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Nondegenerate Optical Kerr 
Effect in Semiconductors 

Mansoor Sheik-Bahae, J. Wang, and E. W. Van Stryland 

Abstract- We calculate the nondegenerate bound electronic 
nonlinear refractive index n2 ( w1; w2) (i.e., an index change at 
frequency w1 due to the presence of a beam at frequency w2) 
in semiconductors. We calculate this nonlinearity and its disper~ 
sion using a Kramers-Kronig transformation on the calculated 
nondegenerate nonlinear absorption spectrum due to two-photon 
absorption, electronic Raman and optical Stark effects. The 
calculated n2 values and their dispersion are compared to new 
experimental values for ZnSe and ZnS obtained using a 2-color 
Z-scan. 

I. INTRODUCTION 

L IGHT-INDUCED changes in the optical properties of 
semiconductors have several applications including all 

optical switching [1]. The ultrafast optical Kerr effect (bound
electronic nonlinear refraction), leading to self-phase mod
ulation and self-lensing of laser beams in solids, has been 
studied extensively [2]-[4]. Recently, we presented a simple 
yet comprehensive theory for this nonlinear refractive index n2 
in semiconductors [5], [6]. The theory used a Kramers-Kronig 
(KK) transformation to derive n2 from our calculated nonlin
ear absorption spectrum. The key features of this theory were 
the band-gap scaling and the dispersion of n2 which showed 
excellent agreement with a large number of experimental data 
for the degenerate case. Here, we derive a more general 
expression that gives the nondegenerate optical Kerr effect, 
namely, the change of refractive index at a frequency w1 due 
to the presence of a strong excitation beam at frequency w2. 
We define the nondegenerate coefficient n2 as well as the 
nondegenerate nonlinear absorption coefficient n:2 by 

(la) 

and 

(lb) 

where ~n and ~n: are the changes in refractive index and 
absorption coefficient respectively, and Iw2 is the irradiance 
of the excitation beam at frequency w2. The factor of two 
in these expressions arises from the interference between the 
pump and the probe beams. In a self-modulation (single
beam) process this factor is unity [7]. The nondegenerate 
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nonlinear coefficients n2 and n:2 are related to the real and 
imaginary components of the third order optical succeptibility 
x<3l(wbw2, -w2). respectively. We showed that the physical 
mechanisms responsible for the induced change of absorption 
(~n:) originated from three processes: two-photon absorption 
(2PA), electronic Raman, and optical Stark effect [5]. In the 
following section, we briefly review the formalism leading 
to an expression for the degenerate n2 and then present 
the extension of this theory to the nondegenerate case. In 
Section III, we present experimental results for ZnSe and 
ZnS obtained using a 2-color Z-scan [7]. In Section IV, 
possible effects of the electron-hole Coulomb interaction are 
considered using a simple Elliott-type envelope function. This 
simple approximation can qualitatively explain the two-photon 
and one-photon resonant enhancement of n2 observed in 
semiconductors. 

II. THEORY 

The nonlinear Kramers-Kronig relations relate n2 and n:2 
through the dispersion integral [4], [5], [8] 

2100 
n:2(w';w2) 1 n2(w1;w2) =- 12 2 dw. 

7r o w - wl 
(2) 

In [5], ~n:(w';w2 ) was calculated using a two-parabolic band 
(TPB) model. In this model a "dressed state" approach is 
adopted where the wave functions for the initial (valence) and 
the final (conduction) bands are given as follows: 

Wj(k,r,t) = Uj(k,r)exp [ik·r- * 1t Ej(r)dr] (3) 

where j refers to either conduction (c) or valence (v) band 
and k is the lattice wavevector. The functions Uj are the 
usual (unperturbed) Bloch wavefunctions that have the same 
periodicity as the lattice. The effects of the optical fields are 
to alter the energy of the electrons and holes in the final and 
initial states, respectively. This is written as 

Ev(r) = Evo + ~Evv(r) +~Eve (4a) 

Ec(r) =Eco + ~Ecc(r) + ~Ecv (4b) 

where Ejo is the unperturbed band energy. ~Ejj ( r) and ~Ecv 
are the linear (LSE) and quadratic (QSE) optical Stark shifts of 
the energy bands due to the interaction Hamiltonian as follows: 

e 
Hint= -p · [A01 cos(w1t) + Ao2 cos(w2t)] (5) 

moe 

where p is the momentum operator. A01 and Ao2 are the 
vector potentials of the interacting optical fields. The resultant 
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TABLE I 
THE VARIOUS CONTRffiUTIONS TO THE NONLINEAR ABSORPTION SPECI'RAL FuNCTION F2 ( Xl; X2) 

Contribution 

2-Photon Absorption 

Raman 

Linear Stark (xl - 1)3/2 1 

26 x1x~ x~ 

Quadratic Stark 

interband absorption change, as calculated using first-order 
perturbation theory, is given by [5]: 

.p;, 
o:2(w1;w2) = K E 3F2(x1; x2) {6) 

n01no2 g 

where K is a constant, Eg(eV) is the band-gap energy, 
and Xl = nwd Eg, X2 = nw21 Eg and noj (j = 1, 2) are 
the linear refractive indices at w1 and w2, respectively. The 
dimensionless spectral function F2 , is defined in Table I. The 
Kane energy Ep (~21 eV) is related to the Kane momentum 
parameter P by Ep = 2P2 I mn 2 , and is nearly material 
independent for most semiconductors [9]. In the TPB approx
imation, this parameter is related to the electron (or hole) 
effective mass me ( = mv) through 

{7) 

The constant K was determined from the average de
generate 2PA coefficient of several semiconductors to be 
~3100cmGW- 1eV512 , but varied by up to ~30% from one 
material to the next [9]. A value forK of ~4000 gives a better 
value for ZnSe and ZnS · as compared to the calculated value 
of 1940 cmGW-1e V512 from the TPB model [5]. This factor 
of ~2 in underestimating the absolute value of {3 may be 
simply understood by realizing that the transition can initiate 
from .two valence bands {heavy- and light-hole bands) rather 
than one as modeled here. More rigorously, a Kane 4-band 
model has been shown to give a closer absolute agreement 
for several zinc-blend semiconductors [10]. 

The dimensionless spectral function F2. shown in Table 
I, contains contributions from 2PA when nw1 + nw2 > Eg. 
the stimulated Raman effect when nw1 - nw2 > Eg and 
optical Stark effect when nw1 > Eg [5]. The nondegenerate 
2PA coefficient {3(w1 ; w2 ) is defined as equal to o:2 when 
nw1 + nw2 > Eg {i.e., contains only the 2PA portion of 
F2). Note also that there are four terms associated with the 
quadratic optical Stark effect in Table I. The first two terms 
represent the repulsion of the bands which reduces the density 
of states in the vicinity of k = 0. The last two terms, on 
the other hand, arise from the conservation of total number 
of states and would lead to an increase in density of states 

forx1 + x2 > 1 

forx1- x2 > 1 

forx1>1 

forx1 > 1 

at k > 0 {i.e., removing states near k = 0 adds states at 
larger k). These terms, which contribute less than 10% to the 
degenerate n2(w) for nwl/Eg < 0.95, were ignored in [5] 
but are included here for the nondegenerate n2 ( w1 ; w2). As 
nw I Eg --+ 1, the contribution to n2 from the QSE is reduced 
significantly if these two terms are included. 

It must be emphasized that we consider here only below 
resonance excitation (nw2 < Eg). For nw2 > Eg. in addition 
to the expressions given in Table I, a term accounting for the 
stimulated Raman gain of the probe beam when nw2 - nw1 > 
Eg must be included. In practice, however, above band-gap 
resonance excitation leads to well known carrier effects (e.g., 
band-filling) that mask the bound electronic contributions. 
Above band-gap ultrafast bound-electronic nonlinearities have, 
nevertheless, been observed in semiconductor laser amplifiers 
when operating near the transparency point where changes in 
carrier populations are negligible [11]. Theoretical analysis of 
active semiconductors has been presented elsewhere [12]. 

In calculating Ao:(w1; w2). it has been assumed that the 
two interacting beams have the same linear polarization. In 
general, one may assume that the two optical fields have 
arbitrary polarizations. For instance, consider two linearly 
polarized light beams with a fixed relative angle ¢ between 
their polarizations. If we assume that the valence band couples 
isotropically to all the k states in the conduction band, we 
obtain a polarization dependent prefactor 

K(¢) = K(l- ~ sin2 ¢). (8) 

The primary assumption leading to this symmetry property is 
that the electron quasimomentum nk is parallel in k space 
to the interband momentum matrix element PctJ [5]. From 
Kane's k · p theory, this is characteristic of the transitions 
that initiate from the light-hole valence band [13]. The Pcv 
associated with the heavy-hole to conduction band transition, 
on the other hand, is effectively perpendicular to k, leading 
to a more complex polarization dependence that varies with 
wavelength and is different for each mechanism [14]. In this 
paper, however, we focus our attention on the dispersion of the 
nondegenerate n 2 , and the details of the symmetry properties 
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TABLE ll 
THE NONDEGENERATE DISPERSION FuNCTION G2 ( X1; X2) OF ( 1 0) FOR THE ELECfRONIC KERR COEFFICIENT n2, CALCULATED BY A KK TRANSFORMATION OF F2 
(TABLE 1). THEIR DIVEGENT TERMS ASSOCIATED WITH EACH CONTRIBUTION HAVE BEEN REMOVED. NOTE THAT THE TERMS INVOLVING ( · · • ) 3/ 2 ARE ZERo 

WHEN THE ARGUMENT ( · · ·) IS NEGATIVE. THE LAsT TERM DUE TO THE DEGENERATE QSE IS THE LIMIT OF THE NONDEGENERATE G~SE ( x1 ; x2 ) AS x1 --+ x 2 • 

Contribution 

2-Photon Absorption 
Raman 

H(x1,x2) + H(-x1,x2) 
H(x1, -x2) + H(-x1, -x2) 
where 

Quadratic Stark 
X1 =j:. X2 

_1_ [3 (1- X1)-1/2- (1 + X1)-1/2 

29xf 4 x1 

(1 - X1 )-3/2 + (1 + X1 )-3/2 - ~] 
8 2 

associated with a more general two-valence band system will 
be discussed in future 

With a2(w1; w2) known, we can obtain the refractive con
tribution n2(w1; w2) by applying the KK transformation ((2)). 
This yields 

ncK ..jE;, 
n2(w1;w2) = 

2 
E 4 G2(x1;x2). (9) 

gn01no2 

In [5], the interference factor of two, as appears in (la), was 
ignored in calculating the n2 coefficient. In correction, the 
value of K ~ 6000 gives a better fit to the degenerate n 2 data 
for semiconductors, although variations of a factor of ~2 from 
one material to another occur. This difference of K values may 
be attributed to too simplistic a band structure employed in our 
model and/or electron-hole Coulomb interactions ( excitons ). 
The possible effects of excitons are discussed in Section IV. 

Equation (9) is indentical to the expression obtained for the 
degenerate n 2 [5] except the dispersion function G2 now has 
a general nondegenerate form determined by the KK integral 

2100 
F2(e; x2) 

a2(x1;x2)=- e2 2 de. (10) 
7r o - X1 

It was noted in [5] that as a result of using A ·p perturbation 
theory, the calculated dispersion function G2 diverges as 
x2 ~ 0 (w2 ~ 0). Using a power series expansion we 
identify the divergent terms of each individual contribution and 

find that the QSE term diverges as x22 while the remaining 
contributions have divergent terms that vary as x21, x22, x23

, 

and x24
• Upon summing these contributions, however, all 

divergences cancel except for the x2 2 term. In fact, the 
contribution of the linear Stark effect (third term in Table I) 
is only to cancel the x24 divergent terms of the 2PA and 
Raman contributions. Due to their unphysical consequences, 
it has been a common practice to subtract the remaining 
divergent terms [15]. This process of divergence removal 
can be considered as effectively enforcing a sum rule for 
the two-band system. We obtain an analytical expression for 
G2 by evaluating the KK integral of (10). The individual 
long wavelength divergent terms for each contribution are 
removed separately and the final result is given in Table II. In 
summing the 2PA and Raman contributions, all the odd terms 
in x2, arising from the individual divergences, cancel. In this 
paper, we refer to G2 as the sum of the three divergence-free 
functions given in Table II ( G2 = a~PA + a~M + G~5E). 
Knowledge of the individual contribution from each one of the 
three mechanisms becomes important when considering the 
polarization dependence of n2 or in polarization dependent 
four wave mixing [14]. 

Fig. 1 depicts the dispersion function G2 as a function 
of x 1 = nwd Eg for various excitation photon energies 
X2 = nw2/ Eg. By examining the terms in Table II, we can 
determine their relative contributions to n2 in different spectral 
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Fig. l. The nondegenerate dispersion function G2(x1 : x2) as a function of 
probe photon energy ( x1), calculated for various pump photon energies ( x2). 

regimes. A general trend is evident in all the curves: n2 is 
nondispersive in the infrared regime (hw1 « Eg - hw2) 
where 2PA and Raman terms contribute equally, it reaches 
a two-photon resonance at hw1 + hw2 ::::: Eg where it has its 
peak positive value, and above this two-photon resonance n2 

becomes anamolously dispersive and ultimately turns negative 
due mainly to 2PA and the optical Stark effect as 1iw1 

approaches Eg. 

Ill. EXPERIMENTS 

We use the 2-color Z-scan [7], [16] to measure the nonde
generate n2 in ZnSe and ZnS. A Q-switched and modelocked 
Nd:YAG laser is used to generate single tp::::: 83 ps (FWHM) 
pulses at >. = 1.06 J.Lm as the excitation beam. Simultaneously, 
the second-harmonic of the same laser at >. = 532 nm serves 
as the weak probe ( tp ::::: 58 ps ). Using this arrangment, we 
measure n2 (2w; w) and {3(2w; w ). At these wavelengths, the 
choice of the above materials is appropriate for examining the 
various dispersion regimes of n2 as predicted by the theory. An 
important parameter in the experiment is the sum of the photon 
energies: hw1 + hw2 ::::: 3.5 eV. Since ZnSe has Eg ::::: 2.6 
eV [17], it is a nondegenerate two-photon absorber at these 
wavelengths. ZnS, on the other hand, with Eg ::::: 3.6 e V 
[ 17] exhibits no nondegenerate 2PA. According to this theory 
however, it should exhibit a two-photon resonance enhanced 
positive n2. The degenerate n2 and 2PA coefficient ({3) of 
ZnSe and ZnS have been studied in the past [5], [9], [16]. The 
measurements show good agreement with the degenerate limit 
of the TPB theory [5]. Table III summarizes the earlier results 
along with the new nondegenerate measurements. 

To illustrate the dispersive behavior of the measured n2 
and compare it with this theory, we consider the functions 
G2 (2x;x) and F?PA(2x; x) (2PA contribution in Table I) 
where x = hw / Eg and w corresponds to the fundamental of 

0.10 
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~0.05 
~ 

0.00 

-0.10 

.J .. r·· .. ...,_ 

\,',,i\ 
0.0 0.2 0.4 0.6 0.8 1 .0 

tlw/E9 

Fig. 2. (a) The measured degenerate f3(2w; 2w) (open symbols) and nonde
generate f3(2w; w) (solid symbols) for ZnSe (circles) and ZnS (triangles) using 
laser pulses at frequency w (A= 1064 nm) and 2w (A= 532 nm). The data 
are scaled according to (6) to compare with the calculated F2(2x;x) (solid 
line) and F2(x; x) (dashed line) functions. (b) The corresponding measured 
n2 values, scaled according to (9), to compare with the calculated G2(2x; x) 
(solid line) and G2(x;x) (dashed line) functions. 

TABLE III 
THE MEASURED 2PA COEFFICIENTS f3(2w;w),f3(2w;w) AND OPTICAL 

KERR COEFFICIENTS n2(2w;w),n2(2w;2w) FOR POLYCRYSTALLINE 
ZnSe AND ZnS SAMPLES USING A Two-COLOR Z -SCAN TECHNIQUE . 
HERE, w CORRESPONDS TO A WAVELENGTH OF 1.064 Jlm. THE UNITS 

FOR n2 AND i3 ARE [10- 14 cm2 /W] AND [10-9 cmfw], 
RESPECI1VELY. THE DEGENERATE DATA FOR ZnSe ARE FROM [16]. 

Linear Energy De!lenerate Nonde!lenerate 
Index Gap 0.532 Jlm 1.06 Jlm (0.532 Jlm, 

1.06 Jlm) 

no Eg n2 i3 n2 i3 n2 i3 
(eV) 

ZnSe 2.7 (0.532 !Jm) 2.6 -6.8 5.8 2.9 0 -5.115.3 
2.5 (1.06 Jlm) 

ZnS 2.4 (0.532 pm) 3.6 N.A. 3.4 0.76 0 1.5 <0.073 
2.3 (1.06 l!,m) 

the Nd:YAG laser frequency. Figure 2 depicts these functions 
along with the degenerate versions G2 (x; x) and FiPA(x; x ). 
The measured data are scaled by the predicted band-gap 
dependence of Ei3 for {3 and Ei4 for n 2 , where K = 
4000 was used. The enhancement of the nondegenerate {3 
in ZnSe is seen to agree with the TPB model. Though 
good qualitative agreement between experiment and theory 
is seen, the theory underestimates n2 by a factor of :::::1.5 
when {3 is quantitatively correct. In other words, as mentioned 
earlier, degenerate and nondegenerate n2 values can be fairly 
predicted by the theory provided that we use K ::::: 6000 in 
(9) for n2 • A discrepancy of :::::1.5 is not surprising for such 
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a simple theory, and it may be attributed to a more complex 
band structure than considered here and/or the neglect of the 
electron-hole Coulomb interaction. A simple treatment of the 
latter interaction based on the Elliott-Loudon approach, given 
in Section IV, can partially resolve this discrepancy. 

For ZnSe, with w corresponding to the fundamental wave
length of the Nd:YAG laser, n2(2w;w) is negative and res
onantly enhanced due primarily to the effects of 2PA. As 
seen in Fig. 2(b), the degenerate n2 of ZnSe at 532 nm is 
also negative while at l.0611m the dominant contribution of 
the 2PA resonance results in a positive n2 [5], [17]. ZnS, on 
the other hand, has a positive and 2PA resonantly enhanced 
nondegenerate n 2 at these wavelengths as predicted by the 
theory. 

IV. THE EFFECT OF EXCITONS 

It might be expected that the electron-hole Coulomb in
teraction could lead to an enhancement of the 2PA coefficient 
near the hw1 + hw2 = Eg resonance. The TPB theory (without 
including this interaction) appears to underestimate the exper
imental degenerate 2PA coefficients when 2hw I Eg is above 
but very near unity [9]. Analogous to the case of single photon 
(linear) absorption, 2PA excitonic enhancement should reflect 
the increase in the density of states near the band-edge (k::::::: 0 
region) where hw1 + hw2 = Eg. Additionally, this increased 
density of states will enhance the Raman and particularly the 
optical Start contributions near the fundamental absorption 
edge. Various approches have been taken previously to include 
this interaction in the perturbation theory of 2PA [18]. While 
a rigorous treatment can result in cumbersome calculations, 
approximate enhancement functions have been suggested as 
an alternative [19], [20]. In particular, Loudon [20] used an 
envelope function approach similar to that given by Elliott [21] 
for the interband one-photon absorption. For the continuum of 
excitons, this envelope function is given by the following [21]: 

2 7r7] exp( 11"7]) 

IU(77)1 = sinh(n77) (11) 

where 772 = Ebl(hw - Eg) with Eb denoting the excitonic 
binding energy. In Loudon's approach the energy denominator 
of 77 is replaced by the two-photon energy term hw1 + hw2-Eg 
in the nondegenerate case. In the "dressed state" framework, 
this can be interpreted as neglecting the excitonic effect on 
the energy shifts ( 4) but accounting for it in the transition rate 
between the "dressed states." Therefore, in generalizing this 
approximation, we multiply the function F2(x1; x2), in Table 
I, by the continuum exciton envelope function IU(77)1 2 where 
77 is now given by 

E 
7]2= (1~ 

X1 ± X2- 1 

Here E. = Ebl Eg. and the ± sign in the denominator 
corresponds to 2PA( +) and Raman ( - ), while for the optical 
Stark effect the denominator in (12) becomes only x1 -1 (i.e., 
x2 = 0). Thus, IU(77)1 directly gives the enhancement of a2 

which has maxima when the denominator of (12) becomes 
small (i.e., where x2 + x 1 = 1 at the 2PA edge, and when x1 

approaches 1 for the optical Stark effect). 
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hw 1/E9 

Fig. 3. The excitonic enhanced nondegenerate G2 function (solid lines) 
compared to that of Fig. 1 (dashed lines). A typical value of Er = 0.01 
was used in the calculation. 

In the TPB model and within the effective mass approxi
mation as indicated by (7), Er = RI2Epf; where fs is the 
static dielectric constant and R = 13.6 eV is the Rydberg 
energy. Using Ep ::::::: 21 e V, this gives Er ::::::: 0.33 I f.;. For most 
semiconductors fs ranges from 5 to 10 leading to Er ::::::: 0.013 
to 0.003. ZnSe and ZnS, for instance, have an Er of 0.008 
and 0.010, respectively [9]. 

Once the exciton-enhanced nonlinear absorption a2 is deter
mined, the refractive component can be obtained using the KK 
integral. This integral and its infrared divergent term can be 
numerically evaluated. In Fig. 3, the calculated result for the 
nondegenerate n2 (w1;w2 ) using a typical value of Er::::::: 0.01 
is compared to the case Er = 0 (i.e., no exciton enhancement). 
As expected, the enhancement is most visible near the one and 
two-photon transition resonances. The most drastic change is 
seen near the band-edge (1iw1 ::::::: Eg) where the contribution 
of the QSE becomes large. This is more clearly examined 
in Fig. 4 where the effects of excitons on each of the three 
contributions are plotted individually. 1 It is seen that the QSE 
contribution has the largest enhancement near the band-edge 
resonance. 

Using Er = 0.008, as shown in Figs. 5(a) and ~(b), 

we compare the excitonic enhanced F2 and G2 funct10ns 
with the data of Fig. 2. Now using K = 2600 for both 
f3 and n 2 , excellent agreement between theory and experi
ment is achieved. Additionally, this value for K is closer to 
the calculated value of :::::::1940 [5]. Moreover, the predicted 
band-edge resonant (1iwtf Eg ::::::: 1) enhancement is now 
in agreement with experiments, as the theory, without the 
excitonic effect, underestimated n2 for AlGaAs [22] and CdS 
[5] at wavelengths near the band. 

1 The nonenhanced G 2 in our Fig. 4 (dotted line) is the corrected version of 
Fig. 4 in [5], in which the long-wavelength diverge~ces of the individual con
tributions were removed incorrectly, thus suppressmg the bandgap resonance 
of the electronic Raman effect. 
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Fig. 4. The effect of excitonic enhancement on the various contributing 
mechanisms to the degenerate G2(x1; x1) compared to the nonenhanced G2 
as given by Table II. 
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Fig. 5. Data for both (a) and (b) are the same as in Fig. 2 but scaled with 
K = 2600. The lines in (a) and (b) are the F2 and G2 functions calculated 
using the excitonic enhancement with Er = 0.008. 

V. CONCLUSION 

The nondegenerate 2PA coefficient f)(w1; w2) and optical 
Kerr index n2(w1; w2) were calculated using a dressed-state 
two-parabolic band model. Closed-form analytical expressions 
were derived giving the variation of these coefficients with 
bandgap energy, linear index, and photon energy. The ex
perimental results for ZnSe and ZnS show good agreement 
with this theory for w2 and w1 , the fundamental and second 
harmonic of the Nd:YAG laser, respectively. Finally, the possi-

ble effect of electron-hole Coulomb interaction is considered 
using an Elliott-type envelope function. This approximation 
leads to an enhancement of n2 , which is largest near the 
two-photon and one-photon resonances. 
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