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Polarization Dependent Four-Wave-Mixing
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Abstract — Polarization dependent degenerate-four-wave-mix-
ing experiments on semiconductors (ZnSe, CdS) and dielectrics
(NaCl, PbF2) reveal the essential mechanisms of the bound-
electronic x("’). We show, for the first time, that the observed
anomalous dispersion of the polarization dependent phase-
conjugate reflectivity can be explained using a simple 3-band
model. The near vanishing reflectivity in the two-photon
coherence geometry is shown to be a consequence of the
interference between transitions originating from heavy- and
light-hole valence bands. We also present measurements on the
polarization dichroism of the nonlinear refractive index (n2), in
good agreement with this simple theory.

OLARIZATION dependent optical nonlinearities have

been subject to numerous experimental and theoretical in-
vestigations for many years [1]-[6]. Using techniques ranging
from nonlinear transmission to four-wave-mixing, experiments
have been conducted to unveil information on the structural
symmetry of nonlinear materials. In solids, such information
pertains to the crystal symmetry and the details of the band
structure. In the case of resonant excitation where electron-hole
pairs are generated, degenerate-four-wave-mixing (DFWM)
has been employed to study the carrier dynamics (diffusion)
and anisotropic state-filling [3], [5]. With excitation in the
transparency region of solids, however, the nonlinear po-
larization arises from the anharmonic response of valence
electrons, and is characterized by the nearly instantaneous
third-order susceptibility x(®). The tensor elements of x(®, and
particularly the anisotropy of the two-photon absorption (2PA)
coefficient, have been previously investigated theoretically and
experimentally for a variety of crystalline structures [6], [7].
From a practical point of view, it is essential to understand
the polarization dependence of optical nonlinearities for all-
optical switching devices in which, for example, the control
and signal pulses do not possess the same polarization.

Manuscript received September 28, 1994; revised February 6, 1995. This
work was supported by the National Science Foundation Grant ECS#9120590,
the Advanced Projects Agency, and the Naval Air Warfare Center Joint Service
Agile Program Contract N66269-C-93-0256.

M. Sheik-Bahae is with the Department of Physics and Astronomy, Uni-
versity of New Mexico, Albuquerque, NM 87131 USA.

J. Wang with the Advanced Technology Research & Development Division,
Hitachi Ltd., Kanagawa-ken 256, Japan.

E. J. Canto-Said, D. J. Hagan, and E. W. VanStryland are with the Center
for Research and Education in Optics and Lasers, Departments of Physics
and Electrical Engineering, University of Central Florida, Orlando, FL 32816
USA.

R. DeSalvo is with the Information System Division, Harris Corporation,
Melbourne, FL 32902 USA.

IEEE Log Number 9411892.

Here, we report the polarization dependence of the DFWM
signal for a number of polycrystalline (i.e., macroscopically
isotropic) solids. We show that the observed wavelength
dispersion in the induced anisotropy can be explained in
terms of additive contributions from two valence bands having
symmetries of heavy and light-hole valence bands described
by the Kane model [8]. The experimental configuration is
a standard backward phase-conjugate DFWM geometry in
which two pump beams E (forward) and Ej, (backward), and
a probe beam E,, propagating at a small angle to the forward
pump, interact in the nonlinear medium to generate the phase-
conjugate beam E., retro-reflected along the direction of the
probe [1]. The dependence of the phase-conjugate signal on
the polarization of the incident beams can be written in terms
of vector inner products of the interacting electric fields [2]:

E. o« AE¢(Ey-E})+BEy(E;-E})+CE;y(Ey-Ey). 1)

The three polarization combinations are described as fol-
lows. a) Ef L E,||Es. This is known as the small period
grating since the interference of £, and E} results in a spatial
grating that scatters F; into the conjugate direction. The
grating period is termed “small” because of the large angle
between the wave-vectors of the interfering fields E, and Ej.
The relative strength of E,, in this case, is determined by the
A coefficient, or |A]? for the phase-conjugate reflectivity. b)
Ey L Ep||Es. This geometry also leads to a spatial grating
which, due to the small angle of the interfering fields, is
referred to as the large period grating. The phase conjugate
reflectivity is proportional to |B|?. ¢) E, L E¢||Ey. Here
the interference of the two counter-propagating pump beams
gives rise to a temporal grating oscillating at twice the optical
frequency w. This has been termed as the two-photon coher-
ence (or 2w-coherence) term. The phase conjugate reflectivity
for this configuration is proportional to |C|2. In all three
cases, there exist implicitly additional grating terms that result
from the interaction of two cross-polarized fields producing a
polarization grating that scatters the third beam. Finally, with
all beams co-polarized, the relative reflectivity is given by
|A+ B+ C|>.

It has been widely believed that the 2w-coherence term must
be small unless near a 2PA resonance [1], [2]. Our experiments
on semiconductors show just the opposite. The 2w-coherence
signal is large unless we are in the 2PA resonant regime
where the signal nearly vanishes. In this letter we explain
this behavior as the interference of the contributions from
light-hole and heavy hole valence bands.
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TABLE 1
THE NORMALIZED PHASE CONJUGATE AMPLITUDES MEASURED USING
PoLARIZATION SELECTIVE DFWM WITH PICOSECOND PULSES AT A = 532 nm

NaCl PbF, ZnSe CdS

|A+B+C|| 1 1 1 1
B 034 041 0.57 058
IC| 031 034 0.08 0.05

We performed experiments with ZnSe, CdS, PbF, and NaCl
using 20 picosecond pulses from a Q-switched, modelocked,
frequency doubled Nd:YAG laser having a wavelength () of
532 nm. These materials were selected to provide a range of
fiw/E, (where hw=photon energy and E,=energy band-gap)
that spanned from near resonance (hw/E, ~ 1) to below the
2PA region (Aw/E, < 0.5). The DFWM experimental results
are summarized in Table I where we list the phase-conjugate
amplitudes |B| and |C|, normalized to [A + B + C| = 1. For
ZnSe with E;, = 2.6 eV and CdS with £, = 2.4 eV, 2PA
is allowed, making x(® complex (i.e., Im{x®} # 0). As
was shown in [4], in addition to the bound-electronic %,
which appears instantaneously in a time-resolved study, 2PA-
generated charge carriers also contribute to the observed signal
but decay by diffusion of carriers across the grating period.
In that case, the pure x(® contributions can be separated
from the free carrier effects by their longer decay time and
realizing that the effective nonlinearity due to 2PA-generated
carriers is of higher order (i.e., x(®). In our experiments, the
diffusion time across the small period grating (case a)) was
within the duration of the laser pulse. This made it difficult to
unambiguously extract the x(3) contribution for that geometry.
Therefore, we have only listed the results of the large period
grating in Table I. This does not limit us in any way from
analyzing the data, since for ultrafast nonlinearities (i.e.,
bound-electronic x (®)) and isotropic materials, the contribution
of both grating terms are identical (A = B). One important
feature of the data in Table I is the vanishing phase conjugate
signal in the 2w-coherence geometry for ZnSe and CdS (case
c)), while NaCl and PbF; have nearly equal contributions
for all geometries. This is in sharp contrast to previous
assertions that the 2w-coherence signal is negligible unless
the excitation is near or within a 2PA resonance region
(11, [21.

In isotropic (e.g., polycrystalline) or cubic materials the
only nonzero x(® tensor elements are yi212, X1221, X1122
and x3111 with subscripts 1 and 2 denoting the transverse
polarization directions of z and y. We have omitted the
superscript (3) for brevity. The isotropy condition also implies
that x1111 = X1212 + X1221 + Xa122 and x1212 = X1221, thus
reducing the independent elements to just x1122 and 1212, for
any given physical mechanism. Now consider, for instance, the
case c) above where Ef||E; L E,. Writing E.. in terms of the
x® elements, we obtain:

Ee(w) o« x1212(w; w, —w, w)E.E By
+x1122(w; —w, w, w)E';EfEb. )
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Here, we assign physical significance to the ordering of the
frequency arguments in each x term to represent the time-
ordering of the quantum mechanical transition sequence. In
other words, x(w; —w, w, w) corresponds to the process of
absorption of two photons followed by emission of two
photons. The imaginary part of this quantity is related to the
2PA coefficient. Similarly, x(w; w, —w, w) corresponds to the
sum of contributions from Raman and quadratic Stark effects
(QSE) in which the four-photon process is an absorption-
emission-absorption-emission sequence [9]. In [9], [10], we
showed that these three processes (2PA, electronic Raman
and QSE) adequately describe the x(®) mechanisms associated
with a given two-band system. We will omit the frequency
arguments for brevity and instead distinguish the various
mechanisms by using superscripts 2PA, Raman and QSE.
Now, from (1) and (2), we set:

2PA R. QSE
C = xT122 + Xi312 " + X1212- 3)
In a similar manner, one obtains:

A= B = xigs + (XI5 + Xiis")/2
+(xo1z + XT22)/2. @)
As expected, the sum A+ B+ C is equal to the sum of x1111’s
of all three mechanisms once we apply the isotropy condition.
The task at hand is to obtain a proper symmetry relationship
between the x(® tensor elements, in order to resolve the
anomaly of the DFWM data in Table I. We follow the
theoretical approach of [9], [10] where the absorptive and
refractive components of x(* were calculated using a simple
two-parabolic band model. A light-hole type valence band
and a conduction band of equal curvature was assumed.
The theory first calculated the nondegenerate absorption spec-
tram (Im{x®}), associated with 2PA, Raman and QSE, by
evaluating the nonlinear transition rate using a dressed-state
formalism. The refractive component (n, oc Re{x®}) is then
calculated using a Kramers—Kronig (K-K) transformation of
the nonlinear absorption spectrum. The calculated band-gap
scaling, magnitude and dispersion of x(® were shown to be
in excellent agreement with the experimental results for a large
number of semiconductors and dielectrics [9], [10]. However,
the polarization dependence of x®, derived from the two-
band model, gives x1122 = X1212 = Xx1111/3 for all three
mechanisms at all wavelengths [10]. This implies, from (3) and
(4), that A = B = C, aresult that certainly disagrees with the
near band-gap results of ZnSe and CdS of Table I. Here we go
one step further and consider a three-band model incorporating
heavy-hole (hh) and light-hole (lh) valence bands and a single
conduction (c) band that obey the symmetry given by Kane
[8]. In the simplest approximation, we take the x® elements
associated with each mechanism as the sum of contributions
from hh-c and lh-c band pairs, i.€., Xtotal = Xhh—c + Xlh—c-
The significant distinction between these two band pairs is
the k-space orientation of the interband momentum matrix
elements (p.,) with respect to the electron quasi-momentum
(k). In the Kane band structure, the conduction band is S
type while the valence bands are P type. The wavefunction
of the valence bands can be written as a superposition of
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the band-edge Bloch wavefunctions |X), |Y) and |Z). More
specifically, the hh valence band is of | X + ¢Y) form while
the 1h band is a superposition of |X £ :Y) and |Z) wave
functions [8]. Without loss of generality, taking k||z causes
the k.p coupling between conduction and hh-valence bands to
vanish. In this simple formalism, the absence of k.p coupling
in hh-c interaction is the reason for the bare electron effective
mass of the hh valence band. One simple way to express the
net result is to take k|[pey for the lh-c, and & L pg, for
the hh-c transitions. It should be noted that although this k-
space symmetry is resulted from Kane’s 4-band model (or
8-band when considering the spin degeneracy), we ignore the
transitions originating from the split-off valence bands. The
significance of this k-space symmetry becomes apparent if we
examine the expression for the transition rate due to Raman
and 2PA [9]:

2P A, Raman
E
. . . - . o . - 12
o« / (@1 - Pev) (@2 - k) + (@2 - Pev)(@1 - k)
w1 w2
- 8(hwy £ hw, — Eg,) dF, )

where unit vectors @, and a; represent the polarization of the
two optical fields at frequency w; and ws respectively. E., =
E., + A%k?/2m,, is the interband energy of each band-pair
with m,, denoting the corresponding reduced electron-hole
effective mass. Although we are concerned with the degenerate
(w1 = wa) case of x(®), a nondegenerate nonlinear absorption
spectrum, as obtained from (5), is initially required to obtain
the refractive part from a K-K transformation. The sequence
of transitions in (5) are typical of a two-band model in which
a photon is absorbed in an interband transition followed by an
absorption (+sign) or emission (—sign) of the second photon
in an intra-band process (self-transition). Using the k-space
orientation properties of k and pey. (5) leads to distinctly
different polarization dependences for the two-band pairs. The
detailed derivation of the x(®) symmetry, with absorptive part
(Im{x®}) derived from (5), and the refractive part (n, o
Re{x®}), obtained from the K-K transformation of the
imaginary part, is beyond the scope of this letter. Here, we give
relations only for Im{x(®} due to 2PA. For the lh-c case, as
was also given in [9], [10], the polarization dependence of the
Im{x®}) follows the x1122 = X1212 = X1111/3 symmetry.
This relation holds even for the real part, independent of the
optical frequency. For the hh-c system, however, we obtain
the following relationship for the degenerate Jm{x(®}:

3 1
X1212 = X1221 = X111 and  x1122 = —gXu- ©)

Such simple relationships do not necessarily hold for
Re{x®} at all frequencies. This is because the symmetry
relations for the nondegenerate JIm{x(®} are frequency
dependent, thus leading to a frequency dependent (dispersive)
symmetry for the PRe{x(®} as obtained from the K-K
transformation. Symmetry relations similar to (6) were also
obtained for the 2PA coefficient (associated with the hh-
¢ transition), using a full Kane-band model [11]. Before
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Fig. 1. Data from Table I with solid circles denoting spatial grating terms

(| B]) while open squares are the 2 — w coherence term (|C|). The solid lines
are calculated results from the 3-band model while the dashed line represent
the 2-band model [9].

discussing the symmetry of the QSE contribution, we examine
the implications of the symmetry relations of DFWM due to
the 2PA contribution only. Consider the A(= B) and C
coefficients in (3) and (4). The 2PA contributions from hh-c
and lh-c have opposite signs in C, causing the two effects
to partially cancel in the 2w-coherence geometry. For the A
term, on the other hand, the 2PA contributions from the two
band pairs add, leading to a larger signal. This is in qualitative
agreement with the data on semiconductors in the 2PA region
as given in Table L.

The nondegenerate transition rate due to QSE involves only
interband transitions:

WEQSE o /‘(al 'ﬁcv)(d‘Z 'ﬁcv)]Q‘S(hwl - Ecv)d’; 0

The lack of self-transitions makes the symmetry relations for
XSF the same for both band pairs, i.e., X1120 = X1212 =
X1111/3 (for real and imaginary parts) independent of optical
frequency.

In adding up all the contributions of the two band-pairs
for both refractive and absorptive processes, we obtain the
complex coefficients A, B, and C as a function of Aw/E,.
In order to compare the results with the data in Table I,
we evaluate |A|, |B|, and |C|, normalized with respect to
|A + B + C| corresponding to the case of all co-polarized
beams. This comparison is shown in Fig. 1 where good
agreement is seen between experiment and the 3-band model.

More precise comparison with the calculated dispersion
requires data for a single material at various wavelengths.
Although all our DFWM data on semiconductors are for near
bandgap (Aw & E,) excitation, other experimental techniques
can be used to further examine the theory. It can be shown that
the A and B coefficients are proportional to the effective x(3
that is measured using a single beam with circular polarization.
Therefore, simple experimental techniques such as Z-scan
can be employed to determine the circular-to-linear dichroism
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Fig. 2. The dispersion of the polarization dichroism of no measured using
Z-scan. The solid line is from the 3-band theory and the dashed line represents
2-band model [9]. The divergence near fw/E,; & 0.65 corresponds to the
zero-crossing of na (linear polarization).

of x®. With the Z-scan we can measure the real and
imaginary parts of x(® independently, which, in general, is
not possible with DFWM. Specifically, the circular/linear ratio
of the measured nonlinear refractive index coefficient ny (oc
Re{x®}) is given by 2Re{A}/Re{A+ B+ C}. 1t is worth
noting that since we are dealing with normalized quantities, the
absolute magnitudes of the nonlinear coefficients (that contain
material dependent parameters such as band-gap energy and
linear refractive index) are not involved.

We measured the ng dichroism for ZnSe and CdS at A =
1.064 and 0.532 pym and PbF; at A = 0.532 pm. The results
are shown in Fig. 2 where good agreement with the calculated
dispersion curve is seen. It is expected that at w = 0, x®) must
obey Kleinman symmetry making X1221 = X1212 = X1122 =
x1111/3, which in turn implies A = B = C. This symmetry
also translates to an ny dichroism of 2/3 at w = 0. This occurs
at the y-axis intercept of the dashed lines in Figs. 1 and 2.
The simple 3-band model, while explaining the anomalous
dispersion of the polarization dependent x®) measurements,
does not perfectly obey the Kleinman symmetry. A more
rigorous theory, i.e., using a complete Kane 4-band model,
and including the x(3) processes involving inter-valence band
transitions should resolve this discrepancy.

In conclusion, we show that the anomalous dispersion of
the polarization dependent DFWM and ny dichroism can be
explained using a 3-band model. We find that, in deriving
the symmetry properties of x(®), it is essential to consider
the k-space orientation of the momentum matrix element
with respect to the electrons quasi-momentum. We present
experimental results for ZnSe, CdS, PbF,, and NaCl that agree
with the theory.
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