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Application of radial basis functions to shape
description in a dual-element off-axis magnifier
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We previously demonstrated that radial basis functions may be preferred as a descriptor of free-form shape
for a single mirror magnifier when compared to other conventional descriptions such as polynomials [Opt.
Express 16, 1583 (2008)]. A key contribution is the application of radial basis functions to describe and op-
timize the shape of a free-form mirror in a dual-element magnifier with the specific goal of optimizing the
pupil size given a 20° field of view. We demonstrate a 12 mm exit pupil, 20° diagonal full field of view,
15.5 mm eye clearance, 1.5 arc min resolution catadioptric dual-element magnifier design operating across
the photopic visual regime. A second contribution is the explanation of why it is possible to approximate any
optical mirror shape using radial basis functions. © 2008 Optical Society of America

OCIS codes: 220.2740, 220.4830, 050.1970.
The design of compact magnifiers is important in ap-
plications such as mobile information displays. Appli-
cations of the design presented in this Letter are per-
sonal information management, reading or writing
notes and e-mails, watching multimedia content, and
visual overlays assisting the task at hand. The opti-
cal magnifier presented in this Letter is intended to
be coupled monocularly or binocularly with the hu-
man visual system under photopic conditions.

Our approach is to consider a catadioptric dual-
element magnifier design and explore its perfor-
mance and pupil size limits for a fixed field of view.
The catadioptric design comprises a free-form mirror
and an aspheric mirror with a diffractive surface. We
are using the term free-form in reference to surfaces
that are rotationally nonsymmetric. Examples of
free-form surface descriptions include x–y polynomi-
als and Zernike polynomials. In terms of fabrication
feasibility, we have successfully fabricated magnifiers
based on an x–y polynomial surface description using
diamond-turning technology [1]. Furthermore, the
design is an off-axis magnifier, which folds the optical
axis around the human head while providing the nec-
essary clearances. The symmetry around the ray con-
necting the centers of the image, object, pupils, and
vertices of the elements is broken because of the
asymmetries in the free-form mirror classifying this
system as off-axis. In this off-axis design, it is neces-
sary to minimize the fold angle to keep the incidence
angles of the rays on the mirror as small as possible.
Achieving a minimum element count magnifier is a
highly constrained problem, making the shape of the
free-form surface a key variable to optimize.

We demonstrated in our previous work (a) an 8 mm
exit pupil, 20° diagonal full field of view, 15 mm eye
clearance, 1.5 arc min resolution catadioptric dual-
element magnifier design operating across the photo-
pic visual regime [1]; and (b) that radial basis func-
tions may be preferred as a description of free-form
shape when compared to other conventional descrip-

tions such as polynomials [2].
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The two new contributions in this Letter are (a) the
application of a sum of local basis functions for the
description of the free-form mirror in the dual-
element design, with a primary goal being to expand
the pupil size from 8 [1] to 12 mm, while keeping the
same level of modulation transfer function (MTF)
performance; and (b) the explanation of why it is pos-
sible to approximate any optical mirror shape using
radial basis functions.

To date, the majority of aspherical shape descrip-
tions have relied on global polynomials, for example,
Zernike polynomials. The related work, which is di-
rectly connected to the work presented in this Letter,
comes in part from the antenna design community
where Chan et al. [3] analyzed the fit errors of a
known function represented by radial basis func-
tions, and in part from wave propagation theory
where Reynolds decomposed wavefronts into a linear
combination of 1D Gaussians [4]. Some of the theo-
retical foundations of radial basis functions reside
within the literature of neural networks and math-
ematics [5,6]. In summarizing the framework below
we are interested in two related questions in the con-
text of this Letter. First, whether it is possible to ap-
proximate any surface shape using this framework
(i.e., universal approximation property). Second,
what is the criteria that the basis functions need to
satisfy so that the span of linear combinations of
translated basis functions will contain any optical
surface shape?

An optical surface can be represented by a linear
combination of basis functions added to a base conic
as

z�x,y� =
c�x2 + y2�

1 + �1 − �1 + k�c2�x2 + y2�
+ �

n
�nwn. �1�

The only advantage to representing the departure
from a base conic is in the use of current software, in
that the computation of paraxial quantities is based

on the base conic. The base conic is dropped there-
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after. The Wiener approximation theorem [7] states
that the translates, ��x+x0�, of a function ��x� are
dense in L2 (i.e., the set of all measurable functions
that are square-integrable forms—the so-called L2

space) given that �̂�w��0, where

�̂ =
1

�2�
�

−�

�

��x�e−iwxdx, �2�

is the Fourier transform of ��x�. Dense in L2 means
that linear combinations of translated functions will
span L2. A surface of finite extent can be described as
a finite vector and thus resides in L2. The significance
of the Wiener approximation theorem is to ensure
that we can approximate any shape using a linear
combination of basis functions that have nonvanish-
ing Fourier transforms. In the case where the func-
tion ��x� belongs to the set of radial basis functions,
the surface Z can be written as

z�x� = �
n

�n��x − cn��wn, �3�

where x is a vector of x–y locations on the aperture, c
is a vector containing the centers of the radial basis
functions, w is a vector of weights, and � � denotes the
Euclidean norm. Examples of radial basis functions
with nonvanishing Fourier transforms include a
Gaussian, a thin-plate spline, and a multiquadric [8].

In this Letter, we report on our choice of two–
dimensional (2D) Gaussians as the basis functions
denoted as ��x�, where x is a vector. Gaussians pos-
sess several desirable properties from the point of
view of optical design. First, Gaussians are smooth
functions �C�� having derivatives of all orders provid-
ing a desirable property given that optical surfaces
are smooth. In addition, smoothness is desirable from
a fabrication point of view. Second, theoretically,
Gaussians are not local functions; however, practi-
cally, they can be considered local since the value of a
Gaussian outside of 3� is small (�0.011, for a unit
amplitude Gaussian). Third, the Fourier transform of
a Gaussian is a Gaussian that provides an analytical
description for the power spectral density (PSD) of
the surface. Hartman et al. provided a proof of the
universal approximation property of radial basis
function networks with Gaussian basis functions [5].
The proof of Hartman et al. [5] guarantees that there
will be a Gaussian radial basis function network, for
any �, where the difference between the original
function and its approximation is such that �f�x�
− f̂�x� � �� (i.e., arbitrarily well approximation). This
proof answers the question of why it is possible to de-
scribe any mirror shape using Gaussian radial basis
functions.

Figure 1 shows a three-layer radial basis function
network (RBFN) that is used in this Letter to repre-
sent a rotationally nonsymmetric free-form optical
mirror. The first layer consists of the inputs, which
are the x and y locations along the aperture. The in-
puts are connected to the second layer comprising
nonlinear basis functions, each with a unique center.

The linear combinations of these basis functions
evaluated at the distance between the input and the
basis center form the third layer consisting of the
outputs. The vector w contains the weights of the lin-
ear combinations. We can observe, for example, in a
network representation that there is no interdepen-
dence between the basis functions shown in layer 2.
The number of basis functions does not have to equal
the number of inputs and it is preferable to have
fewer basis functions compared to the inputs. The
centers of the radial basis functions need not be coin-
cident with the inputs. Each basis can have its own
width �. A bias parameter can be incorporated into
the second layer. The network in Fig. 1 can be repre-
sented in matrix form as

�w = Z, �4�

where � is an m�n matrix, w is a vector of weights,
and Z is the resulting surface. Each column in the �
matrix contains a nonlinear basis function.

We apply the Gaussian radial basis functions to a
dual-element magnifier comprising a free-form mir-
ror and a lens with a diffractive optical element. The
starting point for the design was the dual-element
magnifier previously reported [1]. We implemented
the radial basis functions as a user-defined type 1
surface in the optical design software Code V as a dy-
namically linked library. Code V interacts with a sur-
face one ray at a time, which reduces the � matrix to
a row; therefore, the sag of each point on the surface
becomes a dot product. We used Code V to optimize
the mirror shape while increasing the pupil from
8 mm in the starting point design to the maximum
achievable pupil as determined by an MTF value of
20% at the Nyquist frequency. The optimizer at-
tempts to minimize a merit function, which in our
case is the root mean square of the transverse ray er-
rors measured from their respective reference wave-
length chief rays. The results presented in this Letter
are for a mirror surface described by a uniformly
spaced grid of 16�16 2D unit variance Gaussian
functions (i.e., 1 mm variance in the x and y direc-
tions over a mirror aperture diameter of �20 mm)
shown in Fig. 2(a). A corollary of the Wiener approxi-
mation theorem is that it holds regardless of the
choice of variances in the case of Gaussian trans-
lates. Optimal selection of the variance value and
grid size will be addressed in future work. Before op-
timization, we set the weights in Eq. (1), wi, to zero.

Fig. 1. (Color online) Three-layer radial basis function
network.
The optimization constraints included the focal
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length, image distortion, and eye clearance. The op-
timization variables included the two base curva-
tures of the lens, the aspheric coefficients up to the
tenth order on the lens surface facing the mirror, the
rotationally symmetric polynomial coefficients up to
the eighth order describing the superimposed diffrac-
tive optical surface, the image plane defocus, eye
clearance, and the 256 weights for the 16�16 2D
Gaussian basis functions. The base curvature for the
final design was �1 m and was not varied during op-
timization. We achieved a pupil size of 12 mm.

Figure 2(a) shows the layout of the dual-element
off-axis catadioptric magnifier where the mirror is
described with Gaussian radial basis functions. A
red, blue, and green microdisplay pixel triplet is
15 �m in size, which yields a Nyquist frequency of
�33 cycles/mm. Thus the polychromatic MTF is plot-
ted up to 35 cycles/mm. Under photopic illumination
the pupil of the human eye is �3 mm, and it is cus-
tomary to conduct the analysis for a 3 mm eye pupil
for both centered and decentered pupils. The poly-
chromatic MTF evaluated for a centered 12 mm pupil
is plotted in Fig. 2(b) for the performance-limiting
fields. In the case of a 3 mm pupil, the lowest MTF
value at the Nyquist frequency is �50%. In the cur-
rent prototype, the microdisplay has a �12 mm diag-
onal and contains 640�480 pixels. In visual space,
the display provides 1.5 arc min resolution as limited
by the pixel spacing on the microdisplay, which ap-
proaches the human visual acuity of 1 arc min set by
a 2.5 �m cone spacing. The maximum distortion oc-

Fig. 2. (Color online) (a) Optical layout of the dual-element
a 12 mm pupil. (c) Distortion grid comparing real and para
mirror surface represented with radial basis functions.
curs at �x=−8° ,y=−6° � in the field and was mea-
sured in simulation to be −1.83%. Figure 2(c) shows
the appearance of a rectilinear grid as viewed
through the magnifier. Figure 2(d) shows an inter-
ferogram of the mirror surface compared to a flat ref-
erence wavefront.

We would like to conclude with the practical sig-
nificance of a 12 mm exit pupil within a distortion-
free design, which allows the construction of a stereo
display without moving parts for interpupillary dis-
tance adjustment, simplifying the optomechanical
design of the display assembly and resulting in a ro-
bust system.
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