝐷𝐟 ≈
[

𝑓 (𝐱)||
|𝐱=𝐱1

𝑓 (𝐱)||
|𝐱=𝐱2

⋯ 𝑓 (𝐱)||
|𝐱=𝐱𝑁

]𝑇
(12)

where the 𝑘th component of 𝐟 is 𝑓 (𝐱𝑘). In this case, 𝐷 is an 𝑁 ×𝑁 matrix that is sparse as long296

as the number of nearest neighbors, 𝑛, is much less than the total number of points, 𝑁 . The297



entries of row 𝑘 of the matrix operator are defined as298

[𝐷]𝑘𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑤𝑘,𝑗 if 𝐱𝑘,𝑗 = 𝐱𝑖 for some (𝑘, 𝑗)

0 otherwise.
.
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