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Nonlinear spectral modulation and broadening have been observed in quasi-phase-matched KTP waveguides 
near 850 nm, indicative of self-phase modulation that is due to cascaded second-order processes. Numerical 
beam-propagation simulations indicate nonlinear peak phase shifts larger than '1T' for 600 W of peak power in a 
2.8-mm-long guide. 

It has been known for many years that a nonlinear 
phase shift can occur with non-phase-matched 
second-harmonic generation in particular and with 
parametric processes in general.1·2 Frequently it 
is an undesirable factor that leads to instabili
ties in parametric oscillators. Such a nonlinear 
phase shift has been measured experimentally in 
bulk KTP at 1.06 11-m with Z-scan techniques, 3 

which measure the phase distortion directly, and 
earlier in bulk cesium dihydrogen arsenate by 
observation of the temporal modulation on the 
pulses. 4 Spectral modulation of the fundamental 
has also been reported in bulk samples. 5 In general, 
the effective third-order nonlinearities have been 
small (10-14 cm2/W), and the required powers have 
been large (kilowatts to megawatts). However, with 
the development of quasi-phase-matching (QPM) 
techniques, which allow large second-order nonlinear 
coefficients to be phase matched in waveguide ge
ometries, large nonlinear phase shifts are potentially 
possible at relatively low powers. It has recently 
been shown theoretically that such phase shifts could 
prove useful for low-power all-optical switching in 
waveguides at watt power levels, provided that phase 
shifts of '1T or more can be obtained. 6 However, to 
our knowledge no measurements of this nonlinear 
phase shift have been performed in waveguides. 
In this Letter we report the measurement of large 
nonlinear phase shifts (>?T), using 3-ps pulses 
at 850 nm in KTP quasi-phase-matched channel 
waveguides. 

Experiments were performed in a - Z-cut sample of 
hydrothermally grown KTP with segmented, domain
inverted waveguides formed by ion exchange. 7 Ion 
exchange was performed in a 95 mol.% RbN03/5 
mol.% Ba(N03 ) 2 molten salt bath for 45 min at 
325 oc. The y-propagating waveguides are 2.8 mm 
long, with an asymmetric QPM period of 4 11-m 
consisting of 2. 7 -11-m exchanged regions followed by 
1.3 11-m of bulk material. The waveguides used had 
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5-Jl-m widths and effective depths of approximately 
4 11-m. These guides support at least two modes at 
the fundamental wavelength and several modes at 
the second harmonic. However, the input coupling 
conditions could be adjusted to excite predominantly 
the fundamental TM00 mode. Calculations based on 
the Sellmeier formula for KTP and this segmentation 
geometry predict that the first-order phase match for 
TM polarization [TM0o(w) + TM00(w) -+ TM00(2w)] 
should occur at 846 nm with a FWHM bandwidth 
of 0.3 nm for this waveguide length. 8 The mode 
of the generated second harmonic is determined 
by phase-matching considerations. A low-power cw 
wavelength scan with a Ti:sapphire laser (Fig. 1) de
termined that the TM0o(w )-to-TM00(2w) phase match 
occurs at 852.2 nm with a bandwidth of 0.34 nm, in 
excellent agreement with the Sellmeier calculations 
considering that bulk refractive indices were used 
rather than mode effective indices. There is also 
a phase match for TM00(w)-to-TM01(2w) conversion 
(less efficient) at 844.1 nm, and phase matching to 
higher-order modes occurs at shorter wavelengths. 
Use of TM modes exploits d33 , which at 18.5 pm/V 
is the highest coefficient in KTP.9 Waveguide 
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Fig. 1. Low-power cw wavelength scan in KTP QPM 
waveguide showing prominent phase-match locations. 
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Fig. 2. Experimental setup for spectral modulation mea
surements: AOM, acousto-optic modulator; M1, M2, 20X 
microscope objectives; F01, F02, multimode fiber-optic 
cables; F, filter to block the second harmonic. 

quality is excellent, with typical overall throughputs 
(measured from before the input objective to after 
the output objective) of 30-40%. Waveguide losses 
are so low that they are difficult to measure and 
are estimated to be less than 0.5 dB/ em for the 
fundamental and less than 1 dB/ em for the second 
harmonic. 

We evaluated the nonlinear phase shifts that 
are due to cascading by measuring the spectral 
modulation obtained on transmission through the 
KTP waveguides. The experiments were performed 
with a Kerr lens mode-locked Ti:sapphire laser that 
produces transform-limited pulses with autocorrela
tion pulse widths from 2 to 4 ps. Owing to the 
solitonlike nature of this laser, a sech2 pulse shape is 
assumed, and typical measured time-bandwidth 
products are 0.315 to 0.320. The experimental ap
paratus is shown in Fig. 2. Continuous monitoring 
of the pulse autocorrelation and input spectrum 
ensured that the pulses remained transform limited. 
Because the input spectrum was taken just before 
the beam was focused into the waveguide, we 
verified that none of the optical elements before 
the waveguide distorted the spectrum. The acousto
optic modulator is used to adjust the input power 
into the waveguide without steering the beam 
and affecting waveguide coupling. The spectrometer 
(Instrument Systems Spectro 320) consists of a slowly 
scanned grating and a calibrated detector and has 
a resolution of less than 0.07 nm. Multimode fiber 
cables provide the optical input to the spectrometer, 
and tests were done to ensure that the fiber coupling 
conditions and the fibers themselves did not distort 
the spectra. 

Large amounts of spectral broadening and mod
ulation were observed slightly off phase matching 
in the 854-857-nm range, with a typical power
dependent result shown in Fig. 3. This clearly 
shows the greater-than-threefold increase in spectral 
width and three-lobed modulation at high guided 
intensities relative to low intensities. The low
intensity KTP waveguide transmission spectrum 
is indistinguishable from the input spectrum. No 
phase matching is obtained when TE-polarized light 
is used, and the output spectrum remains unchanged 
even at the highest powers. With 30% throughput, 
correcting for Fresnel reflection at the output face 
and taking an effective mode area of 20 J.Lm2, 

we estimate the peak intensity in the guide for 
300 m W of average incident power and 3.4 ps FWHM 
autocorrelation width to be 3 GW I cm2 • Large 

amounts of second-harmonic conversion are required 
for this effect to be seen, as evidenced by the 60-70% 
average fundamental depletion observed where the 
phase modulation is largest. If it were compared 
with self-phase modulation in fibers, the three-lobed 
modulation would correspond to a peak nonlinear 
phase shift of 2.57T.10 In our case, however, the 
second-harmonic-generation process can lead to 
additional spectral structure unrelated to pure self
phase modulation. Our theoretical simulations (see 
below) indicate phase shifts of the order of 7T to 27T. 
The natural third-order n 2 ofKTP at 1.06 J.Lm is 2.4 X 
10-15 cm2/W, which gives a phase shift almost 2 
orders of magnitude less than that inferred here. 3 

We modeled short-pulse second-harmonic genera
tion to compare calculated and experimental spectra. 
This problem has been studied extensively over the 
years, but many of these studies generally neglected 
pump depletion and/or dispersive effects such as tem
poral walk-off, group-velocity dispersion, and spec
tral bandwidth limitations to phase matching.1•11- 13 

These studies also tended to neglect the phase dis
tortion and spectrum of the fundamental. Eckardt 
and Reintjes14 and, Bakker et al. 15 did include these 
effects, and their theoretical treatments formed the 
basis of our modeling. The appropriate coupled time
domain equations governing pulsed second-harmonic 
generation in a dispersive medium are14 

a 1 a .k1"Lw a2 
-A1- --A1- z---A1 
ag 2 aT 2To2 aT2 

= iKLwA2A1 * exp(iA.kg Lw) - a1~w A1 , (1) 

a 1 a k "L a2 
~A2 + -

2 
-A2- i 

2
2m; - 2A2 

a~ aT .L 0 aT 

= iKLwA1A1 exp(-iA.kgLw)- a2~w A 2, (2) 

where K is the second-harmonic nonlinear coefficient, 
defined by K = 2wdetr/(2n,}n2wEoc

3
)

112
, Ak is the 

detuning from the quasi-phase . match, ai are 
the absorption coefficients of the fundamental and 
the second harmonic, and Ai are the field amplitude 
envelopes normalized such that IAI2 is the guided 
intensity in megawatts per square centimeter. For 
QPM, K must be reduced by a factor of 2 sin(7TD)/7T, 
where Dis the duty cycle of the grating (0.675 in our 
case).16 Following the method of Eckardt and Reint-
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Fig. 3. Output fundamental spectra as a function of 
incident power. 
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Fig. 4. Output fundamental spectra at 3 GW / cm2 guided 
intensity as a function of wavelength: (a) numerical 
simulation, (b) experimental results. 

jes, we use a reduced time that averages the group 
velocities of the fundamental and second harmonic 
and normalize the time and space coordinates to the 
pulse width and the walk-off length, respectively. 
The walk-off length is defined by Lw = T0 j(k2' -
k1'), where T0 is the intensity FWHM pulse width 
and k1,2' are the first frequency derivatives of the 
fundamental and the second-harmonic wave vectors. 
Likewise, the wave vectors with double primes 
are the second derivatives that represent group
velocity dispersion. Calculations for KTP at 850 
nm based on the Sellmeier equation give Lw = 
1.5 mm for a 2-ps pulse, implying that walk
off must be considered for the 2.8-mm samples. 
Group-velocity dispersion is much less important 
over these lengths. A symmetric split-step fast
Fourier-transform beam-propagation program, with 
a third-order Runge-Kutta routine to evaluate the 
nonlinearity over each distance increment, was 
written to evaluate the coupled second-harmonic 
equations numerically and model the experiments. 
This approach gives energy conservation to within 
lo-s. Extensive numerical modeling of these equa
tions was performed for QPM in KTP, and Fig. 4(a) 
shows the wavelength dependence of the modulation 
of the spectrum. 

We measured the variation in the spectral broaden
ing (and hence in nonlinear phase shift) as a function 
of detuning from phase matching in order to test 
further the predictions of the cascading calculations. 
Figure 4(b) shows the evolution of the spectral 
modulation as the wavelength is tuned through the 

phase match. Care was taken to keep the input 
power and pulse width the same for every wavelength 
in the scan. No phase modulation was observed 
in this experiment on the short-wavelength side of 
phase matching, perhaps as a result of competition 
from the TM01 phase match, which would give a 
phase shift of opposite sign. There is good qual
itative agreement between experiment and theory 
considering that the modeling was done for QPM 
in bulk KTP and not for waveguides and thus 
does not consider contributions and competition from 
several phase-matching interactions [i.e., TM00(w)-+ 
TM01 (2w), TM01(w)-+ TM01 (2w)]. We plan further 
interferometric studies of the tuning behavior of the 
second-order phase shift to determine accurately the 
magnitude and sign of the phase shift near these 
resonances. 

In conclusion, peak nonlinear phase shifts larger 
than 'lT have been observed in KTP QPM waveguides 
through novel use of the phase distortion associated 
with second-harmonic generation. The demonstra
tion of such large phase shifts at relatively low powers 
and in short samples is promising for all-optical pho
tonic switching applications. 
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