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Limiting devices protect sensitive optical elements from laser-induced damage ~LID!. Passive devices
use focusing optics to concentrate the light through a nonlinear optical ~NLO! element ~or elements! to
reduce the limiting threshold. Unfortunately, these NLO elements may themselves undergo LID for
high inputs, restricting the useful dynamic range ~DR!. Recently, efforts at optimizing this DR have
focused on distributing the NLO material along the propagation path z of a focused beam, resulting in
different portions of the device ~in z! exhibiting NLO response at different inputs. For example, non-
linear absorbers closer to the lens, i.e., upstream, protect device elements downstream near the focal
plane. This results in an undesirable increase in the threshold, although the lowest threshold is always
obtained with the final element at focus. Thus there is a compromise between DR and threshold. This
compromise is determined by the material. We concentrate on reverse saturable absorber ~RSA! ma-
terials ~molecules exhibiting larger excited-state than ground-state absorption!. We look at both tandem
devices and devices in which the concentration of the NLO material is allowed to spatially vary in z.
These latter devices require solid-state hosts. The damage threshold of currently available solid-state
hosts is too low to allow known RSA materials to reach their maximum absorption, which occurs when
all molecules are in their excited state. This is demonstrated by approximate analytical methods as well
as by a full numerical solution of the nonlinear wave propagation equation over extremely large distances
in z ~up to 103 Z0, where Z0 is the Rayleigh range of the focused beam!. The numerical calculations,
based on a one-dimensional fast Fourier transform, indicate that proper inclusion of diffraction reduces
the effectiveness of reverse saturable absorption for limiting, sometimes by more than a factor of 10.
Liquid-based devices have higher damage thresholds ~damage occurs to the cuvette wall! and, thus, larger
nonlinear absorption. However, RSA material in liquid hosts may suffer from larger thermal lensing.
© 1997 Optical Society of America
1. Introduction

Considerable effort has been expended to devise pas-
sive means of protecting sensitive detection systems
from damage caused by high-power laser beams.1,2

Here passive implies that the optical energy is used
directly in a nonlinear material to cause the material
to absorb, refract, deflect, or scatter the beam at high-
input energies or powers. To date no materials have
exhibited strong enough nonlinear response to show
limiting without optical gain, i.e., focusing to concen-
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trate the light in the material. Although the stron-
gest nonlinear response will be obtained by placing
the nonlinear material at focus, from a practical view-
point, the material is also most likely to undergo
laser-induced damage at this position, which can re-
sult in a small dynamic range ~DR!. The DR is de-
fined as the linear transmittance divided by the
lowest transmittance, which occurs at high inputs.
For liquid-based limiters this may actually help lim-
iting, in that the resulting plasma may block incom-
ing light.3 However, solid-state hosts undergo
irreversible damage as do the optical cells that hold
liquid limiter materials.4 This has prompted re-
searchers to devise means of protecting the limiter
itself from damage by placing nonlinear material in
front of focus, thus increasing the DR. Various
methods have been used, including the semiconduc-
tor self-protecting monolithic optical power limiter or
MONOPOL5,6 and tandem optical limiters7–11 that
use discrete nonlinear elements of one or more types.
Here we explore two similar geometries, tandem10



and graded density,11 for devices. We concentrate
on the use of excited-state absorber ~ESA! materials
for these devices, although the geometries are appli-
cable to other nonlinear materials.

Molecules exhibiting excited-state absorption have
received considerable attention as promising candi-
dates for use in passive optical limiters.7,12,13 For
such materials the ESA cross section is larger than
that of the ground state, causing the absorption to
increase with input fluence F ~energy per unit area!.
For this reason, they are often referred to as reverse
saturable absorber ~RSA! materials.14 In an effort to
increase the DR of limiting devices, Hagan et. al.8
presented a combined experimental and theoretical
study of discrete-element tandem ESA limiters. In
this analysis, it was assumed that one element was
placed at focus, while others were placed upstream in
such a way that the maximum output energy Emax of
one element was equal to the maximum input energy
~the damage energy! Ed of the next. This criterion
yields the positions of each element, and it was shown
that the DR for such a limiter is given, in this sim-
plified model, by the product of the DR’s of the indi-
vidual elements. The principle is illustrated in Fig.
1, where the on-axis fluence distribution is plotted as
a function of the propagation distance z for ~a! single-
element, ~b! two-element, and ~c! four-element tan-
dem limiters, each with an overall linear
transmittance of 54%. Here, for clarity, it is as-
sumed that all elements have identical nonlinearity,
but with the concentration adjusted so that each com-
posite limiter has the same overall transmittance,
and all elements have the same damage threshold
fluence Fd. In Fig. 1, Fd 5 3 Jycm2. Also for sim-
plicity, this calculation assumes that the beam shape

Fig. 1. On-axis fluence as a function of propagation distance for
~a! a single-element limiter, ~b! a two-element tandem limiter, and
~c! a four-element limiter at maximum input energy. Each limiter
uses the same nonlinear material, with concentrations adjusted so
that the overall limiter transmittance is the same in each case.
is undistorted by the nonlinear absorption or any
other effect. Figure 1 illustrates how the tandem
limiter uses the focusing of the beam to keep the
fluence high enough to generate significant excited-
state absorption while the nonlinear loss balances the
focusing to keep the fluence below the damage
threshold. We clearly can see that the greater the
number of elements, the higher the average fluence
through the length of each element. This results in
more optimized limiting as discussed below.

Recently, Miles11 showed how the tandem limiter
principle can theoretically be carried to the limit
where the on-axis fluence is kept constant just below
the damage fluence Fd over the entire length of the
limiter in z by using a nonuniform concentration ~or
graded density! of ESA material. Because it allows
the maximum fluence level at all points through the
limiter, this design produces the largest excited-state
absorption for any given Fd. This also results in the
largest possible DR. In the same paper, a more gen-
eralized tandem limiter design was presented in
which the final element need not be at focus. For a
fixed linear transmittance, however, the lowest
transmitted energy always occurs with the final ele-
ment at focus.

In this paper, we present a detailed analysis of the
behavior of ESA materials described by a five-level
molecular model. We use the results to give both
approximate analytical solutions for tandem devices
and graded density devices @following Miles ~Ref. 11!#
as well as full numerical solutions of the nonlinear
propagation of the electric field for such devices.
The approximate analytical model carefully includes
the role of the excited-state population and shows
that considerably higher fluences than previously re-
ported11 are needed to fully populate this level.
Thus the operating fluences needed to optimize de-
vices are higher than previously expected. Results
using the beam-propagation code, which is capable of
calculating nonlinear propagation over long dis-
tances for focused beams, show that proper inclusion
of diffraction results in a further reduction in limiting
as compared with analytical models that are based on
the assumption of constant-shape beam propagation.
This reduced limiting gives as much as an order-of-
magnitude reduction in the expected DR. These re-
sults indicate the importance of full numerical
modeling in the design of optical limiting devices.

If the excited state of a RSA material could be fully
populated to obtain the maximum possible absorp-
tion, i.e., full saturation of the ground-state absorp-
tion, the design and analysis of optimized limiters
would be relatively simple. However, this is not
seen to be the case. Currently known ESA materi-
als are only partially saturated near the damage
threshold of the host. In most materials the com-
plexity is compounded by the presence of more than
one ESA process. It has been shown experimentally
that at high fluence levels for nanosecond pulses, a
five-level model12 is needed to describe the material
response. Because the performance criteria ~e.g.,
DR! are set at fluences close to the damage threshold,
20 June 1997 y Vol. 36, No. 18 y APPLIED OPTICS 4111



the estimation of performance and limiter design de-
pend on a correct analysis of the nonlinear response
of ESA materials at high fluence. Here we provide
this analysis in the approximation that nonlinear re-
fraction may be neglected. A discussion of the pos-
sible effects of nonlinear refraction is included in the
conclusions. The analytical design of the graded
density limiter of Ref. 11 requires a three-level ESA
model, although this is not an accurate physical de-
scription of most ESA materials at high fluence.
Therefore, in Section 2, we present a quasi three-level
model for organic dyes exhibiting excited-state ab-
sorption and discuss the limitations of such a model.
In Section 3 we describe how temporal averaging over
the optical pulse gives an effective ESA cross section
for the graded density limiter, whereas for the tan-
dem limiter, spatial integration in z through the lim-
iting element must also be performed to find another
effective absorption cross section. Both spatial ~in z
and radial in r! and temporal ~in t! irradiance varia-
tions make it difficult to fully populate the excited
state ~at all z, t, and r! while keeping the pulse below
the damage threshold at all points in the limiter.
This prompts the designer to use a material with as
high a damage threshold as possible. In Section 4,
we describe the constraints that a constant fluence
design imposes on limiter performance. We then
compare graded and tandem limiter systems with
particular attention to the damage threshold of these
materials, including hosts and containment vessels.
This is followed by the analytical design of a high DR
limiter. This design of an optimized limiter is based
on the assumption that the beam shape remains un-
distorted on propagating through the nonlinearly ab-
sorbing material, an apparently gross assumption
given that the beam size may change by several or-
ders of magnitude. It is therefore necessary to check
the analytic predictions with a numerical beam-
propagation code. Section 5 describes this beam-
propagation model and its application to graded
density limiters. We also describe how we can use
the nonlinear propagation code to determine a nu-
merically modified molecular density distribution
that keeps the on-axis fluence constant, while prop-
erly including the effects of diffraction. We also ex-
amine a numerical analysis of the tandem limiter
design. In the conclusion, we discuss other factors,
particularly thermal lensing, which will need to be
accounted for to refine further the design of practical
limiting devices.

2. Excited-State Absorber Models

In the excited-state absorption process, weak absorp-
tion from the ground state results in population of
excited states having a larger absorption cross sec-
tion and hence an overall decrease in transmittance.
Limiting properties of many such materials, for ex-
ample, metallo-phthalocyanines,7,12–14 have been
studied in detail, resulting in a five-band model for
the nonlinear absorption process, depicted schemat-
ically in Fig. 2. The system is more correctly de-
scribed by a band model rather than a level model.
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For example, linear absorption involving transitions
from the ground state to the S1 band usually result in
excitation high into the S1 vibration–rotation mani-
fold. This is followed by rapid decay to the bottom of
the band, whereupon the molecule is placed in an
energy state far from resonance with the incident
radiation. This allows complete depletion of the
ground state and population of S1. As the decay
between singlet and triplet states is spin forbidden,
decay from the lowest triplet-state ~T1! decay to the
ground state ~S0! ~well removed in energy! is negli-
gible on the time scale of typical high-power
Q-switched laser pulse widths ~.10 ns! that limiters
are designed to protect against. However, spin–
orbit coupling induced by the metal substitute in
metallo-phthalocyanines or metallo-naphthalocyanines,
along with the closeness in energy of the S1 and T1
levels, causes the lifetime of the S1 to T1 transition to
be of the order of nanoseconds. For all but very high
irradiance calculations, we find that we can neglect
the populations of bands three and five. Including
all of the above considerations, the system can then
be described by the following rate equations ~see Fig.
2!:
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5 2

sg I
\v

N1 1
N2

t21
, (1a)
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N0 5 N1 1 N2 1 N4, (1d)

]I
]z

5 2~sg N1 1 ss N2 1 st N4!I, (1e)

where Nj is the population per cubic centimeter of
band j and the overall lifetime t2 of band two is given
by t2

21 5 t21
21 1 t24

21. In some of the materials
studied,9 the triplet–triplet transition cross section st
is larger than the excited singlet-state transition
cross section ss. Consequently the nonlinear behav-
ior changes with input fluence and pulse width.
However, if a single pulse width is to be considered,
we can use a quasi three-level system as shown in
Fig. 2. This has a ground-state absorption cross sec-

Fig. 2. Five-level model of excited-state absorption and equiva-
lent quasi three-level model.



tion sg and a single ESA cross section sex, and is
found to agree well with the full five-band model ~for
a single pulse width! and hence can often give good
agreement with limiting and Z-scan15 data taken on
single-element thin samples of RSA material. Re-
placing sex with st

11 usually results in an overesti-
mation of the limiter performance as st is often
greater than ss. To correctly determine this effec-
tive sex for a given material, fluence, and pulse width,
we must first numerically solve the five-band model.
There is, consequently, no calculational benefit in our
using the quasi three-level model. The point of cal-
culating sex is that we must use this to design an
optimized graded density limiter.

A limiter based on excited-state absorption has a
linear transmittance TL 5 exp~2sgN0L!, where N0 is
the molecular density and L the limiter length. In a
three-level system the minimum possible transmit-
tance Tmin would occur when all molecules are in the
excited state, i.e., Tmin 5 exp~2sexN0L!. This is
usually not attainable, as laser damage to the mate-
rial typically occurs before complete excitation is
reached. As we desire both a small value of Tmin and
a large value of TL, it is appropriate to define a figure
of merit ~FOM! for a limiter based on excited-state
absorption as FOM 5 TLyTmin ~Ref. 8!, where Tmin is
the minimum transmittance for the attainable
excited-state population. This definition, not acci-
dentally, is identically equal to the DR; hence DRMAX
5 FOMMAX 5 exp@~sex 2 sg!N0L# or,

DRMAX 5 TL
~12sexysg!. (2)

Because the fluences required to obtain this maxi-
mum DR are not attainable, we must determine the
appropriate cross sections and Tmin from a model of
excited-state absorption.

3. Effective Three-Level Cross Sections for Gradient
Density and Tandem Limiters

A. Fluence Effective Cross Section seff
F

Within the three-level approximation we can analyt-
ically solve the rate equations for the irradiance
change with depth in a material as

]Iy]z 5 2N0 I$sgexp~2FtyFS!

1 sex@1 2 exp~2FtyFS!#%, (3)

where we define Ft 5 *2`
t I~t9!dt9 and FS 5 \vysg is

the saturation fluence.10,11 Note that in Ref. 11, FS
5 \vyfsg, where f is the fraction of the excited sin-
glet population that reaches the triplet state and st is
then used for the effective excited-state cross section.
To make a comparison to the more accurate five-band
model, we do not include f in our definition of FS. A
low FS will allow a small fluence to populate the
excited state and deplete the ground state. The
term in curly brackets is the effective absorption cross
section for irradiance seff

I as defined by Miles.11

However, it is the total pulse fluence that is of pri-
mary interest. Integrating Eq. ~1! over time from
2` to ` we find the total fluence change with z:

]Fy]z 5 2sexN0F 1 ~sg 2 sex!@exp~2FyFS! 2 1#N0FS,

(4)

where now an effective cross section can be defined as

]Fy]z 5 2seff
F N0F. (5)

In Fig. 3 we show the variation of seff
F and seff

I with
FyFS. The values of cross sections and level life-
times used in the calculation are for tin phthalocya-
nine ~SnPc!, sg 5 2.1 3 10218 cm2, ss 5 2.3 3 10217

cm2, st 5 6.7 3 10217 cm2, t21 5 4.44 ns, and t24 5
3.63 ns ~Ref. 11!. In both cases, seff saturates to its
maximum possible value sex for F .. FS, although
seff

F reaches this limiting value for considerably
higher inputs. From Eq. ~3!, seff

I is a monotonically
increasing function of t. Therefore an average in
time will always give a reduced effective cross section.
As seen from the behavior of seff

F in Fig. 3, the RSA
material is not used effectively until F . 10 FS.
Similarly, an average over the spatial distribution of
the input pulse in r will further reduce the effective
cross section for the total pulse energy. This spatial
average is difficult if not impossible to perform ana-
lytically, and we only take this into account in the
numerical propagation model that does show a reduc-
tion in limiting effectiveness as seen in Section 5.

For the five-level model with singlet and triplet
excited-state cross sections and number densities ss,
N2 and st, N4, Eq. ~5! is replaced by

]F
]z

5 2 *
2`

`

@sg N1~t9! 1 ss N2~t9! 1 st N4~t9!#I~t9!dt9,

(6)

which must be calculated numerically. To deter-
mine an effective three-level cross section to match
the five-level model nonlinear absorption for a given
pulse width and fluence, we equate Eqs. ~5! and ~6!.
Calculating seff

F in this way reveals the pulse width
dependence as well as fluence dependence of the non-

Fig. 3. Dependence of seff
Iysg and seff

Fysg on normalized incident
fluence FyFs for SnPc.
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linear absorber. For example, if st . ss, seff
F is

lower for shorter pulses due to the time taken for
decay from the singlet band to the more heavily ab-
sorbing triplet. Figure 4 shows seff

F for several dif-
ferent input pulse widths, again for SnPc. The
calculated FS for this material is 0.22 Jycm2. As can
be seen in Fig. 4, for 10-ns pulses the RSA material is
not used effectively until F . 50 FS . 10 Jycm2. A
three-level model is, therefore, insufficient to describe
completely the limiting properties of a five-level sys-
tem. We must use the five-level model to determine
a seff

F for the purpose of design and analysis of the
graded limiter for a particular pulse width and flu-
ence. Therefore, we refer to this analysis as a quasi
three-level model. An accurate calculation of the ef-
fective cross section is important because, in calcu-
lating the limiter transmittance, seff

F appears in an
exponent so that small changes make a large differ-
ence.

Figures 3 and 4 indicate that we desire as small a
saturation fluence FS as possible because this will
give maximum attenuation for relatively small input
fluences. Hence, from the definition of FS, large
ground-state cross sections are desired ~while keep-
ing se .. sg!. For a given product ~sex 2 sg!N0, it is
preferable to have larger cross sections and a smaller
N0 since it takes less energy to excite fewer mole-
cules. In addition, to reach the largest seff, FS
should be well below Fd.

We emphasize saturation effects in the context of
optimized limiters because, for the materials studied
to date, damage occurs well before full saturation.8,10

For example, solid polymer hosts currently used as
hosts for RSA molecules9 have damage thresholds of
.1–3 Jycm2 and, therefore, do not allow efficient use
of the nonlinearity. This may partly explain the dif-
ference between predicted and actual performance of
the limiting device of Ref. 9. It is important to en-
sure that every part of the limiter gives the lowest
transmittance possible, i.e., be as close to saturation
as possible. This means that, ideally, every part of

Fig. 4. Normalized effective fluence cross section seff
Fysg for SnPc

as numerically calculated for a five-level system for several pulse
widths, as a function of normalized input fluence.
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the limiting material should reach the damage
threshold simultaneously.

In practice, reaching the saturated seff
F is even

more difficult to achieve than may be immediately
apparent from this model, as the fluence may vary
along two spatial directions, r and z. Along the
propagation direction z, the fluence will change be-
cause of either beam focusing or absorption. This
variation is removed in the graded density limiter but
must be considered for constant density tandem lim-
iter elements. There will also always be transverse
fluence variations, which will reduce the effective
cross section for the transmitted energy since this
involves integration over the spatial beam profile.
Even for uniform irradiance input beams, both linear
diffraction and the presence of a nonlinear medium
will distort the beam shape as it approaches focus.
This cannot be rectified by a variation of the molec-
ular concentration along z. The effects of transverse
spatial variations cannot easily be considered analyt-
ically but are included in our numerical propagation
model, described in Section 5.

B. Effective Cell Cross Section seff
c

Generally seff
F is a useful parameter to describe the

limiting behavior at a single plane along the beam-
propagation direction. As the fluence is constant
throughout a graded density limiter, seff

F is also use-
ful for this specific geometry. However, to describe
the composite performance of a cell of uniform molec-
ular concentration, as in a tandem limiter, we must
account for the change in the beam irradiance
through the cell. All we can do here is to numeri-
cally integrate to find the transmitted fluence Fout for
a given input Fin. Although this gives all the infor-
mation we need, it is again useful to translate this
back to an effective cross section seff

c, which is defined
by Fout 5 Fin exp~2seff

cN0L!, giving

seff
c 5 ln~FinyFout!yN0L. (7)

The seff
c is naturally smaller than seff

F at the input
plane for any given Fin as F must decrease through
the cell. For this reason, as discussed in Section 4,
tandem limiters are more efficient if they are con-
structed of many cells, each of high linear transmit-
tance, so that the decrease in F through each cell is
small. The limit of this, as the number of cells be-
comes large, is the graded density limiter, as dis-
cussed in the next section.

4. Relative Performance of Graded Density and
Multicell Tandem Optical Limiters

Limiters using discrete nonlinear elements ~of spa-
tially uniform concentration! in tandem have been
previously proposed8,16 and demonstrated.8,9,16 The
motivation for designing such tandem or multicell
optical limiters was primarily to provide a large ex-
tension of the DR while keeping the limiting thresh-
old as low as possible and the linear transmittance as
high as possible. However, as shown below, and as
discussed by Miles11 from a different viewpoint, the



multicell limiter can function as a good approxima-
tion to the optimized graded limiter. The principle
of the tandem limiter is that each discrete element is
positioned so that it will protect the next element
from damage. As for the graded density limiter, the
nonlinear elements are positioned on the -z side of the
focal plane and for optimized behavior are positioned
so that they will all reach their damage threshold for
the same input energy. In this section we describe
the performance and design considerations for tan-
dem and graded density limiters. This analysis
treats a Gaussian input beam assumed to remain
Gaussian throughout the propagation in z. The as-
sumption of a radially uniform ~top-hat! beam yields
similar results.11 However, as discussed in Section
5, numerical solutions properly including diffraction
show significantly poorer limiting performance. In
either case, we can expect aberrations to dominate
the beam shape near the focus in an imaging system
with fyNo. smaller than .5. Inclusion of aberra-
tions would require knowledge of the details of a
specific imaging system and so are omitted from this
analysis which is therefore limited to fy#’s . 5.

A. Graded Density Limiters

Although tandem limiters historically preceded the
idea of graded limiters, we discuss the graded variety
first, as they offer the greatest simplicity, and much of
what we conclude about these will also apply to tan-
dem limiters. To maximize the nonlinear absorp-
tion for the highest possible input, all portions of the
nonlinear material should be at or very near to the
damage threshold. This implies that the fluence is a
constant with z as long as the damage threshold is
independent of z. We assume this to be true so that

]F
]zUF5Fd50.

(8)

As the output fluence from a ESA limiter is a mono-
tonically increasing function of the input fluence,
then with this design the maximum transmitted flu-
ence must also be Fd. The criterion of Eq. ~8! can be
achieved in absorbing media when a beam is focused
so that the increase in fluence with propagation ex-
actly balances the decrease in fluence that is due to
absorption, or

]F
]z

5
]F
]zUD

1
]F
]zUA

5 0, (9)

where subscripts D and A refer to diffraction ~in this
case focusing! and absorption, respectively. Al-
though graded limiters have been analysed else-
where,10,11 we include the following abbreviated
derivation for completeness.

Fortunately, we do not need to solve Eq. ~4! to
optimize the limiting if we consider the following sim-
ple arguments. Using Eq. ~4! in Eq. ~9! and assum-
ing the beam always follows Gaussian beam
propagation $i.e., FD~z! 5 FD~0!@1 1 ~zyZ0!2#%, we find
by differentiation that the following molecular distri-
bution is needed:

N0~x! 5 2
x

1 1 x2

2
sg Z0

1
S

for x , 0, (10)

where x 5 zyZ0 and S 5 ~seff
Fysg!. This distribution

reduces to that given by Miles11 @N0~z! . 2y~zsex!# for
large FyFs and z1, z2 .. Z0, where z1 and z2 are the
positions of the entrance and exit surfaces of the lim-
iter. With this density function we can determine
the remaining design parameters of the limiter.
First, we must specify the optical system, namely the
wavelength l and beam waist w0. Our material will
define S and Fd, so we are left to specify a maximum
transmitted energy Eout and the linear transmittance
TL. This is sufficient information to calculate the
limiter geometry, which also determines the input
damage energy Em. Typically, Eout will be chosen to
be of the order of 1 mJ.1 Defining the normalized
position of the surfaces of the limiter by xi 5 ziyZ0, we
can give the linear transmittance of the material by

TL 5 expF2 *
z1

z2

N0~z!sgdzG 5 S1 1 x2
2

1 1 x1
2D1yS

. (11)

As the beam is assumed to remain Gaussian but the
on-axis fluence is constant, Em and Eout are related by

Em 5 S1 1 x1
2

1 1 x2
2DEout 5 EoutTL

2S. (12)

As expected, the minimum transmittance is given by
Tmin 5 EoutyEm 5 TL

S. We therefore obtain the DR
as

DR 5 T L
~12S!, (13)

which, in the limit of F3 `, converges to exp@~sex 2
sg!N0L#, in agreement with Eq. ~2!.

The positions x1 and x2, both negative, are deter-
mined by

x1
2 5 FpyFd 2 1, x2

2 5 TL
SFpyFd 2 1, (14)

where Fp 5 2Emypw0
2 is the fluence at focus in the

absence of nonlinear material.
An examination of the above results reveals that

the effect of specifying the fluence as a function of z is
to impose hard constraints on the design of the lim-
iter. This also places well-defined limits on what we
can expect of the performance of an optimized device,
be it of the graded or tandem variety.

First, this limiter design intrinsically places a limit
on how small the transmitted energy can be when
operating at maximum fluence Fd. Equation ~14!
yields general values for the positions of the front and
rear surfaces of the limiter when linear transmit-
tance TL, cross-sectional ratio S 5 seff

Fysg, spot size
w0, and either maximum input or transmitted ener-
gies Em or Eout are specified. As the on-axis fluence
20 June 1997 y Vol. 36, No. 18 y APPLIED OPTICS 4115



is Fd for all z, then

Eout 5
pFd

2
w0

2~1 1 x2
2!. (15)

For most applications, this is a more general relation-
ship than needed. This is because Eout is minimized
for x2 5 0 and, as we shall see, we will nearly always
want to set x2 5 0 to obtain this minimum as long as
material nonlinearities remain low. Setting x2 5 0
yields

Eout 5
2
p

Fdl
2~ fy#!2, (16)

where the ~ fyNo.! is defined here as the ratio of the
focal length of the input lens to the beam diameter
~1ye2 in irradiance! at the lens. Note that Eout is
independent of the material’s nonlinear properties,
depending only on the maximum fluence Fd and the
focusing geometry. For eye protection, a reasonable
upper value for Eout is .1 mJ.11 From Eq. ~7! we find
that this can be achieved for an fy10 limiter only if Fd
# 5 Jycm2 and for an fy5 limiter if Fd # 20 Jycm2.
From our results in Section 3, we can see that, to
reach the necessary effective cross sections in cur-
rently available materials, the fluences must be con-
siderably greater than 5 Jycm2. In the event that
ESA materials are developed with saturation flu-
ences considerably lower than those currently avail-
able, requirements on the value of Fd can be reduced,
allowing the rear limiter surface to be moved away
from focus without increasing Eout. This would al-
low the use of materials with lower damage thresh-
olds.

Another constraint is that the design length can
become prohibitively long if S is large. Equation
~14! gives the locations x1 and x2 of the front and rear
surfaces of the limiter, from which the device length
L 5 ~x1 2 x2!Z0 can be found. Again, setting x2 5 0,
we find a relatively simple expression for the sample
length:

L 5 Z0~TL
2S 2 1!. (17)

The strong dependence of L on both S and TL is
seen by examination of Fig. 5, where we plot the
normalized limiter length LyZ0 as a function of TL for
several values of S. From Eq. ~13!, we can see that
reducing TL by a small amount may drastically in-
crease the DR. With such an increase in the DR, a
small reduction in TL may in itself be tolerable.
However, the consequential increase in limiter length
may not be. For example, with S 5 25, a decrease in
TL from 0.8 to 0.6 results in a decrease in Tmin by a
factor of 103, while L changes from 260 Z0 to 3 3 105

Z0. This length dependence is because N~z! is pre-
determined so that the only way to change TL is to
change the limiter length, and far from focus, N~z!
becomes very small. In Fig. 6 we use Eq. ~17! to plot
Tmin versus TL for several values of S. Correspond-
ingly, we can see from Fig. 5 that a large S for a given
TL also requires a large L. This is because the larger
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S is, the more dilute the molecules must be to satisfy
Eq. ~8! for a given fyNo.

Our numerical beam-propagation calculations, de-
scribed in Section 5, have shown that, although the
constant beam shape approximation is helpful in de-
signing limiting devices, the energy transmittance
can be more than an order-of-magnitude greater than
analytically predicted. Moreover, the effect of non-
linear refraction, both from the refractive contribu-
tion of excited states and from heating of the host
material, may further increase the transmitted en-
ergy. This has yet to be modeled.

The subject of gradient density limiters is currently
entirely theoretical; to date we have no means of
making them. Although it is highly speculative as
to which technology may eventually be used to main-
tain such a molecular density gradient, we can be
reasonably certain that the molecules would be held
in a solid host rather than a liquid solution. This
may lead to severe constraints due to optically in-
duced damage, which, for example, in a polymer host
is of the order of 3 Jycm2.9,11 This severely restricts
the values of S that could be achieved and hence
constrain the DR of the limiter. Liquid solutions

Fig. 5. Graded limiter length L in units of Z0 versus linear trans-
mittance TL for several values of S.

Fig. 6. Transmittance at maximum input versus linear transmit-
tance TL for several values of S.



held in quartz containers, on the other hand, have
been shown to have damage thresholds of 50 Jycm2 or
greater,12 so that the maximum fluence allowed by
Eq. ~7! can be easily reached. Of course, a graded
distribution cannot be maintained in a liquid, which
points us, once again, to tandem limiters.

B. Tandem Limiters

As implied by Fig. 1, the general behavior of a mul-
tielement tandem limiter is similar to that of a
graded density limiter. For a multielement limiter
comprised of n discrete elements, assuming a con-
stant beam shape, the DR is given by8

DR 5 )
j51,n

STlj

Tmj
D , (18)

where Tlj and Tmj are the linear and minimum en-
ergy transmittances for the jth element, and hence
~TlyTm! is the DR for each element. Should all ele-
ments be identical, Eq. ~18! reduces to

DR 5 STl

Tm
Dn

. (19)

The relationship between tandem and graded concen-
tration limiters is shown in Fig. 7. The DR is plotted
versus TL for tandem limiters comprised of cells, all
with TL 5 0.9, TL 5 0.8, or TL 5 0.7. For each type
of cell, the DR of various numbers of elements is
plotted with Eq. ~18!. Also plotted is the DR of the
optimized, graded distribution limiter, as calculated
by Eq. ~13!. Clearly, the trend indicates that a tan-
dem limiter with a large number of elements, each of
high linear transmittance, becomes equivalent to the
graded concentration limiter as n 3 `. This is not
surprising, as the tandem limiter design requires
that the reduction in fluence by absorption in each
element must equal the increase in fluence by linear
propagation between the elements. This is exactly
the same requirement as Eq. ~2! for the graded dis-
tribution limiter, except on-axis fluence oscillates be-

Fig. 7. Dynamic range, or figure of merit, versus TL for a graded
limiter and several tandem limiters with cell linear transmittance
Tl, based on the material parameters of SnPc.
tween Fd and Tmin Fd in this discrete system, as
shown in Fig. 1. This is why we must use seff

c, de-
fined in Eq. ~7!, as the effective cross section in the
tandem limiter.

Because the fluence decreases through each cell,
the nonlinearity near the rear surface of each cell is
much harder to saturate than near the front surface.
This makes it even more difficult to reach saturation
in the multicell limiter than in the graded limiter.
Defining S 5 seff

cysg, Tm 5 ~Tl!
S, so that the DR for

an individual cell is ~Tl!
12S, in Fig. 8 we plot the

calculated value of S from the five-level model as a
function of input fluence for several values of linear
cell transmittance Tl. This is done in the approxi-
mation that the effects of diffraction are negligible
within the cell. Also plotted in Fig. 8 is the param-
eter S for the graded concentration limiter, illustrat-
ing that S is the limit of S as Tl 3 unity and the
number of cells becomes large. To fully utilize the
entire thickness of an individual cell, as shown in Fig.
8, two things are important. The linear transmit-
tance of each individual cell must be kept close to
unity, and the fluence should be as high as possible.
This requires high FdyFS, again indicating that it is
important to design a multicell limiter so as to give as
high a damage threshold as possible. Our studies
reveal that the best host for RSA molecules is a liquid
solvent in a high-grade fused-silica cell. These cells
can have a damage threshold as high as .400 Jycm2.4

The minimum energy transmittance for the entire
limiter must be given by Tmin 5 Tm

n, where n is the
number of cells. Similarly, the total linear transmit-
tance is TL 5 Tl

n. Combining these statements, we
conclude that, for the multicell limiter, the DR 5
TL

~12S!. Note the similarity between this equation
and Eq. ~13! for the DR of the graded concentration
limiter.

We can now design the multicell limiter. It is
straightforward to show that the normalized distance
from focus x1 of the first cell is given by

x1 5 ÎFpyFd 2 1. (20)

Fig. 8. Effective cell cross section seff
c versus fluence for several

values of cell linear transmittance Tl.
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For the next and remaining cells,

xj 5 Î~1 1 xj21
2!Tm~ j21! 2 1, (21)

where wj is the beam radius at the jth cell, with j 5
1, 2, . . . , n.

Although decreasing fluence through the cell re-
sults in reduced efficiency, an obvious benefit is that
Eout is simultaneously reduced. By analogy with
Eq. ~16!, we find that for the tandem limiter

Eout 5
2
p

Fdl
2~ fy#!2Tmin~1 1 xn

2!, (22)

where xn is the position of the final cell. Again, plac-
ing the final cell at focus, xn 5 0 and Eout is mini-
mized.

It was suggested in Ref. 11 that one may wish to
make the final element thick, so that the fluence may
rise back up to Fd at the exit surface as the beam
focuses, as shown by McCahon and Tutt.17 This re-
sults in a minimum output energy for the particular
geometry, while remaining below the damage thresh-
old. However, it does not provide a globally mini-
mized transmitted energy for a fixed linear
transmittance, which occurs with the last sample po-
sitioned at focus. With the final ~nth! cell at focus,
we are specifying wn

2 5 w0
2, and the position of the

other cells is found in a manner similar to Eq. ~21!,
using wj21

2 5 wj
2yTm~ j21!.

As an example, we describe the design of a multi-
cell limiter for a fy5 system at a wavelength of 532
nm, where we require Eout# 1 mJ and an overall
linear transmittance of 70%. Assuming a damage
fluence of 50 Jycm2, as is possible for liquid-filled
fused-silica cuvettes, we have FyFS 5 267 at the
input surface of each cell. For this fluence in SnPc
we calculate from the five-level model seff

F 5 6.5 3
10217 cm2, indicating significant, though not total,
triplet occupation @st 5 6.7 3 10217 cm2 ~Ref. 11!#.
We find that we can meet the design requirements
with a four-cell device, three with Tl 5 0.92 and the
final one with Tl 5 0.90. For these values, we can
find S either from Fig. 8 or by direct calculation.
Using Tmin 5 TL

S, we find Tmin 5 1.9 3 1025.
Assuming no aberration, the calculated beam waist

is small enough that Eout is well below the require-
ment and hence Emax is unnecessarily low. For this
reason, we calculate the position x4 of the final ele-
ment by specifying Eout 5 1 mJ in Eq. ~22!. ~In re-
ality, aberrations would require this position to be
nearer to or at focus.! This value of x4 and corre-
sponding values for x1, x2, and x3 calculated from Eq.
~21! gives a maximum input energy of Emax 5 52 mJ
and a DR of 36,500.

The performance of the four-cell device is close to
optimum if the fluence is sufficiently high. For ex-
ample, with Fd 5 50 Jycm2 and the same TL, we
calculate S 5 31 for FyFS 5 267, giving a DR of
45,000, only approximately 20% better than the four-
cell device. As the graded limiter, the dependence of
performance on TL is strong. For example, if we
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allow TL to drop slightly from 70 to 60%, Tmin drops
by a factor of 110, allowing an Emax of almost 5.8 J for
a 1-mJ output energy and a corresponding DR of 3.5 3
106. A consequence is that the limiter length goes
from 152 Z0 ~3.86 mm! to 1600 Z0 ~40.7 mm!. Un-
fortunately, as discussed in the next section, these
analytical calculations are overly optimistic.

5. Numerical Propagation Model

The assumption that a beam should retain its shape
while propagating through a nonlinear material over
many diffraction lengths was initially made with lit-
tle justification. Indeed, we can be certain that the
beam will not remain Gaussian ~or any other as-
sumed constant shape!, but we cannot tell analyti-
cally how far this removes our design from the
optimum case. As this is critical to the design of the
optimized limiter, it is necessary to verify its opera-
tion, either experimentally or numerically. Al-
though experiments ultimately provide the best
evidence, a numerical code to model these systems
allows great flexibility, as we can adjust material and
geometric parameters at will so as to gain insight on
the operation of the limiter. Also, for graded density
limiters, a means of creating the graded molecular
concentration that precisely follows some mathemat-
ical function has not yet been established. For these
reasons, we wrote a numerical code to determine the
nonlinear propagation by solving the wave equation.

To meet our goals, we had to construct a code ro-
bust enough to propagate a beam through a highly
nonlinear medium over distances of several hundred
Z0. The method chosen to satisfy these criteria was
patterned after that of Feit and Fleck.18 The
method is based on the paraxial approximation and
slowly varying envelope approximation, both valid in
our studies with fy10 or fy5 optics and pulses of du-
rations in the tens of picoseconds to nanosecond
ranges. This method utilizes fast Fourier trans-
forms to solve the wave equation in the evolution
operator form. We see how this can be applied by
rewriting the scalar wave equation in the form

]

]z
C~r, z, t! 5

1
2ik

~¹T
2 1 k0

2xNL!C~r, z, t!, (23)

which has an evolution operator solution

C~r, z 1 Dz, t! 5 exp3 *
z

z1Dz

S~z9!dz94C~r, z, t!, (24)

where operator S is given by

S~z9! 5
1

2ik
@¹T

2 1 k0
2xNL~z9!#. (25)

The operator S may be applied by a Taylor-series
expansion of the exponential in Eq. ~24!, as described
in detail in Refs. 18 and 19. Then the derivatives
can be calculated by expansion of the field in a Fou-



rier series.18 The use of cylindrical symmetry, valid
for most limiting applications, means that the code
can run much faster than a full three-dimensional
code. The accuracy can also be much higher than
split step and fast Hankel transform solutions20 that
are accurate to ~Dz!3, where Dz is the incremental
element in the propagation direction. By arbitrary
truncation of the expansion of the evolution operator,
the accuracy can be to arbitrary order in Dz. Usu-
ally we use ~Dz!4 to ~Dz!6.21 This accuracy allows
propagation through large distances, over which the
change in beam size can be enormous. For large
changes in the transverse spatial dimension, a vary-
ing grid size and interpolation is used to optimize the
computer run time. The resulting program is capa-
ble of computing Gaussian propagation over 103 Z0
with less than a 1025 error in the on-axis irradiance.

We have applied this program to the calculation of
beam propagation in both graded density and tandem
devices, where we have used SiPc as an example.11

Figure 9~a! shows the results of a test of the opti-
mized graded density limiter, where we plot the cal-
culated on-axis fluence versus z for a fy5 focusing
system. The parameters used are the same as used
for Fig. 4.11 The design parameters for this material
and fyNo. are calculated from Eqs. ~14!–~17! to be TL
5 0.7, Eout 5 7 mJ, x1 5 2135 and x2 5 25, Emax 5
5 mJ, Fd 5 1.5 Jycm2, w0 5 3.4 mm, and l 5 532 nm.

The input beam was assumed to have a Gaussian
spatial profile at a wavelength of 532 nm and Gauss-
ian temporal pulse width of 10 ns ~FWHM!. The
damage threshold is chosen as 3 Jycm2 to match the
possible damage to solid-state hosts.9,11 With this
focusing geometry, Z0 5 170 mm, which for a 2-cm-
thick sample requires calculation for over 100 Z0.
The calculated on-axis fluence is shown in Fig. 9~a!
for the range z 5 220 Z0 to z 5 0 ~x 5 220 to 0!. The

Fig. 9. ~a! Calculated on-axis fluence as a function of z for the
analytically determined molecular distribution of Eq. 10 ~solid
curve! and the numerically optimized graded density limiter
~dashed curve!. The fluence at the input to both distributions ~at
zyZ0 5 2135! is 3 Jycm2. ~b! Analytically ~solid curve! and nu-
merically ~dashed curve! calculated molecular distributions for the
graded density limiter.
solid curve in Fig. 9~a! shows clearly that propagation
effects cause the on-axis fluence to deviate from the
analytically assumed value. However, it is possible
to find an optimized distribution by use of the numer-
ical code itself. To keep the fluence below the dam-
age threshold, the program iteratively adjusts the
molecular density at each z position. Figure 9~b!
shows that this optimized molecular density follows
the analytical density @Eq. ~10!# well until near the
focal region where it turns up sharply by a factor of
.3. Unfortunately, this optimized density distribu-
tion is material and geometry dependent so that for
each system, a separate run of the beam-propagation
code must be performed to determine the optimized
distribution. The dashed curve in Fig. 9~a! is the
on-axis fluence for the numerically optimized limiter.

Observing the radial distribution of the fluence at
the output of the analytically determined graded den-
sity limiter, shown in Fig. 10~a!, we find there is a
moderate distortion of the beam shape due to the
nonlinear absorption. This distortion results in a
three-fold increase in Eout, compounded with the in-
crease in fluence above the design value, in this case
a factor of 2. Hence the transmitted energy for the
analytically determined molecular distribution is a
factor of 6 greater than the designed value. In ad-
dition we see an apparent beam narrowing, but con-
siderable energy is scattered to the wings. For a
single element we would expect beam broadening
since the peak is more strongly absorbed. There-

Fig. 10. ~a! Radial distribution of fluence at the output of the
graded density limiter, as calculated by the numerical propagation
code as compared with a Gaussian. ~b! Radial distribution of
fluence at the output of the four-element tandem limiter, as cal-
culated by the numerical propagation code as compared with a
Gaussian.
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fore, the propagation appears to be an important fac-
tor ~i.e., the beam broadening reduces diffraction!.

In Fig. 11~a! we show the irradiance distribution at
the output of the graded density limiter as a function
of both time and space. For larger values of seff

Fysg
we observe that the distortion becomes larger, pri-
marily due to the necessary increase in limiter
length. Numerically calculated energies to 20 times
the analytically predicted values are observed in our
studies. This further emphasizes the usefulness of
numerical propagation in the design process. Inclu-
sion of nonlinear refraction, from both excited state
and thermal sources, can be expected to cause con-
siderable further distortion.

The numerical code is also useful in calculating the
behavior of the tandem limiter. A simple diffraction
integral is adequate for calculation of propagation
between the elements far from focus, where the thin
sample approximation may be valid for propagation
between the elements. However, near focus, the
thin-sample approximation is seen to break down,
and propagation between elements may require a
large enough number of points that use of the fast
Fourier transform method is desireable. In Fig. 12,
we show the on-axis fluence for the four-element tan-
dem limiter, described in Section 4 and shown in Fig.
1, under the Gaussian shape approximation.

Fig. 11. ~a! Numerically calculated irradiance at the output of the
optimized graded density limiter, as a function of radial position
and time for a spatially and temporally Gaussian input. Note
that the output is greatly advanced in time as expected for a
fluence limiter. ~b! Output irradiance distribution for the four-
element limiter, as calculated by the numerical propagation code.
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Clearly, the analytic method works well for the first
three elements, with deviations from the analytically
predicted propagation only becoming apparent near
the final element. Even there, the deviations from
predicted behavior are small. Note that the fluence
is seen to reach a minimum within the last element
after which it starts to increase with z, as predicted in
Refs. 11 and 17. The calculated output fluence dis-
tribution for this limiter is shown in Fig. 10~b! and
the corresponding irradiance distribution is given in
Fig. 11~b!.

Finally, in Fig. 13 we show a comparison of the
numerically calculated FOM with the analytic val-
ues, for both graded density and tandem limiters.
Again the material parameters are those for SnPc.
The numerical determination of the FOM is based on
calculated energy transmittance. As expected, the
actual behavior deviates more strongly from the an-
alytic approximation as the transmittance is de-
creased ~and hence the limiting behavior becomes
stronger!. As TL approaches 50%, the actual perfor-
mance may be as much as two orders of magnitude
poorer than the analytic prediction. The effects of
nonlinear refraction can be expected to further de-
grade the limiting performance, but the degree to
which this is true is as yet undetermined.

6. Conclusion

For optimization of both tandem and graded density
limiters the goal as discussed in this paper is to attain
the maximum dynamic range or FOM. For tandem
limiters, the elements are placed upstream in just

Fig. 12. ~a! Numerically calculated on-axis fluence for the four-
element limiter as a function of zyZ0, as calculated with the nu-
merical beam-propagation code. The material and geometric
parameters are the same as used for Fig. 1, which was calculated
assuming a constant beam shape. ~b! Detail of Fig. 12~a! near the
focal plane. Note that in the final nonlinear element, the fluence
reaches a minimum and starts to increase with z, as predicted in
Refs. 11 and 17.



such a way as to protect the next element down-
stream ~and closer to focus! from damage. Thus, at
the highest input, each element operates at the dam-
age threshold ~actually just below the damage thresh-
old!. Here the front surface of each element
operates at threshold, but within any element the
fluence drops due to absorption, and is, therefore, not
optimally utilized. For the graded density limiter
each portion Dz ~differential element along the prop-
agation direction! of nonlinear material protects the
downstream portion from damage; thus, all the non-
linear material operates at the damage threshold.
The original motivation for the tandem limiter was to
keep a low limiting threshold but increase its dy-
namic range. The motivation for the graded density
limiter ~see Ref. 11! was to ignore the threshold and
low-input operation, look only at the high-energy in-
put, and keep the output for this input below a fixed
value determined by damage to optical components.
In the end, the two viewpoints give identical results
for tandem limiting. In addition, in the limit where
the number of elements in a tandem limiter becomes
large, the difference between a tandem limiter and a
graded density limiter vanishes.

The optimization procedure, here applied to ESA
materials, can be applied to other nonlinear pro-
cesses. This is particularly simple for pure 2-photon
absorption ~2PA! materials governed by dIydz 5
2b~z!I2, where b~z! is the 2PA coefficient, allowed to
vary with molecular concentration along z. Here the
assumption is that the irradiance rather than fluence
is held constant with z. The resultant density dis-

Fig. 13. Comparison between analytically and numerically deter-
mined figures of merit for ~a! graded density and ~b! four-element
tandem limiters, as a function of TL.
tribution is then given by b~z! 5 22xy@~1 1 x2!IdZ0#,
where Id is the damage threshold for the irradiance.
The z dependence is the same as for ESA materials,
showing the close connection between the two linear
absorption processes for excited-state absorption and
the single-step 2PA process. A possible advantage
for a 2PA-based limiter, if the large b’s needed could
be found, would be that it does not require linear
absorption to initiate the nonlinear absorption. The
numerical propagation code is also capable of opti-
mizing limiting devices with use of other nonlinear
mechanisms or a combination of nonlinear mecha-
nisms. Of particular interest is the use of materials
that exhibit 2PA and excited-state absorption from
the 2PA populated state. Such nonlinearities have
been observed in organics as well as in semiconduc-
tors.22

There are several restrictions on the use of the
analysis presented here that must be discussed, both
for the analytical and numerical modeling. For low
fyNo., aberrations in optical systems may alter the
propagation from the diffraction-limited performance
assumed here. Inclusion of aberrations requires
knowledge of the specific imaging system and there-
fore has not been addressed here. We conclude that
this analysis, both analytical and numerical, will only
be valid for diffraction-limited performance that
should be valid for fyNo.’s larger than approximately
fy5. In addition, particularly for liquid-based limit-
ers, thermal lensing may be a significant contributor
to propagation near focus for pulses of the order of or
longer than the acoustic transit time across the beam
waist. Our initial experiments have already shown
that such thermal effects are significant even for
10-ns pulses in tight focusing geometries at high in-
puts. This needs to be incorporated into numerical
models in the future. To do this correctly will be
extremely computer-time intensive as it requires si-
multaneous solutions of the acoustic-wave equation
with the electromagnetic wave equation. We hope
that approximations can be found that will allow fur-
ther refinements in the design of practical limiting
devices.
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