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Ultrafast nonlinearities in semiconductor laser amplifiers 
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The bound-electronic optical nonlinearities in highly excited semiconductors (i.e., semiconductor 
lasers) have been calculated using a two-parabolic-band model. The nonlinear absorption spectrum is 
first obtained using a dressed-state formalism taking into account the contributions from two-photon ab
sorption, electronic Raman, and optical Stark effects. The nonlinear refractive index ( n 2 ) is then found 
by performing a Kramers-Kronig transformation on the nonlinear absorption spectrum. It is also shown 
that the quadratic Stark splitting of the bands leads to a shift in the quasi-Fermi levels, which introduces 
additional absorptive and refractive nonlinearities. The sign, magnitude, and the current-density depen
dence of the calculated n 2 agree well with some recently published experimental results for Al-Ga-As 
and In-Ga-As-P diode lasers. 

I. INTRODUCTION 

Ultrafast, large nonlinear refraction in semiconductor 
diode lasers at wavelengths near their transparency point 
has been recently reported. 1- 4 Measurements of the dy
namics of such nonlinearities have revealed interesting 
transient effects indicative of various electronic scattering 
mechanisms. 1- 6 The magnitude and ultrafast nature of 
the observed nonlinear refraction at the transparency 
point of diode lasers have made them viable candidates 
for all-optical-switching (AOS) devices. 

For bulk semiconductor devices, recent theoretical and 
experimental studies of nonlinearities in the transparency 
regime (~ <E8 ) have indicted that at photon energies 
above half the band gap (~>E8 /2) parasitic losses due 
to two-photon absorption (2P A) hinder the effectiveness 
of these materials for AOS applications. 7•8 The theory 
predicts that, as ~---.E8 , n 2 is resonantly enhanced but 
2P A remains relatively constant leading to favorable con
ditions for low-power AOS. 8 In practice, however, the 
presence of linear loss due to band-tail absorption and the 
consequent band-filling effects rule out near-resonant 
AOS operation in passive materials. Recent experi
ments 1- 4 suggest that a possible solution to this problem 
is to suppress the linear absorption by injecting a non
equilibrium electron-hole population and operating in the 
spectral region where the net absorption is negligible, i.e., 
the transparency point. In this paper, we will examine 
ultrafast bound-electronic nonlinearities in semiconduc
tors in the presence of a nonequilibrium plasma using a 
simple two-band model. The injection of a high electron
hole density, however, is accompanied by additional dy
namics arising from large intraband (free-carrier absorp
tion) as well as interband transitions. The dynamics of 
such real excitations have been recently studied in detail 
elsewhere. s With ultrashort pulses ( ~ < 100 fs), addi
tional dynamics due to spectral hole burning have been 
observed. 6 Effects of spectral hole burning are still 
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present around the transparency point, even though no or 
little net exchange of electron-hole population between 
the conduction and valence bands occurs. In a time
resolved experiment, one may distinguish the real excita
tion processes from the ultrafast virtual excitations by 
recognizing the much longer energy relaxation times as
sociated with the real excitation. The characteristic ener
gy relaxation times are ~ 1-2 ps for intra band and ~ 100 
ps-100 ns for interband transitions. 9 It should be noted, 
however, that spectral hole burning has a lifetime of the 
order of 100 fs and may behave similarly to the bound
electronic nonlinearity, making experimental interpreta
tion more complicated. 6 

The purpose of this paper is to analyze bound
electronic contributions to the nonlinear processes while 
ignoring real excitation effects. This work complements 
studies of the real excitation (carrier) nonlinearities. 6 We 
study virtual processes using a simple two-parabolic-band 
(TPB) model for semiconductors under nonequilibrium 
population conditions while assuming a cw (adiabatic) 
perturbation by the optical fields. The formalism used 
here is an extension of our earlier model, 8 which success
fully described the dispersion and band-gap scaling of the 
electronic n 2 in passive semiconductors in their tran
sparency range. 

We use a nonlinear Kramers-Kronig transformation8•10 

to obtain the nonlinear refractive index n 2 from the cal
culated first-order nonlinear absorption coefficient a 2: 

(1) 

where a 2 is defined as lia/1 with lia((l);(l)') representing 
any change in the absorption coefficient at (l)' induced by 
the presence of an excitation at (l) with irradiance I. Our 
task is to calculate this change in the absorption spec
trum caused by virtual excitation at (l). In Ref. 8 we 
showed that by using a Volkov-type dressed Bloch func-
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A. Passive, h ro < Eg 

2PA Raman 

B. Active, hro > Eg 

2PA Raman 

tion we can account for all the possible mechanisms (in a 
TPB model) that lead to a change of absorption that 
varies linearly with the excitation irradiance. These 
mechanisms include 2PA (when lieu'> Eg -lieu), electron
ic Raman (when lieu'> Eg +llw), and optical Stark effect 
(for flw' > Eg). A diagrammatic representation of these 
processes is depicted in Fig. 1 (a) for a passive material 
with excitation in the transparency region ( flw < Eg ). A 
similar physical description can be given for a system 
having a quasiequilibrium electron-hole population (i.e., 
with gain), and above-resonance excitation ( flw > Eg ). 
This is illustrated in Fig. l(b) for a simple two-band sys
tem. In this case there are spectral regions where the 
probe will experience a two-photon and/or Raman gain 
rather than absorption. The quadratic optical Stark 
effect (QSE) as qualitatively depicted in Fig. l(b) exhibits 
a particularly interesting behavior. The existence of 
above-band-gap excitation results in the formation of ad
ditional energy gaps (light-induced gaps 11 ) in both the 
valence and conduction bands. We will show later that 
this effect may redshift the transparency point once the 
quasiequilibrium is reestablished. A dynamic shift of the 
transparency point, and, in general, any above-band-gap 
excitation, can lead to additional real excitation processes 
that, as discussed earlier, are distinguished from ultrafast 
virtual processes by their longer recovery times. 1 In 
modeling described in the following section, we separate 

QSE 

QSE 

FIG. 1. Diagrammatical rep
resentation of the nonlinear ab
sorption due to two-beam in
teraction in a two-band system 
for (a) passive semiconductor 
and excitation photon energy 
liw < Eg, and (b) active semicon
ductor with liw> Eg. 

the virtual processes by considering only coupling be
tween those states whose virtual carrier lifetime (inverse 
detuning) is shorter than the phenomenological dephas
ing time ( T 2 ). It must be emphasized that this simple 
model aims at explaining the observed bound-electronic 
nonlinearities at or near transparency where the effects of 
real excitation (or deexcitation) are negligible. A detailed 
understanding of the dynamics of the optical nonlineari
ties, particularly at spectral regions where the optical 
field experiences strong absorption or gain, requires more 
rigorous time-evolution analysis containing Bloch equa
tions. 

II. NONLINEAR ABSORPTION SPECTRUM 

A detailed description of the TPB theory of nonlinear 
absorption and n 2 in the transparency region has been 
given in Refs. 8 and 12. A succinct review of this theory 
follows. The optical interaction is via the ( e /c) A ·p 
Hamiltonian where a= A0cos(w'-r)+ Aocos(w-r) 
represents the total vector potential and p=iliV denotes 
the momentum operator. The nonlinear interaction is 
formulated in two steps. In the first step the optical fields 
alter the energy of the electrons in both initial and final 
states by virtue of the linear and quadratic Stark effects. 
In the second step, the transition rate between these 
"dressed" states (bands) is calculated using first-order 
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perturbation theory. The linear and quadratic Stark 
effects are incorporated into the band states via their en
ergies given by 

E =E0 -~k·A(-r)±dEQSE (2) 
c,v c,v mc,vC cv ' 

where k is the electronic wave vector, E~v is the unper
turbed energy of the valence ( v) or conduction (c) band, 
and mc,v denotes the effective mass of the corresponding 
band. The first correction term in energy is time depen
dent and corresponds to the linear optical Stark effect 
(LSE). This is a time-varying (oscillating) energy term 
and leads to absorptive changes that involve the loss or 
emission of the excitation photons, i.e., 2PA and Raman 
effects. 8• 12 The second term is the QSE energy shift that 
is positive for the conduction band and negative for the 
valence band. We assume, for simplicity, two parabolic 
bands with equal curvature; thus mc=mv=m 0Eg1Ep, 
where m 0 is the free-electron mass and EP is the Kane 
energy which is nearly constant (""'20 eV) for most semi
conductors. 13 

It is important to keep in mind that the field at w is as
sumed to be the strong excitation field while the probe at 
w' is regarded as weak. Hence we consider dE2~E due to 
excitation by the field Ao only:8 

1

2
Re { 1 

Ecv -lico+i21ir 

+ 1 } 
Ecv +liw + i21ir ' 

(3) 

where Ecv(k) is the valence- to conduction-band energy 
difference with parabolic dispersion and Pcv is the inter
band momentum matrix element. Because of on
resonance excitation imposed by the condition liw > Eg, 

we have included a broadening term associated with 
scattering frequency r= 1/T2, where T2 is the phenome
nological dephasing time of the electrons (or holes). By 
this definition, the combined electron-hole scattering 
rate, associated with the interband transition, is 2r. The 
inclusion of T2 implies that only excitations into k states 
with an inverse detuning <lw-Ecv/lil- 1) shorter than T2 

are accounted for, and real excitations that lead to long
lived carrier effects are excluded. We assume a constant
T 2 approximation and ignore the energy or detuning 
dependence of this quantity. 14 The influence of broaden
ing on the first-order energy shift in Eq. (2) can be ap
proximated using the classical transformation of the vec
tor potential from A( t) into A( t)- r I; A(t 
+-r)e-r'"d-r under a momentum relaxation rate of r. 
Strictly speaking, formulating the scattering effects in the 
above manner implies a steady-state situation. Thus we 
cannot accurately analyze but only speculate about the 
transient effects occurring within the time T 2 • 

The second step in the interaction is to calculate the 
transition rate between the two dressed states using first
order perturbation theory. Separating out the com
ponents that vary linearly with the excitation irradiance 
and involve the absorption or emission of a single photon 
of the probe (lito'), we obtain the nondegenerate absorp
tion coefficient 

(4) 

where K=291Te 4 /5c 2Vm 0 and n0i (j=1,2) are the 
linear refractive indices at the probe and excitation wave
lengths, respectively. 8 The function F2 contains informa
tion about the optically coupled states as well as the 
gain/loss characteristic of the system and is given by 

TABLE I. The nonlinear absorption spectrum function F 2. The terms ( · · · )312 and ( · · · )'f 112 are 
zero when their argument is negative. The sign of the Raman term is determined by the sign of 
(x 1-x2 ). Here y=li/E T2 • 

Contribution 

2PA 

Raman 

Linear Stark 

Quadratic Stark 

(xl+xz-1)312 (x 1+x2)2 
--'-----=-"--:--___ --,--.::.__-=---- for X I +X 2 > 1 

27x 1 x~ (xf +y2 /4)(x~ +y2 /4) 

± <lxl-x21-ll312 (x 1-x2)2 

27x 1 x~ (xf +y2 /4)(x~ +y2 /4) 

(x 1-1)312 xf 

26x 1 x~ (xf +y2 /4)(x~ +y2 /4) 
for x 1 > 1 

2(xl-l)[(x1-x2 )2-y2] 

[(xl-x2)2+y2]2 

_ 2(x 1-1)[(x 1+xz>2-y2]] 
[(xl +x2)2+y2]2 

for x 1 > 1 
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(5) 

where lfv- fc} is the occupancy factor with fc,v denot
ing the quasiequilbrium Fermi-Dirac distribution func
tions for conduction and valence bands, respectively. The 
spectral function F~ contains the contributions from 
2P A, electronic Raman, and optical Stark effects. This 
function, which is essentially an energy-broadened ver
sion of the function F 2 derived in Ref. 12, is given in 
Table I. Assuming equal quasi-Fermi levels for the elec
trons and holes, we write the occupancy factor as 

sinh(vm) 
!fc-fvJ= l+cosh(v ) ' 

m 

where 

v = m 

lmmo+mo'I-2EQF 

(6) 

with m = 1, -1,0 corresponding to 2PA, Raman, and op
tical Stark effects, respectively. Tis the carrier tempera
ture and k0 is the Boltzman constant. The quasi-Fermi 
level EQF is referenced to the midgap (Eg/2) energy, i.e., 
EQF ""'0 for an intrinsic, passive material. We define the 
transparency point to occur at liw,r=2EQF for a system 
with gain (EQF > 0. 5Eg ). After normalizing all the ener
gy parameters with respect to Eg, we can rewrite vm as 

0.10 ~an (a) 

~ 
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(7) 

FIG. 2. (a) The calculated change in absorption due to virtu
al excitation at the transparency wavelength (liw/Eg = 1.03) 
due to various mechanisms. (b) The total absorption as the sum 
of these contributions plotted in the vicinity of the transparency 
point (vertical dashed line). The solid and dashed lines corre
spond to unshifted and shifted quasi-Fermi levels, respectively. 

lines) shows the absorption a 2(w';w) calculated separate
ly for each mechanism assuming EQF=0.515Eg (i.e., 
x 1r = 1.03). Figure 2(b) (solid line) depicts the total 
change of absorption in the vicinity of the transparency 
point. The effects of Raman and 2P A are manifested as a 
net increase in the absorption. This absorption increases 
as the probe frequency is reduced [Fig. 2(a)]. On the oth
er hand, the QSE contribution is more localized in energy 
since the optical field induces a gap that alters the density 
of states only in the vicinity of the excitation photon en
ergy mo. An important consequence of this induced 
change in the density of states is the self-adjustment of 
the quasi-Fermi levels (on a time scale of carrier-carrier 
scattering times) in order to conserve the total carrier 
density. This leads to an additional contribution to a 2 

and hence alters the total absorption spectrum as shown 
by the dashed lines in Figs. 2(a) and 2(b). In the following 
section we give a simple derivation of this quasi-Fermi 
energy shift and the resultant change of absorption. 

III. STARK SHIFf OF THE QUASI-FERMI LEVELS 

A consequence of the modulation of the band curva
ture due to the QSE, as given by Eq. (2), is the change of 
the local density of states. For example, as was shown di
agrammatically in Fig. 1, this effect reduces the density of 
states in the center of the induced gap but increases it 
above and below center. To illustrate this effect, we calcu
late the density of states 

Nc,u(E)= l/47T3 J dk B[E- Ec,u] 

for each band using the band energy dispersions given by 
Eqs. (2) and (3). Figure 3 shows the calculated N,(E) in 
the presence of the QSE a~ompared to the well-known 
square-root dependence ( E - Eg) of a nonperturbed 
band. The perturbing field used to calculate Nc(E) in Fig. 
3 was chosen to be large enough to overemphasize the in
duced change. As we shall see, this modulation in the 
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FIG. 3. The density of states versus energy for a parabolic 
band under quadratic Stark effect (solid line). The dashed line is 
the square-root function of a nonperturbed band. The arrow in
dicates the photon energy of the excitation. 
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density of states significantly alters the quasi-Fermi levels 
only when the excitation is very near the transparency 
point which is precisely the situation we are most con
cerned with in this paper. The shift in E QF can be viewed 
as a process to ensure the conservation of the total carrier 
density in the absence of a net population exchange. This 
adjustment is not instantaneous and has a characteristic 
time determined by the carrier-carrier scattering time 
(Te-e""' 100 fs), 15 after which the Fermi distribution is 
reestablished. The energy shift ( !J..E QF ) can be obtained 
from the Fermi integral for the total electron (or hole) 
density: 

J /(Ec(k)-EQF-!J..EQF)dk=const, (8) 

where Ec is given by Eq. (2) and j(E)=( 1 +e -EikBT)- 1 is 
the Fermi distribution function. Using a variational pro
cedure, we solve Eq. (8) for !J..EQF to first order in the ex
citation irradiance I and obtain 

EP 
!J..EQF=BI--3 T(IWJ!Eg), 

n0Eg 
(9) 

where B =210rre 2fz2 !5m 0c and T(x 2 ), which contains the 
spectral dependence of this energy shift, is given by 

(10) 

Here p~SE corresponds to the broadened QSE spectral 
function given in Table I. It is worth noting that, just as 
the absorption change due to the QSE is the virtual ana
log of spectral hole burning (band blocking), the conse
quent shift of the quasi-Fermi levels is effectively a virtual 
analog to a similar effect arising from carrier heating that 
follows the hole-burning process. Thus one may regard 
the shift ofthe quasi-Fermi levels as given by Eq. (10) as a 
"virtual carrier heating" effect. 

Figure 4 shows T ( x 2 ) calculated as a function of the 
excitation photon energy fzw!Eg assuming quasi-Fermi 
levels corresponding to IWJtriEg = 1.03 and 1.05. Note 
that the general features of T(x2) do not strongly depend 
on the initial E QF although the shift at the transparency 
point i~ smaller with a larger initial EQF· It is evident 
from Ftg. 4 that EQF• and hence the transparency point, 
is blueshifted for below and around transparency excita
tion, but as IWJ exceeds fiwtr• the sign of !J..E QF ultimately 
reverses, resulting in a redshift of the transparency point. 
Of practical importance is the situation when excitation 
is at the transparency point. According to Fig. 4, there is 
a blueshift of EQF which results in a net decrease of the 
absorption coefficient, since IWJ now overlaps the gain re
gion. The effective a 2 coefficient associated with this en
ergy shift is found to be 

QF( '· )- aao(w') !J..EQp(w) 
a 2 w ,w -

aEQF I 

where a0 is the linear interband absorption given by 

(11) 

1.0 
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FIG. 4. The calculated shift of the quasi-Fermi levels due to 
quadratic Stark splitting of the energy bands as a function of ex
citation photon energy for two values of initial quasi-Fermi lev
els. The transparency points of each curve at liw1r!E8 = 1.03 
and 1.05 are marked. 

e2v'mo Eg (xl-1)1/2 
a ( w' ) = __ ____;:_ --"'---- { " f J 

0 3c""'2 ~ /";;'" X I J c - v T' n0 y EP 
(12) 

The total change in the absorption spectrum due to the 
QSE is depicted in Fig. 2(a) (dashed line) as the sum of 
a~F and a~SE from Eq. (4). The overall a 2 (assuming 
quasiequilibrium has been reestablished) is shown in Fig. 
2(b) (dashed line) and can be represented by the same re
lation as in Eq. (4) provided that we modify the p~sE in 
Table I to become 

-QsEI --QSE 4T(x2) (xl-1)1/2 
F 2 total-F 2 - ---=---..:....__ __ ----=---

3'17 x 1 1+cosh(v0) 

Although the nonlinear response dynamics of such a sys
tem requires a more rigorous time-domain analysis (i.e., 
Bloch equations), we will attempt to infer a qualitative 
picture for the nonlinear absorption dynamics from the 
approach presented here. We may conclude from Fig. 
2(b) that a probe beam having the same wavelength as the 
pump will undergo an initial decrease in the transmission 
due to two-photon absorption. For laser pulses contain
ing many optical cycles, this will appear instantaneous. 
This will be followed after a time T""'Te-e by an increase 
of transmission due to the QSE and subsequent blueshift 
of the quasi-Fermi levels. Although this qualitative 
description is consistent with certain experimentally ob
served ultrafast gain dynamics, 2 one cannot generally ig
nore the real excitation effects such as carrier heating and 
spectra hole burning in analyzing the experimental data. 
For example, carrier heating arising from free-carrier ab
sorption (with a rise time comparable to that of the 
quasi-Fermi-level shift) would tend to redshift the tran
sparency point, thus opposing the effects of the QSE. 2- 5 
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IV. NONLINEAR REFRACI'ION 

Following Eq. (1), the induced change in the refractive 
index is now obtained using the Kramers-Kronig (KK) 
transformation of the calculated nondegenerate Aa spec
trum. Similar to the case of passive materials, 8 we derive 
the following formula for the nonlinear index n 2 : 

VE (eV) 
n X 10- 11 (cm2 /W)=K' P G (flw/E ) 

2 E 4 (eV)Xn 2 2 g ' g 0 

(13) 

where K'=fu:K /2 and G2 is the dispersion function ofn 2 

related to F 2 via the KK integral. Specifically, 

2 J oo F2(x 1;x) 
G2(x)=- 2 2 dxl . 

1T o x 1-x 
(14) 

It is important to note that just as F 2 is a function of tem
perature (k0 T!Eg) and broadening (fz/T2Eg), as well as 
optical frequencies, G2 will also contain such depen
dences. This is in contrast to the case of passive materi
als (at fiw<Eg) where F 2 and G2 were only functions of 
frequencies. 8 

Since the KK integral represents essentially a linear 
transformation, the G2 function corresponding to each of 
the mechanisms involved in the absorptive process can be 
separately evaluated by using the relevant F 2 function in 
Eq. (14). Figure 5 depicts the calculated G2 functions 
corresponding to the different absorptive contributions in 
Fig. 2 at a transparency point of xtr = 1.03. Note that the 
magnitude of G2 due to the QSE is small initially (solid 
line) before allowing for the shift in the quasi-Fermi lev
els. This means that n 2 is initially dominated by two
photon effects (2PA + Raman). Figure 6 shows the total 
G2 function for various quasi-Fermi levels corresponding 
to different injection current levels in a diode laser, with 
the transparency points indicated. The dispersion curves 
in Fig. 6 contain the total contributions from 2P A, Ra
man, and the QSE (including the quasi-Fermi-level shift), 
and all have a negative sign at the transparency point. 

0.1 

-0.1 

N 
C) 

-0.2 2PA+Romon 

-0.3 

- 0 · ~ .'="9~........._........_,_,1~. o::'-'-..L.L..L..L.-'~1..L. 1,......,._.L..L..L..L..L~1 .2 

flw/E9 

FIG. 5. The calculated dispersion function of n2 due to vari
ous mechanisms. The contribution from QSE is shown for on
shifted (solid line) and shifted (dashed line) quasi-Fermi levels. 

-0.4 L~ 
0.9 1.0 :.1 

nw/ 
FIG. 6. The calculated total G2 dispersion function for vari

ous quasi-Fermi levels. The dashed line represents G2 for a pas
sive semiconductor. The transparency point of each curve (at 
fl(.tJ/Eg = 1.0, 1.03, and 1.05) is marked. 

For the remainder of the paper, we will refer to G2 as the 
total contribution, accounting for the shift in the quasi
Fermi levels. 

Also evident from Fig. 6 is the moderate increase in 
magnitude of n 2 at the transparency point as the EQF is 
raised, i.e., injection current is increased. This depen
dence is explicitly illustrated in Fig. 7 where the variation 
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N-0.3 
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-0.4 
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0.50 0.52 0.54 0.56 0.58 0.60 

EoF 
FIG. 7. The variation of G2 as a function of quasi-Fermi lev

el, EQF• (a) at transparency point (liro=lko,) with contributions 
from QSE and 2P A + Raman shown explicitly, and (b) below 
band edge with lim!Eg =0.9, 0.95, and 0.98. 
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of G2 versus EQF is plotted for photon energies corre
sponding to the transparency point [Fig. 7(a)] as well as 
to the below-band-edge region with litu1Eg=0.9, 0.95, 
and 0.98. In Fig. 7(a) the separate contributions from 
QSE and 2P A + Raman are explicitly shown. The van
ishing contribution of the QSE as the transparency point 
moves up in the conduction band is a consequence of 
equal but opposite-sign contributions due to blueshifting 
of the states with Ecv > litu and redshifting of those with 
Ecv < litu. The main features of Figs. 7(a) and 7(b), name
ly, the increase in magnitude of n2 at the transparency 
point, as well as the reduction of n 2 below the band edge 
as a function of EQF• are in good agreement with there
cently reported experiments. 16 

In calculating the dispersion curves of Fig. 2, we as
sumed 17=0.02 [defined in Eq. (7)] for the carrier temper
ature and y=0.02 [defined after Eq. (5)] for the broaden
ing. This corresponds to T2 """ 130 fs and T""'350 K for a 
semiconductor with Eg""" l. 5 eV (e.g., GaAs). The value 
of I G2 1 at the transparency point increases as these two 
parameters are reduced, i.e., n 2 is enhanced as the am
bient temperature is lowered and/or T2 is increased. The 
temperature dependence of G2 at transparency, calculat
ed for different values of broadening ( y ) is shown in Fig. 
8. The nature and magnitude of T2 in semiconductors 
has been subject to much debate and study in the past. 
The dephasing time arising from carrier-carrier scatter
ing was recently calculated by Binder et al. for highly ex
cited (degenerate) semiconductors. 15 Their results indi
cated a minimum in the electron-electron scattering rate 
fork states near the quasi-Fermi wave number, leading to 
a large T2 at the transparency point. A qualitative exper
imental verification of this theory was reported recent
ly.17 The experiments also showed, in accordance with 
theory, a much reduced scattering rate at lower tempera
tures. 15·17 For example, the calculated T2 for electrons in 
GaAs at a high plasma density varies from """100 fs to 
""" 1 ps as the temperature is reduced from T = 300 to lO 
K. 15• 17 In view of such a temperature dependence, Fig. 8 
suggests that a substantial enhancement of n2 may be ob-

0.1 

0 250 500 750 1000 

E9/ksT 

FIG. 8. The temperature dependence of the transparency 
value of G2 for various broadening parameters. The vertical 
dashed line corresponds to 17=0.02 (k8 T !Eg=SO). 

served in laser diodes at low temperatures. 
For passive bulk semiconductors, the constant K' was 

evaluated in Refs. 8 and 12 to be ""'6 [units of Eq. (13)]. 
However, this underestimated by a factor of ""'4 the n 2 

for AlxGa1_xAs samples at wavelengths very near the 
band edge. 18 In Ref. 12, we suggested that this 
discrepancy may be partially attributed to the electron
hole Coulomb interaction which has been neglected in 
the theory. Similarly to the procedure outlined in Ref. 12, 
we can account for this interaction in the nonlinear ab
sorption spectrum by using an Elliott-type enhancement 
factor for the continuum of excitons. However, the high 
plasma densities present in the active semiconductors re
quire that the Coulomb screening of the excitons must 
also be taken into account. In the following, a correction 
to a 2 and n 2, due to Coulomb interaction, will be estimat
ed using a simple formalism. We use the screened 
enhancement factor calculated by Banyai and Koch 19 for 
the continuum of excitons. We then generalize this pro
cedure and, as given in Ref. 12, apply it to the nonlinear 
absorption spectrum by multiplying the F 2 functions of 
each process by the excitonic function U(pm ): 19 

-"" I 2gn2-g2 l U(pm )-IT 1 + 2 2 2 2 ' 
n=i (n -g) +n g Pm 

(15) 

where g is a screening parameter related to the quasi
Fermi levels as given in Ref. 19 and 

lxl+mx2 l-1 
Pm= (16) 

EexfEg 

where E ex is the binding energy of the exciton. Applying 
this enhancement factor to all the processes involved in 
the transition rate, we can reevaluate a 2 and n 2 • The 
exciton-enhanced G2 functioQ obtained using this ap
proximation is shown in Fig. 9 for a typical exciton bind
ing energy of Eex =0.01Eg. Although no appreciable 
qualitative difference is seen, it is evident that more than 
a two times enhancement of the transparency value of G2 

-0.0 

N 
(_) 

-0.4 

-------------
Ee./E9 

0.00 
0.01 

1 .0 1.1 

flw/E9 

1.2 

FIG. 9. The calculated n2 dispersion function including 
screened exciton enhancement (solid line) in comparison with 
the no-exciton case (dashed line). The transparency point is at 
liw/E1 =1.03. 
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is predicted. Using the exciton-enhanced G2 function, we 
find that the expression in Eq. (13) gives relatively good 
agreement with the sign and magnitude of the measured 
n 2 values in Al.,Ga1_xAs and In-Ga-As-P diode lasers. 
Using E8 =1.5 and n0 =3.4 for AlxGa1_xAs, we obtain 
n 2 ""' -2X 10-12 cm2/W which is in reasonable agree
ment with the measured value of - 5 X 10- 12 cm2 /W re
ported in Ref. 1. The experimentally reported values of 
n 2 in In-Ga-As-P vary from ln 2 1 ""'(2-4)X 10- 11 using 
spectral analysis4 to n 2 ""' -3 X 10- 12 cm2 /W using a 
time-division interferometric technique. 2 This large 
difference may be attributed to difficulties in obtaining ac
curate effective mode areas for the laser waveguides, as 
has been pointed out in Ref. 2. Taking E8 ""'0. 83 eV for 
In-Ga-As-P, we use the E8- 4 scaling law in Eq. (13) to ob
tain n 2 ""' -2X 10- 11 cm2/W, assuming the same G2 

value as in AlxGa1_xAs. But considering the dependence 
of G 2 on T !E8 and 1 !T2Eg, as given by Fig. 8, we expect 
the band-gap scaling to be weaker than E8- 4 if we assume 
that the temperature T and dephasing time T2 are un-

1C. T. Hultgren and E. P. Ippen, Appl. Phys. Lett 59, 635 
(1991). 

2K. L. Hall, J. Mark, E. P. Ippen, and G. Eisenstein, Opt. Lett. 
576, 1740 (1990); K. L. Hall, A.M. Darwish, E. P. lppen, U. 
Koren, and G. Raybon, Appl. Phys. Lett. 62, 1320 (1993). 

3C. T. Hultgren, D. J. Dougherty, and E. P. Ippen, Appl. Phys. 
Lett. 61, 27&.7 (1992). 

4M. A. Fisher, H. Wickes, G. T. Kennedy, R. S. Grant, and W. 
Sibbett, Electron. Lett. 29, 1185 (1993). 

5P. J. Delfyett, A. Dienes, J. P. Heritage, M. Y. Hong, andY. 
H. Chang, Appl. Phys. B 58, 183 (1994). 

6B. Flugel, S. W. Koch, and N. Peyghambarian, Proceedings of 
the 9th Interdisciplinary Laser Science Conference, Toronto, 
Canada, 1993 (American Institute of Physics, New York, 
1993). See also A. D'Ottavi, E. Iannone, A. Mecozzi, S. 
Scotti, P. Spano, J. Landreau, A. Ougazzaden, and J. C. Bou
ley, Technical Digest of IQEC-94 (Optical Society of America, 
Washington, D.C., 1994). 

7V. Mizrahai, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and 
M. J. Andrejco, Opt. Lett. 14, 1140 (1989). 
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changed. From Fig. 8 we see that by lowering E8 by a 
factor of 2, but keeping T and T2 constant, a nearly four
fold decrease in the value of G2 at transparency is es
timated. This assumption leads us to estimate 
n2 ""'- 5 X 10-12 for In-Ga-As-P at room temperature. 
This is well within the range of experimentally reported 
values. 2•4 

In conclusion, we have obtained a simple expression 
that gives the dispersion and band-gap scaling of the ul
trafast n 2 in semiconductor lasers near their transparency 
point. We have accounted for the effects of two-photon 
absorption, electronic Raman, and optical Stark shift, in
cluding a self-adjustment of the quasi-Fermi levels. 

ACKNOWLEDGMENTS 

We gratefully acknowledge the support of the National 
Science Foundation Grant No. ECS-9120590. The au
thors also thank Professor Erich P. Ippen and Professor 
Alan Miller for helpful and enlightening discussions. 

9R. Luzzi and A. R. Vasconcellos, in Semiconductors Probed by 
Ultrafast Laser Spectroscopy, edited by R. R. Alfano 
(Academic, San Diego, 1984), Vol. I. 

100. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. 
Van Stryland, Opt. Quantum Electron. 24, 1 (1992). 

11H. Haug, Optical Nonlinearities and Instabilities in Semicon
ductors (Academic, San Diego, 1988). 

12M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, IEEE J. 
Quantum Electron. QE-30, 249 (1994). 

13E. 0. Kane, J.Chem. Phys. Solids 1, 249 (1957). 
14M. G. Burt, Semicond. Sci. Techno!. 5, 1215 (1990); 8, 1393 

(1993). 
15R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henne

berger, and S. W. Koch, Phys. Rev. B 45, 1107 (1992). 
16C. T. Hultgren and E. P. Ippen, Technical Digest of /QEC-94 

(Ref. 6). 
17K. Meissner, B. Fluegel, H. Giessen, G. Mohs, R. Binder, S 

W. Koch, and N. Peyghambarian, Technical Digest of /QEC-
94 (Ref. 6). 

18M. J. LaGasse, K. K. Anderson, C. A. Wang, H. A. Haus, and 
J. G. Fujimto, Appl. Phys. Lett. 56, 417 (1990). 

19L. Banyai and S. W. Koch, Z. Phys. B 63, 283 (1986). 


