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We theoretically and experimentally study absorption of picosecond laser pulses in materials described by a
four-level system that exhibit reverse saturable absorption (RSA). Using an approximate solution to the rate
equations, we derive, analyze, and verify, numerically and experimentally, a single dynamical equation for the
spatial evolution of the pulse fluence that includes both the rate equations and the propagation equation.
This analytical approach considerably simplifies the study of optical limiting with picosecond pulses and helps
to predict the behavior of the nonlinear transmittance, the level of output signal clamping, and a possible turn-
over from RSA to saturable absorption that restricts the performance of optical limiters based on RSA. The
results obtained can also be used to characterize RSA materials by the pump—probe technique. © 2002 Op-

tical Society of America
OCIS codes: 190.4180, 140.3360, 190.4710.

1. INTRODUCTION

Materials that exhibit reverse saturable absorption
(RSA), i.e., those with an excited-state absorption cross
section that is larger than that of the ground state, have
drawn a great deal of interest over the past several
years.'™ One of the most promising applications of these
materials is their potential use as passive optical limiters,
i.e., as devices designed to protect sensitive optical ele-
ments and eyes from laser-induced damage. For an over-
view of passive optical limiting see, e.g., Refs. 8 and 9.
The nonlinear absorption of RSA materials is exploited to
decrease the transmittance of a material at high input en-
ergy while the material is kept transparent at low input
energy as an ideal optical limiter requires. RSA has been
observed in many organic materials (for an overview see,
e.g., Ref. 1), and efficient optical limiting has been dem-
onstrated in several materials by use of various optical
geometries. 1014

The key quantities that determine the absorption coef-
ficient of a material are the time-dependent population
densities of the ground and excited states, which, in turn,
depend on the parameters of the nonlinear medium and
the laser pulse characteristics. The population dynamics
are described by multilevel rate equations."'*23  For pi-
cosecond input pulses, a three-level system (singlet bands
only) allows RSA to be modeled but often fails to match
data taken at high input fluences. The addition of a
higher-lying fourth level”!822 allows for a better match
with data for many materials. The four-level model that
we use is shown in Fig. 1.

Finding a general analytical solution to the system of
rate and propagation equations represents a fairly diffi-
cult problem. Thus the solution is usually obtained nu-
merically for a particular set of parameters.'®™1° How-
ever, it is still difficult to gain a basic insight into the
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properties of the nonlinear absorber. For example, to de-
termine the dependence of the sample transmittance on
the input fluence with all other parameters fixed, one has
to perform a full integration of the rate equations and the
propagation equation for each value of the input fluence.
To study the effects of any other parameter (e.g., pulse
shape, width, lifetimes, absorption cross sections, sample
thickness), one has to repeat the entire set of calculations.
Even with contemporary computing capabilities, this task
is highly time-consuming.

Alternatively, an assumption of so-called fast absorb-
ers! (for which the pulse length is much longer than the
lifetime of each excited state) allows for an analytical so-
lution of the problem. Mathematically, this means that
the differential rate equations reduce to a set of algebraic
equations that can easily be solved.'®"1822 However, this
steady-state, or stationary, solution is not always appli-
cable because it assumes long pulses, so a triplet excited
state has to be taken into account for many
materials,b26:15-17,19,20,21,23

Rather than using the steady-state approac
the research reported in this paper we performed a dy-
namical analysis; we show here that the stationary solu-
tion to the rate equations gives only a rough estimate for
the absorption of short pulses. We show that the behav-
ior of the limiting curve (dependence of the normalized
transmittance on input fluence) can be accurately pre-
dicted based on the solution of a single ordinary differen-
tial equation (ODE). The analytical results will allow us
to understand the effect of each individual parameter on
the absorptive properties of the material and accurately
predict various phenomena, e.g., turnover from RSA to
saturable absorption (SA).16-18.22

The paper is organized as follows. In Section 2 we in-
troduce rate equations and useful normalizations. In

].’1,16_18’22 in
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Fig. 1. Schematic diagram of the four-level model of RSA with
picosecond pulse illumination; 0 is the ground state and 1-3 are
excited singlet states.
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Fig. 2. Chemical structure of dye PD3.

Section 3 we solve the rate equations for a rectangular
(flat-topped) input pulse. We then use this solution to
study the optical limiting properties of several materials.
Particular emphasis is given to the effect of the turnover
from RSA to SA and to a comparison of the dynamical so-
lution with predictions of the steady-state analysis. In
Section 4 experimental verification of the theoretical
analysis is presented for two organic dyes, a carbocyanine
dye 1,1',3,3,3’,3’-hexamethylindotricarbocyanine iodide
(HITCI; Refs. 7 and 18) and a polymethine dye (PD3).2*
The chemical structure of PD3 is shown in Fig. 2. Sec-
tion 5 concludes the paper.

2. BASIC EQUATIONS AND
NORMALIZATIONS

The model that we use to describe RSA is the singlet state
four-level structure depicted in Fig. 1. In as much as we
are interested in picosecond excitation we can ignore the
triplet states because the intersystem crossing times are
typically much longer (>1 ns) than the pulse width.! We
also neglect the effects that are due to the vibronic sub-
levels that have subpicosecond relaxation times. In ad-
dition, the lifetime 735 is assumed to be much less then
the pulse width, which results in negligible population in
level 3. As a result, the rate equations can be written as
follows!822;
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where N, are the level population densities that are
functions of time ¢ and propagation distance z, Ny + N;
+ Ny = N, I(z, t) is the irradiance of the incident pulse,
and 01,012,095 and 71,791,739 are the corresponding ab-
sorption cross sections and lifetimes (Fig. 1). The popu-
lation densities determine the spatial pulse evolution by

means of the propagation equation’!6-23
aI
P “I(ogiNo + 012Ny + 093N3). (2)

It is easier to deal with Egs. (1) both numerically and
analytically if we recast them into a dimensionless form.
First we represent the input irradiance as I(0,%)
= I,f(¢), where I is the peak irradiance and f(¢) is a di-
mensionless function with unit amplitude that reflects
the temporal shape of the pulse (e.g., flat-topped, Gauss-
ian, hyperbolic secant). Next we introduce a dimension-
less variable that is proportional to the total fluence of the
pulse A = 0¢1/(7,/hw and scale time with pulse width
7,, i.e,, T =t/7,. We also introduce absorption cross-
section ratios a = o9/0¢; and B = 093/0(y; and dimen-
sionless ratios Ty = 7,/7y9 and Ty = 7,/79;. Finally,
we normalize the level population densities by the total
population, n; = N,/N, where j goes from 0 to 2. Substi-
tuting the above definitions into rate equations (1), we ar-
rive at the following set of dimensionless rate equations:

(971()

(j’_T = —®ny + Tynq,

&nl

T = ®ny — (a® + Tip)ny + Toin,,

(977/2

E = aq)nl - T21n2, (3)

where ® = Af(T). Further, we define a normalized vari-
able that represents linear absorption Z = 0;Nz,2® and
we express the propagation equation as

Ny

ﬁ = 7(1)(710 + anq + an) (4)
In Section 3 we approximately solve the system of partial
differential equations (PDEs) (3) and (4) and verify the re-

sults by direct numerical integration of those equations.

3. SOLUTION TO THE RATE EQUATIONS
AND NONLINEAR ABSORPTION OF
THE RSA MATERIAL

To solve the system of Egs. (3) and (4) we follow the rea-
soning of Refs. 1, 19-21 and treat the rate and propaga-
tion equations separately. We can solve the former by as-
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suming constant irradiances, and we substitute their
solution into propagation equation (4). Subsequent inte-
gration of both sides of the propagation equation with re-
spect to time will result in the spatial evolution equation
for the pulse fluence, F = [T% ®d7T.19 2!

It can be expected that, as in the five-level model used
for describing the propagation of nanosecond pulses in
RSA materials,’ the functional dependence of the popula-
tion dynamics on the input fluence does not depend
strongly on the pulse shape if the medium is excited by
short input pulses.?? Below, we shall show that the flat-
topped pulse approximation I(¢) = I,, 0 < ¢ < 7, (Refs.
1, 20, and 21), provides reasonable accuracy for propaga-
tion of realistic laser pulses in many RSA materials, while
it greatly simplifies the analysis. In our normalized
units, this pulse shape results in f(T) =1, 0<T <1,
and Eqgs. (3) become a system of ODEs with constant co-
efficients that are easily solvable.

The standard procedure consists in equating the corre-
sponding determinant of Eqs. (3) to zero to find the eigen-
values. As the order of system (3) equals 3, we obtain a
third-order polynomial whose roots can be found explic-
itly. One of the roots is equal to zero, and the other two
are

Ae=(12)[—(a+e+q+1)=\D]<0, (5
where we have denoted
D=0a>+2a(g—1+¢€+(qg—1-—¢? (6)

€ = TlO/Aa and q = T21/A.

With eigenvalues known, one can easily find the corre-
sponding eigenvectors and, using the initial conditions for
the medium before excitation, ng = 1, n; = 0, and nq
= 0, obtain the solution to system (3) as

[ -+ @Ny O+ @]
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e D De |
1
x| exp(N_AT) |, (7
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A (@-1)

€))

The solution remains continuous with Ty = A, i.e., q
= 1, because both the numerator and the denominator in
Eq. (8) approach zero. In the limit ¢ = 1, Eq. (7) simpli-
fies to
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To study the spatial evolution of the pulse, we must
substitute solution (7) into the propagation equation [Eq.
(4)]. The resultant equation is too cumbersome to work
with analytically. However, we can significantly simplify
the exact solution to rate equations (7) without any sub-
stantial reduction in accuracy by examining typical RSA
material parameters. Indeed, for a typical RSA material
the lifetime of the first excited state, 71, is of the order of
a nanosecond, whereas that of 79; 1is several
picoseconds.>”!®  This means that the parameter e
< 1072 is small compared with both ¢ and a (a > 1 for
RSA materials). Hence we can make a series expansion
with respect to € and write Egs. (5), (6), and (8) as

1-gq
Np~-1+e——,
atq-—1
a
AN_~-—-a—q— e—, 9
*-d Ea+q—1
\/l—) a—q+1
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€
C~ , (11)
a + q

respectively. Substituting relations (9)—(11) into Eq. (7)
results in the approximate solution to the rate equations.
Furthermore, we take advantage of the fact that the so-
lution found for the population densities has two quite
different characteristic times, which are proportional to
the eigenvalues N, and A _. As can be recognized from
Eq. (9), IN_| > |\ 4|, so one can neglect the transient pro-
cesses that vary as ~exp(A_AT). As a result the approxi-
mate solution for the population densities can be ex-
pressed in the form

no(T) ~ exp(—AT), (12)
Ty~ T
" a+q at+tq-—1 P ’
(13)
o o
nqo(T) ~ - exp(—AT). (14)

a+q at+tq-—1

To check the accuracy of the approximate solutions to the
rate equations we compare formulas (12)—(14) with the
exact solutions, Egs. (5)—(8). The results are shown in
Fig. 3 for two RSA materials, the carbocyanine dye HITCI
(Ref. 7) and the polymethine dye PD3.2> It can be seen
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clearly from Fig. 3 that formulas (12)—(14) accurately de-
scribe the population dynamics. The slight initial devia-
tion for n, and n, is due to the discarded terms that are
proportional to ~exp(A_AT). It will not have a signifi-
cant effect on the propagation equation because excited-
state populations n; and ny are small for 7' < 0.05.

To validate the use of a flat-topped pulse we examine
the propagation of a pulse through the two RSA materials
from Fig. 3 and compare the output fluence as a function
of propagation distance for the flat-topped and Gaussian
shapes. From Fig. 4 we can conclude that attenuation of
total fluence F is nearly the same for both flat-topped and
Gaussian pulses. Thus, using a flat-topped shape in solv-
ing the rate equations is appropriate and accurately pre-
dicts the transmitted fluence of the corresponding short
pulses.

Integrating Eq. (4) with formulas (12)-(14), we obtain
the propagation equation for the fluence:

dF (B— a)F }
— =la—————+a-1|(1 -
dz (a— 1)F + Ty
- 1+M}F—— F)F, (15
o oF + T21 - Ueff( ) )
0fractional populations, n;
A (a)
_ n,
0.5
L. n,

0.0 ¢ ;
0.0 0.5 1.0

Fig. 3. Population dynamics of two RSA materials excited by a
temporal flat-topped pulse with a pulse width of 7, = 25ps
(FWHM). The results were obtained by use of the exact analyti-
cal solution to the rate equations, [Eq. (7); solid curves] and the
approximate analytical solution [formulas (12)—(14); dashed
curves]. The parameters are (a) for HITCI: A = 2, o = 32, 8
= 0.1, 79 = 1.7ns, and 79; = 10 ps and (b) for PD3: A = 0.7,
a =200, B=2, 7= 1ns, 79y = 1.9ps. Each material has a
linear transmittance of 0.905 (Z = 0.1).
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Fig. 4. Transmittance (F,/F;,) as a function of normalized
propagation distance Z = o, Nz for the dyes in Fig. 3: (a)
HITCI, (b) PD3. Dotted and dashed curves, the numerical solu-
tions to Egs. (3) and (4) for a Gaussian (FWHM, 7, = 23.5 ps)
and a flat-topped pulse shape, respectively. Solid curves, nu-
merical solution to ODE (15).

where F = [T2®dT and o(F) = U/F)[{(n, + an,
+ Bny)dF is the effective fluence cross section.'®?? Note
that this single differential equation now includes both
the set of rate equations and the propagation equation.
Equation (15) cannot be solved analytically, but its nu-
merical solution represents a much easier task than solu-
tion of the full system [Eqgs. (3) and (4)] for every value of
input fluence. The results of numerical integration of
Eq. (15) are shown in Fig. 4 by the solid curves.

We also computed limiting curves (transmittance ver-
sus input fluence) for HITCI and PD3. We compared the
numerical solution to Eq. (15) with the full set of rate and
propagation equations (3) and (4) for a flat-topped and a
Gaussian input pulse. The solution to Eq. (15) almost co-
incides with the numerical solution to the original system
with the flat-topped input, and it is also close to the nu-
merical solution for a corresponding (equal total fluence
and peak irradiance) Gaussian pulse (Fig. 5).

The important feature to notice in the limiting curves is
the effect of turnover from RSA to SA.'822  As can be seen
from Fig. 5, the turnover predicted by Eq. (15) occurs at
slightly lower fluences than that given by the numerical
solution to the original system of Egs. (3) and (4). Thus,
our solution predicts a lower limit of the input fluence
when this turnover occurs for a more realistic pulse
shape. An approximate condition for the turnover point
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(F',) in terms of the material parameters can be obtained
as a solution to doF)/dF = 0.22 This criterion provides
good accuracy only for low linear losses (less than 10%)
and can be expressed in terms of the transcendental equa-
tion

a(f — a)ToF*(aF — F + Tyy)®
+ ToiF(aF + Ty)*(1 — e F)(a® — aB)
+[(F+ 1)e — 11(aF — F + Ty)(aF + Ty)?
X [(2a — aB — 1)F — (a — 1)Ty] = 0, (16)

whose numerical solution F', gives the turnover fluence.

To complete our analysis, we compare our results with
those obtained previously'®?? that exploit the steady-
state solution to rate equations (3). Using the normaliza-
tion procedure from Section 2, we arrive at the following
propagation equation, obtained with the stationary popu-

lation densities??:

dA AV + aA + BaA?)
= - = , am
dz V+ A+ aA?

where A = 0'01[0’7'21/}1(1) :A/T21 and V = 7'21/7'10. In
Fig. 6 we have plotted the limiting curve for HITCI calcu-
lated from the dynamical propagation [Eq. (15)] and from
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Fig. 5. Transmittance (F/F;,) as a function of normalized in-
put fluence for the dyes in Fig. 3: (a) HITCI, (b) PD3. Solid
curves, limiting curves calculated by use of the numerical solu-
tion to ODE (15). Open and solid circles, limiting curves calcu-
lated from the full system of PDEs (3) and (4) for flat-topped and
Gaussian pulses, respectively.
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Fig. 6. Limiting curves calculated for HITCI from the numerical
solution to Eq. (15) derived from the dynamical solution to the
rate equations (filled circles) and the numerical solution to Eq.
(17) derived from the steady-state solution to the rate equations
(open circles). Pulse width, (FWHM) 25 ps.

the steady state [Eq. (17)]. It is clear that the latter pre-
dicts much stronger limiting and an even earlier turnover
from RSA to SA than that predicted by the dynamical
model [Eq. (15)]. As can be inferred from Fig. 6, the
shape of the limiting curve predicted by the steady-state
model differs strongly from the results of the dynamical
analysis. It can be expected that the steady-state model
will predict a much lower transmittance at higher input
fluences, but what is surprising is that the value of the
fluence at the minimum in transmittance (the turnover
point) is in most cases an order of magnitude less than
that given by the dynamical model.

4. EXPERIMENT AND DISCUSSION

To confirm the theoretical predictions developed in Sec-
tion 4 we performed optical limiting experiments with an
active—passive mode-locked Nd:YAG laser that operates
at a 10-Hz repetition rate. The fundamental wave of the
Nd:YAG laser was doubled to 532 nm, and a single 25 ps
(FWHM) pulse was switched out from the 56-ns-long
pulse train. The beam waist was measured by the
thin-sample Z-scan technique®* and checked with a CCD
camera to be approximately 20 um (half-width at 1/e?
max). Each sample was placed at the focal plane deter-
mined from an open-aperture Z-scan measurement of the
sample. The input energy was varied from 1 nd to 10 wd
by a stepper motor attached to a half-wave plate in front
of a fixed polarizer.

In the previous sections of this paper we reported using
the materials HITCI and PD3 to compare the theoretical
and numerical results. We have experimentally studied
these two materials along with the phthalocynaine dye
chloroaluminum phthalocynaine (CAP).> With the ex-
ception of HITCI,” we could not find any references to
measured values of the second excited-state cross section
093. Therefore we performed the experiment on HITCI
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to compare with previous results”!® and on PD3 and CAP
to determine o3 from fitting the experimentally mea-
sured limiting curve. Also, the experimentally deter-
mined value of the fluence at the turnover point can be
compared with that predicted by the dynamical and
steady-state solutions. It will be seen that HITCI and
PD3 fit the model exploited in this paper quite well but
that CAP does not.

The results of the optical limiting experiments for
HITCI and PD3 are shown in Figs. 7(a) and 7(b), respec-
tively. The experimental results are plotted along with
the limiting curves produced by the numerical solution of
Eqgs. (3) and (4) for a Gaussian pulse and the solution to
the ODE.'® The best-fit parameters for HITCI

(0'01 = 25X 10_17 sz, 019 = 87.5 X 10_17 sz, 093
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Fig. 7. Experimentally measured limiting curve (triangles) for
(a) HITCI and (b) PD3 with the best-fit material parameters used
in the numerical solution to Eq. (15) (solid curves) and the full
system of PDEs (3) and (4) for a Gaussian pulse (dashed curves).
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1.5 % 10 "em?, 7= 1.7 X 1079, 79; = 2.2 X 10712,

= 0.091) and for PD3 (oy = 1.03 X 10 ¥em?, oy,
22X 107 %em?, 093 =52x 102 em?, 7= 1.0
107%, 79; = 6.0 X 10712, Z = 0.089) are in good agree-
ment with previously reported results for HITCI (Ref. 18)
and for (PD3)>* We then determined the fluence at the
turnover point from Fig. 7 for the experiment and the two
fitting curves. We also calculated the fluence at the turn-
over point, using transcendental equation (16) and the
numerical solution to the steady-state propagation, Eq.
(17). The values for the fluence at the turnover point for
both HITCI and PD3 obtained with all the methods de-
scribed above are listed in Table 1. As can be seen from
Fig. 7 and Table 1, all the predicted values for the fluence
at the turnover point are lower than those of the experi-
mental results. It has been shown for HITCI (Refs. 7 and
18) and for PD3 (Refs. 3 and 4) that to explain nonlinear
absorption in these materials one needs to use a more de-
tailed model structure. For HITCI, Hughes and
Wherrett!® and Swatton et al.” have shown that their ex-
perimental data could be fitted accurately if they ac-
counted for a finite intraband vibrational lifetime. As for
PD3, Lim e? al.? and Przhonska et al.* showed that an all-
singlet state five-level model, which includes reorienta-
tional processes in the first excited state, would accu-
rately fit their experimental data. Even neglecting these
details, our dynamical solution approximately predicts
the fluence at the turnover point to the same order of
magnitude. For the material CAP our model could not fit
the data (Fig. 8) and therefore does not make accurate
predictions of the fluence at the turnover point. Wei
et al.® had to invoke both two-photon absorption and
excited-state absorption to fit their data accurately. So in
this case the two-photon absorption is large enough that
it cannot be neglected.

Below, we briefly explain how the material parameters
effect the behavior of the limiting curve. First, we con-
sider the normalized time parameters T'5; and T;,. As
T, becomes larger (longer pulses or shorter lifetime of
the second excited state) the limiting curve becomes
deeper and the turnover from RSA to SA shifts to higher
fluences. However, a change in T'; of as much as an or-
der of magnitude barely affects the nonlinear absorption
of the material. As for the excited-state cross-section pa-
rameters « and B, a larger a (larger first-excited-state
cross section or smaller ground-state cross section) pro-
duces a deeper limiting curve, but the turnover from RSA
to SA does not shift to higher fluences, as was seen with
an increase in T'9;. Parameter B is the most sensitive
material parameter for determining when the turnover
from RSA to SA will occur. As B increases, the limiting
curve becomes slightly deeper and the turnover point

XN

Table 1. Turnover Fluence (mJ/cm?) Determined from Experimental and Numerical Results

Method
Material Eq. (17) Eq. (16) Eq. (15) Egs. (3), (4), Gaussian Input Experiment
HITCI 3 13 27 36 84
PD3 55 76 155 232 414
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Fig. 8. Experimentally measured limiting curve (triangles) for
CAP with best-fit material parameters used in the numerical so-
lution to Eq. (15) (solid curves) and the full system of PDEs (3)
and (4) for a Gaussian pulse (dashed curve).

shifts to higher input fluences. It is important to note
that all these tendencies rely on the assumption of suffi-
cient linear absorption to populate the first excited level.

Our theoretical results can also be used to analyze the
output fluence at high input fluence levels (F > 1). In
this case, an exponential term in Eq. (15) can be dropped
and the asymptotic behavior of the output fluence can be
obtained from the condition

u(Fou) =~ u(Fip)expl —a(B + T)Z], (18)

where

w(F) = (F — 1)Tate| F + —

B

For instance, the output becomes clamped at the maxi-
mum allowable energy, e.g., 1 ud can be achieved for
25-ps pulses by use of the polymethine dye PD3%* with
80% linear transmittance and « = 50 if B8 > B, ~ 28.
An important conclusion to make is that for high input
energies with sufficient linear absorption the key param-
eter that influences optical limiting is the ratio of the sec-
ond excited-state absorption cross section to the ground-
state absorption cross section. In the above example the
output energy is merely changed, with the increase in «
from 50 to 200. Therefore, from the viewpoint of efficient
picosecond optical limiting, there is no advantage in hav-
ing a large first-excited-state absorption cross section
with a small second-excited-state absorption cross section
because the latter will act as a bottleneck to the optical
limiting process. Recently synthesized polymethine dyes
that have a large first-excited state absorption cross sec-
tion are quite poor optical limiters in the picosecond re-
gime because of a low value of B. This consideration
needs to be taken into account when one is synthesizing
new materials for optical limiting. The qualitative basis
for practical estimates can be gained from formula (18).

T21 To(a—pB)/B
) (19)

5. CONCLUSIONS

In the picosecond regime the steady-state solution to the
rate equations does not always provide a reasonably ac-
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curate description of the nonlinear absorption in RSA ma-
terials, whereas numerical treatment of the full system of
PDEs remains time-consuming. We have developed an
approach that accounts for the dynamical behavior of the
population densities and optical propagation but requires
only the numerical solution of a single ODE. We have
shown that the specific pulse shape has little effect on the
nonlinear absorption of the pulse, so a flat-topped pulse
shape can be used that greatly simplifies and expedites
modeling of beam propagation through RSA materials
with picosecond pulses. We have obtained an approxi-
mate criterion for the turnover from RSA to SA to rapidly
calculate the turnover point from the photophysical prop-
erties of the material. The dynamical equation for flu-
ence allows us to determine the critical values of material
parameters to achieve the output energy clamping at the
desired level. This approach can be straightforwardly
extended to the case of arbitrary initial conditions to
study the absorption properties of the material by double
pump—probe measurements.?>?%  Additionally, we can
use the results of picosecond optical limiting experiments
to determine material parameters that in turn can then
be used to predict the outcome of nanosecond optical lim-
iting.
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