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Coherent Interactions for All-Optical Signal 
Processing via Quadratic Nonlinearities 
Gaetano Assanto, George I. Stegeman, Mansoor Sheik-Bahae, and Eric VanStryland 

Abstract-Based on processes involving the cascading of two 
successive second-order nonlinear interactions, we show how 
novel, all-optical approaches to signal processing can be exploited 
by coherent interactions between three waves in noncentrosym- 
metric materials. Specifically, we emphasize the coherent seeding 
of the second-harmonic generation process with waves at one of 
the participating frequencies. 

LL-OPTICAL signal processing, i.e., the ensemble of A those effects leading to some optically-induced modifi- 
cation of the parameters describing an electromagnetic wave 
at optical frequencies, has generally been considered to be 
the realm of third-order phenomena and consequently re- 
quires third-order nonlinear susceptibilities and related ma- 
terials [1]-[3]. Among the important effects are frequency 
degenerate interactions between one wave (with itself) or 
two waves which induce self- or cross-phase modulation. 
Operation at a single photon energy (i.e., optical frequency) is 
indeed a crucial requirement for cascadability and fan-out of 
single devices in a network for either processing or computing. 
Nonlinear phase modulation leads with propagation distance to 
a nonlinear phase shift, the key quantity in intensity-dependent 
switching [2]-[3]. The search for third-order materials able to 
provide large phase shifts at reasonable intensities and with 
short response times has been, and still is, a major effort in 
nonlinear optics. 

A different approach exists for obtaining optically a non- 
linear phase shift upon propagation. It was understood and 
had been observed previously that certain effects quadratic 
in the electric field lead to nonlinear phase distortion-shift 
in pulses-cw-waves propagating in noncentrosymmetric me- 
dia and undergoing frequency conversion or, specifically, 
frequency doubling [4], [9]. In the early days of nonlinear 
optics such effects were included as an additional contribution 
to the third order susceptibility and evoked little interest 
because the second order susceptibilities available at that time 
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were small [lo]. More recently, the possibility of achieving 
large nonlinear phase-shifts of a fundamental-frequency (FF) 
input-wave, utilizing a cascaded process based on wavevector 
mismatched second-harmonic generation (SHG), has spurred 
novel ideas in the application of x ( ~ )  effects for the ma- 
nipulation of optical signals [ l l]-[ 161. This effect requires 
both processes, up conversion and down conversion to occur. 
The resulting nonlinear phase shift can, indeed, be used for 
the implementation of all-optical switching devices most of 
which had been originally conceived for implementation with 
cubic nonlinearities [ 131-[ 161. The key features of a cascaded 
quadratic nonlinearity employing a single beam have been 
outlined before [9] and large phase-shifts of the FF-wave have 
been measured in KTP crystals due to phase-mismatched SHG 
[17]-[18]. Phase shifts due to cascading in a DAN-single- 
crystal core fiber via Cerenkov SHG have been also reported 
[ 191. Cascading in nondegenerate parametric interaction has 
also been discussed [20] and experimentally demonstrated [5], 
[2 11-[22]. 

Here, we discuss some of the possibilities offered by a 
cascaded x(’) nonlinearity in the presence of an injected 
weak seed. Provided that the weak seed wave is temporally 
and spatially coherent with one of the waves undergoing 
conversion, i.e., the fundamental or second harmonic wave, 
a number of interactions can be considered, involving seeds 
either at the second harmonic or at the fundamental frequency, 
2w or w respectively, or both. Since modulation can be 
considered in terms of either amplitude or phase of both 
the control and the output waves, this leads to a variety 
of interesting and potentially useful effects inherent to this 
interaction. While a detailed inspection of all of them goes 
beyond the scope of this paper, a qualitative overview of 
some of these novel processes involving just one control 
wave and a cw fundamental input is presented in Fig. 1. 
Even though cascaded effects are present also in the case of 
’Qpe I1 SHG, without loss of generality here we will make 
explicit reference to Type I interactions only, i.e., those in 
which 2w-photons result from pairs of w-photons provided 
by a single eigenwave in the crystal [23]-[24]. In line with 
our previous considerations, only waves at the fundamental 
frequency are regarded as useful outputs of devices intended 
for use in a photonic system or network, while a 2w-output 
is to be regarded as a nonlinear loss (equivalent to two- 
photon absorption). In general, phase (PM) or amplitude (AM) 
modulation impressed onto a coherent weak control beam 
leads to combined phase and amplitude modulation of the 
fundamental at the output, with the possibility of “small signal 
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St. J .  Russell [25].  Fig. l(c) specializes the previous interaction 
to the phase-matched case, such that complete switching can 
be imposed on the output by an on/off amplitude modulation 
of the 2w-seed of appropriate (constant) phase. Finally, in 
Fig. 1 (d) we sketch an interaction involving two orthogonal 
input waves at w, two w-outputs and two effective nonlinear 
susceptibilities. In the case of a strong cw pump and a weak 
signal carrying the information, the latter will affect phase 
and amplitude of both outputs, with small signal gain and 
amplification at the expense of the pump wave. This is the 
prototype of an all-optical “common emitter” amplifier, with 
base and collector corresponding to cw and signal FF inputs, 
respectively. 

In the following, after briefly reviewing the fundamentals of 
a cascaded second-order nonlinearity via SHG, we will numer- 
ically demonstrate the richness of this “coherent” second-order 
approach to optical signal processing with examples for each 
of the interactions mentioned above. Some of these results can 
also be obtained analytically, using the approach outlined in 
[24] and [26]. Our goal here is to discuss these phenomena 
and underline their main features in a qualitative fashion, 
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Fig. I .  Summary of simple coherent interactions leading to phase and 
amplitude modulation of a beam at frequency ii‘ in a 2nd-order nonlinear 
medium. Solid arrows indicate inputs and outputs of interest. A , j  is the 
wavevector mismatch between a fundamental and the SH-wave and fI,R 
is the effective nonlinear susceptibility. (a) the standard cascaded nonlinear 
interaction near wavevector matching, with one input and one relevant output 
at the same fundamental frequency. (b) Sketch of coherent interactions 
involving an SH seeding input, either phase (PM) or amplitude (AM) 
modulated. The ,.+output will, in general, exhibit both phase and amplitude 
modulations, with the possibility of “small-signal” gain in transposing the 
signal from 2c. to ii‘. (c) A specific case of b) under phase-matching. A 
2d-signal digitally modulated in amplitude and with an appropriate constant 
phase will switch on and off the fundamental wave. (d) an interaction allowing 
two orthogonally polarized fundamental waves to couple with an SH-wave. 
The PM or AM signal will in general induce both PM and AM onto the 
“pump” fundamental, potentially with “small-signal” gain and amplification. 
No 2d-inputs are involved. 

amplification” and/or effective gain. By a judicious choice of 
the parameters defining the cascaded interaction (i.e., phase 
mismatch, geometry and interaction length, effective nonlinear 
coefficients, seed power and phase, etc.) “digital” operations 
and switching can be obtained. 

The simplest interaction involves one input beam at w, 
with the geometry chosen for SHG to be near (but not at) 
the phase-matching condition. A cw wave will in general 
produce output waves at w and 2w, with phases and amplitudes 
depending upon the level of initial excitation and the length of 
the interaction region. Changes in input power will then map 
into amplitude and phase variations in the fundamental wave 
leaving the crystal (Fig. I(a)). A certain amount of coherently 
injected signal at 2w affects this process away from phase- 
matching, imposing phase and/or amplitude modulation on the 
cw w-wave by virtue of phase or amplitude changes in the 
seeding input. The two inputs at w and 2w would then corre- 
spond to pump and control beams, with their electric fields 
CO- or orthogonally-polarized, depending upon the specific 
effective susceptibility involved. “Small signal” gain can be 
obtained between input and output waves with different carrier 
frequencies (Fig. 1 (b)). On phase-matching this process can 
lead to transistor-like gain for the fundamental as suggested by 

leaving “in-depth” descriptions to further publications. In 
particular, we will restrict ourselves to cw waves, neglecting 
time dynamics, dispersion, and the occurrence of three-wave 
mixing interactions due to additional spectral components 
induced by the modulation. 

Considering a lossless noncentrosymmetric medium with 
a dominant nonzero effective second-order susceptibility for 
Type I SHG (extension to Type I1 is straightforward, see [231), 
a set of two coupled-mode equations is readily written de- 
scribing the evolution of normalized complex slowly-varying 
wave-amplitudes at w and 2w with propagation distance: 

-uZd(z)  d = -i,n(-2w; w: w)a:,(z)exp(iApz) dz  

d 
-ua,(z)  = - i ~ ( - w :  2w, - ~ ) a ~ ~ ( z ) a : ( z ) e x p ( - i A f i z )  
d z  

where Afi = p(2w) - 2Y(w) is the wavevector mismatch, 
is the propagation constants and K(-2w; w, w )  = 

,n*(-w; 2w. -w) = IC. is the effective strength of the 
nonlinearity far from material resonances. For plane waves 
K, = 2~d$/[2n~(w)n(2w)~oc~]~/~, with the amplitudes in (1) 
normalized so that their square moduli (U(* express intensities. 
In the case of guided wave interactions in channel waveguides 
with propagation along z ,  la12 are normalized to powers and 
the coefficient K includes a spatial integral over the product 
of the modal transverse profiles Ed(x, g)Ew(x ,  g)E;d(x,  y). 
The geometry of the interaction is included in and n 
refers to the refractive index. 

Equations (1) describe standard second-harmonic generation 
when the initial conditions are set with a zero 2w-amplitude 
at z = 0, and admit exact solutions in terms of Jacobi 
elliptic functions [24]. [26]. Maximum conversion efficiency 
is attained for Ag = 0, i.e., when the wavefronts at the two 
frequencies travel at the same velocity along z .  Otherwise, 
if synchronism is lacking (i.e., A/3 # 0), the nonlinear 
polarization sources leading to ( 1 )  will no longer be in perfect 

(1) 
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Fig. 2. Sketch of the cascaded nonlinear interaction. It involves 
upconversion from w to 2w and down-conversion from 2w to w with 
nonzero wavevector mismatch. The phasefronts travel at different velocities 
at w and 2w, and the relative phase accumulated by the phasefronts upon 
down-conversion causes a net nonlinear phase-shift in the w-output. 

Input power 
Fig. 3. Fundamental transmission and nonlinear phase (units of ?r) versus 
input excitation at w, for KL = 1 and ADL = O . l ? r ,  without (solid lines) 
and with 0.1% seeding at 2w (dashed lines). The seed relative phase A4 is ?r. 

quadrature with the fields, leading to destructive interference 
in the growth of the SH wave. As a result, the second har- 
monic converts back into the fundamental (down conversion). 
Because the phase velocities of the fundamental and the 
harmonic are unequal, the downconverted photons retuming to 
the fundamental are out of phase with the fundamental beam 
and hence retard or advance its phase, depending on the sign 
of AD. Note that the propagation aspect of this phenomenon 
makes it nonlocal. It leads to the accumulation of nonlinear 
phase in the fundamental frequency wave. This mechanism 
is sketched in Fig. 2, showing by dashed lines the FF phase- 
fronts after up- and down-conversion through the (w + w + 
2w) + (2w - w + U )  cascade process. The total phase of the 
fundamental field is shifted, retarded in the case shown. Thus 
terminating the interaction at z = L such that the total energy 
has been reconverted back into the fundamental, the nonlinear- 
ity will simply contribute an intensity-dependent phase to the 
input wave, resembling the optical Ken effect (i.e., self-phase 
modulation) due to a third-order susceptibility. This phenom- 
enon is generally referred to as a “cascaded nonlinear effect,” 
since it can be envisioned as the cascading of two three-wave 
interactions utilizing ~ ( ~ ) ( - 2 w ;  w, w) and x(’)(-w; 2w, -w) 
for up- and down-conversion of the fundamental, respectively. 

L L  

(b) 
Fig. 4. Fundamental throughput in a %-seeded interaction versus relative 
phase A@ and seeding fraction, for KL = 1 and law(0)12 = 25, with 
(a) A@L = K and (b) ApL = -?r. 

The cascaded nonlinearity, although it does not rely on 
any changes in the refractive index, under the appropriate 
conditions can provide a pure nonlinear phase change with- 
out amplitude modulation. For this reason it has attracted 
a great deal of interest for prospective applications in all- 
optical switching devices, which require a large nonlinear 
phase change upon propagation [ 131-[ 161. The following 
are among the most relevant features of the cascaded x(’) 
nonlinearity [ 121: 

1) the nonlinear phase @,NL(IuUl) grows stepwise with 
propagation distance and input excitation, exhibiting 
regions of constant value (plateaus) for small phase- 
mismatch; 

2) the amplitude of the fundamental wave oscillates with 
both z and excitation, the smaller the mismatch AD 
the deeper the modulation. This behaviour is, however, 
periodic with distance and unity transmission can be 
restored by appropriate choice of crystal length L and/or 
input level; 
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Fig. 5. 2d-seeded interaction under wavevector matching conditions. Here I r r , (0)12 = 10, K L  = 2 ,  A j L  = 0 and the seed fraction is 0.1% for (a)-+ (d). The 
dashed lines in (a) and (b) refer to K L  = 1, I r rd (0 )12  = 10, AJL = 0 and the seed fraction is 5%. (a) Fundamental throughput and (b) nonlinear phase (units 
of a)  versus Ao, (c) Fundamental transmission and (d) nonlinear phase versus normalized propagation distance for A0 = 62' (solid line) and 30 = 118' 
(dashed line in (d)), corresponding to the two values indicated by arrows in (a). In (c), the dashed line represents the fundamental transmission without any seed. 

3) the nonlinear phase shift is positive or negative depend- 
ing upon the sign of the linear wavevector mismatch. 
Both self-focussing and -defocussing can be emulated 
by proper relative orientation of electric field and crystal 
axes, without any actual modifications in the refractive 
indices. 

The interaction described above is of a coherent nature, 
and this can be exploited in controlling its outcome with the 
phase and/or amplitude of an injected weak signal (control 
beam). This concept is a familiar one in the area of parametric 
conversion [27]. Specifically, it is instructive to consider the 
effects of a weak second-harmonic signal injected at the input 
together with the fundamental for a given relative phase 
Aq5 between them [ l l ] ,  [13], [28]. In general, the linear 
polarization source associated with this additional 2w-wave 
at z = 0 need not be aligned with the nonlinear polarization 
normally obtained for ( L ~ ~ ( O )  = 0, and the two waves will end 
up exchanging energy with propagation, the details depending 
upon their initial phases. In fact, varying this relative phase 
(i.e., phase modulation) leads to dramatic changes in the 

fundamental output. Fig. 3 shows examples of the throughput 
and nonlinear phase of a fundamental frequency wave due 
to cascading without (solid lines) and with the injection of 
a weaker (1000 times smaller than the fundamental) 2w-seed 
with a relative phase A4 = 7 r .  The plots elucidate the first 
two features listed above. Notice the variations in both output 
power and phase induced by the control wave. While an 
evolution similar to the case a2u(0) = 0 (solid lines) is 
to be expected for A4 = h / 2 ,  a nonlinear phase will be 
accumulated in the fundamental, even for the wavevector- 
matched case, provided the initial 2w-seed induces a phase 
rotation in the field radiated into the fundamental by the 
nonlinear polarization driven dipole array (2nd equation in 
(1)). That is, in the presence of seeding, a nonlinear phase 
shift can also occur in the phase-matched case. 

Controlling the outcome of the interaction with a weak 
coherent wave introduces extra degrees of freedom and flex- 
ibility in exploiting the effects of a cascaded nonlinearity. 
What we suggest is more general than the proposed use 
of the eigenmodes of the nonlinear system, for example, 
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where a large 2w-amplitude is injected at the entrance face 
and propagates without a net exchange of energy with the 
fundamental [29], [30]. Fig. 4(a)-(b) show two examples of 
the amplitude modulation which one can impress onto the 
fundamental simply by phase modulating the 2w-seed. The 
curves are plotted (for opposite wavevector mismatches in 
(a) and (b)) versus Aq5 and for increasing fractions of seed- 
input in order to emphasize how both the amplitude and 
phase of the seed affect the w-wave. These particular examples 
demonstrate the transposition of PM into AM and AM-AM 
transfer between the two beams via a wavevector-mismatched 
interaction. For larger seeding fractions the curves exhibit an 
asymmetry with respect to Aq5 = 7r, especially in the case b) 
where the mismatch has a negative sign. This is in agreement 
with our description of the process based on vectorial addition 
of field components. Due to the large AM possible on the 
fundamental, the AM-AM transfer is reminiscent of transistor 
action with "small signal" amplification between the two 
frequencies, although the use of phase control seems more 
appealing in terms of its experimental implementation. This 
latter case has been recently demonstrated in a KTP crystal 
at X = 1.064 pm, with 4.6:l modulation depth of the FF 
fluence [28]. 

More dramatic features, i.e., larger changes in output for 
small input changes in the relative phase, are present for 
a wavevector-matched interaction, when complete (or sub- 
stantial) up-conversion occurs. Fig. 5(a)-(b) shows examples 
of the throughput and phase of a fundamental wave under 
wavevector-matching conditions versus relative phase Aq5 for 
two different conditions. For a large enough nonlinearity* 
length product, almost complete conversion is achieved into 
the 2w-beam when the phase is h / 2  (solid line) and, more 
importantly, a digital-like change occurs in the phase of the 
w-signal when Aq5 is changed (Fig. 5(b)). Such an abrupt 
phase variation at the output is simply the outcome of different 
phase evolutions during propagation, as demonstrated for two 
specific Aq5 values in Fig. S(c)-(d). The two values for Aq5 
are indicated by arrows in Fig. 5(a), and were selected in 
order to obtain unity transmission of the fundamental, with 
nonlinear phase shifts differing by 7r. Furthermore, as shown 
by the dashed lines in Fig. S(a)-(b) for a different set of 
conditions, this does not correspond simply to a change 
in sign of the fundamental amplitude as it passes nearly 
through zero. The initial position of the seeding phasor in 
the complex plane determines the rotation direction of the w- 
phasor. Larger nonlinear coefficients and/or input excitations 
introduce extra features, with the appearance of additional 
zeros in the throughput at w and additional variations in the 
phase afterbefore the abrupt 7r changes visible in Fig. 5(b) 
or 5(d). Although a phase-matched interaction may not be 
easily realizable in practice, quasi-phase-matched geometries 
could allow for the implementation of these effects. It is 
worth emphasizing that, for the K L  values used, the ab- 
sence of a seeding input at 2w would lead to complete 
depletion of the fundamental (dashed line in Fig. 5(c)), i.e., 
complete digital on/off switching could be achieved on the 
w-wave by switching on and off the weak coherent beam 
at 2w. 

- 

611 

Fig. 6. %-seeded interaction versus initial wavevector mismatch ADL. 
Parameters are the same as in Fig. 4, with (a) no seed (solid line), (b) 0.1% 
seed with A 4  = 118', (c) 0.1% seed with A4 = 62', (d) 10% seed with 
A& = 62'. 

More insight in the effect of a coherent seed can be gained 
by considering the spectral response of the SHG process, i.e., 
the fundamental throughput versus cumulative phase detuning 
ApL. Whenever Aq5 = f7r/2, the central dip (maximum 
depletion or up-conversion efficiency) gets shifted from the 
phase-matching condition ApL = 0, the shift depending 
on the relative phase Aq5. Varying Aq5 can impose a large 
modulation or switching onto the fundamental throughput for 
a particular Ap. This is demonstrated numerically in Fig. 6 
for K L  = 2 and a 0.1% seed. Notice also that the larger the 
intensity or equivalently the nonlinearity, the more dramatic 
the effect due to a reduction in the bandwidth of the SHG 
process. Finally, as expected, larger seeding fractions produce 
larger effects on the fundamental via larger spectral detuning 
(Fig. 6, curve d). 

Another important possibility for coherently controlling the 
fundamental wave in a cascaded interaction is offered by 
exploiting the tensorial nature of the susceptibility x('). In 
general, due to the structure of the tensor it is possible that 
orthogonal polarization components at w will interact with the 
same 2w-eigenmode. In particular, in order to illustrate this 
concept, we consider two scalar type I SHG interactions as 
described by (l), allowing two orthogonally-polarized elecmc 
fields at w (or two orthogonal modes in a guided-wave 
structure) to be coupled to the same 2w-eigenwave. Notice 
that this is quite different from a type I1 SHG interaction 
(such as considered in [20]), where a tensorial product mixes 
an equal number of photons from the two fundamental wave- 
components to generate 2w-photons. Here we simply consider 
2w-photons coupled to different polarization components at 
w, letting the same 2w-wave exchange energy with the two 
fundamental eigenmodes each of which is independently close 
to phase-match. This could be accomplished, for instance, by 
employing a combination of quasi-phase-matching (in order 
to utilize a diagonal x(') component) and birefringence or 
temperature tuning. In this case, then, the two fundamental 
waves can be regarded as pump and signal or probe, since 
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Fig 7. Coherent interaction in the presence of an additional weak d-wave 
(a) Probe and (b) pump nonlinear phases (units of K )  and (c) probe through- 
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they need not carry the same power. Because of coupling to 
the same 2w-eigensolution, however, they are able to exchange 
energy and affect each other's phases. 
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standard single input cascaded case ( I C / ~ ( O ) ~ ~  = 0). 

Using subscripts 1 and 2 for the two FF waves, and 3 for 
the field at 2w, a set of three coupled equations similar to (1)  
is readily reduced to: 

= -2r;lla31IaT s i n ( 2 h  - 4 3  + A&Z) 
dla1I2 

d z  

d'a212 = -2n21a31 la212sin(2$2 - $3 +a/j,z) (2) 

for the fundamental intensities/powers, having defined 61 and 
6 2  as proportional to the two relevant effective x(') compo- 
nents and AD1 and A/& as the wavevector-mismatches. The 
z-dependence has been dropped for notational convenience. 

This nonlinear system has a larger number of degrees 
of freedom, and is nonintegrable, and its exact analysis is 
therefore more difficult than in the previous case (311. Here we 
want to focus on the potential for phase and amplitude control 
of one beam by the other, i.e., transfer of information and/or 
energy from pump to signal or vice versa. To that extent we 

dz 
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(b) 
Fig. 9. (a) Nonlinear phases (units of a) of the fundamentals and (b) 
normalized transmission of the two fundamentals (solid line) and of 
the second-harmonic wave (dashed line) versus propagation distance for 
n1L = K Z L  = 1 and A01 = A02 = a/L. It is ( u ~ ( O ) ( ~ / ( U ~ ( O ) ~ ~  = 100. 

will show some interesting features which occur for specific 
values of the parameters, refemng the interested reader to a 
more comprehensive treatment to appear elsewhere for a more 
detailed analysis [32]. 

Fig. 7 shows some examples of energy transfer between the 
two fundamental beams versus propagation distance, assuming 
an intensity ratio of 50:1, K ~ L  = 2 ~ 1 L  = 2 and various 
detunings Ap1 and AD2 (see caption). Graphed in Fig. 7(c) is 
the probe throughput normalized to its initial value at z = 0. 
A substantial transfer of power takes place versus z ,  with 
the weak beam being amplified up to the level of the pump. 
Fig. 7(a) and (b) show the nonlinear phases vs z in both FF 
waves. The energy transfer from pump to second harmonic to 
probe imprints different signatures onto the phase evolution 
for differing initial wavevector mismatches. 

Figs. 8 and 9 demonstrate the energy transfer between 
pump and probe versus excitation intensity for two different 
conditions. In Fig. 8, a fixed ratio of 100: 1 is assumed between 
the inputs at the entrance face of the crystal, K ~ L  = 2 ~ 2 L  = 2 
and AD2L = lOAp1L = x. Large gain and a substantial 
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Fig. 10. All-optical transistor operation. (a) Pump and (b) signal throughputs 
versus I U ~ ( O ) ~ ~  normalized to their initial values, for rclL = 2, rc2L = 1, 
APlL = O.la, APzL = K (solid lines) and for K ~ L  = 1, K Z L  = 2, 
A a l L  = a, A h L  = 0 . 1 ~  (dashed lines). Here la1(0)I2 = 50. 

modification of the phase evolution indicate an efficient cross- 
coupling between the two w-waves. Another case is that of 
identical nonlinear coefficients and wavevector-mismatches 
for the two input beams, as pictured in Fig. 9 for K ~ L  = 
R ~ L  = 1 and AD1 = Ap2 = x / L .  The two fundamental 
components undergo periodic amplitude evolution without 
exchanging energy, i.e., coupling only to the same SH wave. 
This is accomplished because their phases are effectively 
locked together during propagation. Since the interaction is 
driven by the wave carrying the largest energy, this particular 
operation corresponds to imposing phase information onto the 
probe in the orthogonal polarization by means of the cascaded 
nonlinearity, and is reminiscent of the phase locking obtainable 
using the nonlinear eigenmodes of the system [29], [30]. 

Finally, phase or amplitude modulation of the fundamental 
signal wave can be imparted to the orthogonally polarized 
cw fundamental pump. This is shown in Fig. 10, where the 
magnitude of the signal in phase with the pump is varied for 
two sets of nonlinear coefficients and wavevector-mismatches, 
r;lL = 2 ~ 2 L  = 2 with Ap2L = 1OAPlL = T and 
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Fig. 1 I ,  All-optical transistor operation. (a) Pump and (b) signal transmis- 
sion versus initial phase of the weak input at ic’. Here h‘l L = 1, h‘gL = 2. 
A,?lL = ?r, A.jzL = O . l ? r ,  l a l (0 ) I ’  = 50 and la2(0)1’ = 0.1. 

tc2L = 2nlL = 2 with AP1L = 10AP2L = T ,  respectively. 
It is important to emphasize the degree of pump-AM achieved 
in Fig. 10(b), along with regions of good linearity for “small 
signal” operation. Transistor action is obtained at the same 
optical carrier frequencies in input and output for signals dc- 
biased about either zero (dashed line, Fig. 10(b)) or finite input 
powers (i.e., ac modulated with an average value well above 
zero, 0.3 for the solid line curve in Fig. 10(b)). Actual energy 
transfer towards the weak input is accomplished as well, as 
can be seen in Fig. 10(a). By keeping the relative intensities 
(powers) fixed, substantial AM can be imposed on the pump 
by simply varying the initial phase of the probe, as plotted in 
Fig. 1 l(b) for K Z L  = 261 L = 2 and APlL = 1OApzL = T .  

Even in this case the signal undergoes substantial amplification 
(Fig. 1 l(a)). 

In conclusion, we have indicated a number of possibil- 
ities offered by coherent effects in cascaded second-order 
interactions involving up- and down-conversion of an input 
wave to and from its second harmonic. Although the number 
of parameters involved makes a comprehensive description 

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 31, NO. 4, APRIL 1995 

of these phenomena, difficult specific, all-optical operations 
can be accomplished by carefully choosing relative field- 
crystal orientations and initial excitation conditions. Phase and 
amplitude control and switching can be obtained by seeding 
the interaction at the input with a weak signal at 2w, and 
true transistor operation by employing orthogonal waves at the 
same frequency and coupling them via a cascaded interaction 
with the same second harmonic wave. 
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