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Three-Dimensional Polarization Control in Microscopy
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We propose an approach to optical microscopy that enables full control over the three-dimensional
polarization vector at the focal spot of a high-numerical-aperture lens. The input field to the lens is linearly
polarized and no polarization optics are needed. This technique utilizes the azimuthal spatial degree of
freedom of the input field. We find that only a small set of low-order azimuthal spatial harmonics
contributes to the focused field on axis, and a simple transformation exists between the linear vector space
of these harmonics and the three-dimensional polarization-vector space. Controlling the relative complex
weights of these azimuthal harmonics produces any desired three-dimensional state of polarization.
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Although control over the spatial distribution of an
optical field focused by a lens is a well-established en-
deavor [1,2], full control over the polarization of the fo-
cused field has only recently attracted attention [3]. A
microscope that delivers a tunable 3D state of polarization
to the focus will have tremendous impact on several fun-
damental and applied fields of research. For example,
determining the orientation of the absorption dipole mo-
ment of single molecules is currently an indirect process
whereby image processing is used to deduce the informa-
tion [4]. Probing such systems with a controllable 3D
polarization focal field, however, would enable direct de-
termination of the dipole moment, thereby increasing both
the speed and accuracy of these measurements. Another
example is field-enhanced measurements using metallic
nanoprobes, in both linear and nonlinear imaging modal-
ities [5]. These techniques are of considerable interest
because of the resulting sub-diffraction-limited resolution,
but are complicated by the requirement of precisely align-
ing the apex of the nanoprobe tip with the peak of the local
longitudinally z-polarized focal field. Tuning the 3D state
of polarization in the focal spot would allow precise deliv-
ery of a z-polarized field thereby mitigating this obstacle.
Another avenue that would benefit from such a microscope
is quantum control of chemical-interaction pathways that
have been found to be sensitive to the polarization of
probing femtosecond pulses [6]. Furthermore, a method
for enantiomeric enrichment of chiral molecules has re-
cently been proposed [7], whereby one field component is
used for orientation and the other two are used for chirality
control, but has not hitherto been demonstrated since ap-
proaches to controlling 3D polarization are not available.
Controlling the 2D polarization of a focused optical field
has recently been used to apply a precise torque to trapped
particles [8] and to facilitate the study of DNA molecules
and biological molecular motors [9]. Controlling the 3D
polarization would obviously further the capabilities of
such a scheme.
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In this Letter we present an approach to optical micros-
copy that delivers any desired 3D state of polarization to
the focus of a high-numerical-aperture (high-NA) lens. We
find, surprisingly, that one does not need to change the
input polarization to achieve this. Although the input field
used is linearly polarized, the polarization at the focal spot
is tuned through sculpting the scalar complex field distri-
bution in the azimuthal direction. We find that only certain
low-order azimuthal spatial harmonics are focused onto the
optical axis, and we identify three harmonics each of which
produces a linearly polarized component. The radial dis-
tribution of the input beam, on the other hand, determines
the resolution of the focused field. The formalism we
introduce elucidates the underlying principles that govern
the behavior of focused ‘‘vector beams’’ [3], i.e., beams
that are nonuniformly polarized. Indeed, their interesting
features can be understood in terms of the azimuthal spatial
content of their linearly polarized components. The system
that we consider is the traditional epi-illumination micro-
scope [2].

The fundamental equation, derived by Richards and
Wolf [10], that describes a monochromatic field E at r �
��;  ; z� in the vicinity of the geometric focal point of a
high-NA lens (focal length f, the optical axis is the z axis)
for a linearly polarized input field is

E �r� �
�ik
2�

Z 2�

0
d�

Z �1

0
d�A��;�� sin�p��;��eik�r;

(1)

where k � 2�
� , � and � are the altitude and azimuthal

angles, respectively, with respect to the geometric focal
point and the optical axis, the exponent is given by k � r �
k�z cos�� � sin� cos���  ��, and �1 is the half-cone
angle subtended by the lens at the focal point [see
Fig. 1(a) for a schematic of the geometry]. The unit vector
p��;��, which depends only on the input polarization,
represents the scattering from the input-field polarization
into other polarizations by virtue of the lens curvature, and
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FIG. 1 (color online). (a) Schematic of the focusing geometry
showing the input plane and an observation point in the vicinity
of the focal point. (b),(c) Examples of input-field distributions
designed to produce desired 3D states of polarization at the focal
spot: amplitude and phase distributions of the x-polarized input
field needed to produce (b) 45
 linear polarization in the x-z
plane, and (c) elliptical polarization in the y-z plane.
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for an x-polarized input field pT��;�� � �cos�� �1�
cos��sin2�;��1� cos�� sin� cos�; sin� cos��. For an
immersion lens NA � n sin�1, where n is the index of
refraction of the immersion fluid (in this Letter, n � 1:5).
The input field Eo�r; �� to an aplanatic lens obeying the
Abbe sine condition is related to A��;�� by A��;�� �
Eo�f sin�;��

���������������
j cos�j

p
[1], where � and � thus represent

the radial and azimuthal variables, respectively.
To study the effect of the input-field spatial distribution

on the polarization of the focused spot, we need to explore
the full space of 2D complex functions A��;��, which is
doubly infinite in dimension. However, it is known that
(under very general conditions) any arbitrary distribution
A��;�� may be written in the form of a superposition of
separable products known as the Schmidt decomposition
[11]: A��;�� �

P
j�j�j����j���, where the coefficients

�j are real numbers. In order to obtain analytical insight,
we confine ourselves to investigating a special class of
distributions that have a single term in the Schmidt decom-
position A��;�� � ��������, i.e., fields that are separable
in the radial and azimuthal directions. Although seemingly
a restrictive assumption, all beams that have been consid-
ered heretofore in microscopy belong to a subset of this
class, namely, distributions having circular symmetry.
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Since the support of the function ���� is the interval
�0; 2��, we use a Fourier-series representation,

���� � ���
X1
n�1

fCn cosn�� Sn sinn�g; (2)

where cosn� and sinn� are azimuthal spatial harmonics.
By placing Cn � Sn � 0, n 	 1 (i.e., ���� � ��), we
retrieve the familiar results [1] that assume a circularly
symmetric input-beam distribution. It is this assumption
that masks the rich behavior of the azimuthal harmonics.
Setting z � 0 in Eq. (1) and substituting from Eq. (2), we
obtain the field polarization components in the focal plane.
We find that only a few of these harmonics are useful for
our goal of controlling the 3D state of polarization of the
focused light [12]. In fact only the ��, C1, C2, and S2

harmonics contribute to the focal field on axis (i.e., having
the peak of their contribution at � � 0). All higher-order
harmonics (n > 2), together with the sin� harmonic, do
not contribute to the on-axis field (but give rise to features
lying away from the optical axis), and hence we remove
them from the set of input-field distributions that we study.
Moreover, we find that the on-axis x-polarized component
arises from both the �� andC2 harmonics, the y polarization
from the S2, and the z polarization from the C1. We remove
theC2 harmonic, which is redundant for our task, and study
input fields having the azimuthal distribution

���� � ��� S2 sin2�� C1 cos�: (3)

The functions f1; sin2�; cos�g form an orthogonal basis
(under the usual inner product) for a 3D linear vector
space, and the function ���� is a vector having coordinates
� ��; S2; C1�.

The field components in the focal plane can now be
expressed in the form of a superposition of contributions
from these azimuthal spatial harmonics, separated into two
classes: contributions to the on-axis field (incorporated into
a linear transformation Mon-axis) and contributions that lie
away from the axis (Moff-axis):

Ex��; �
Ey��; �
Ez��; �

0
@

1
A�fMon-axis����Moff-axis��; �g

��
S2

C1

0
B@

1
CA; (4)

where

M on-axis��� �
Ia0 ��� 0 0

0 �1
2I
b
0 ��� 0

0 0 1
2I
c
0���

0
B@

1
CA (5)

and
M off-axis��;  � �
Ib2 ��� cos2 �Ia2 ��� sin2 � 1

2I
b
4 ��� sin4 ifIa1 ��� �

1
2I
b
1 ���g cos � i

2I
b
3 ��� cos3 

Ib2 ��� sin2 1
2I
b
4 ��� cos4 i

2f�I
b
1 ��� sin � Ib3 ��� sin3 g

iIc1��� cos i
2fI

c
1��� sin � Ic3��� sin3 g �1

2I
c
2��� cos2 

0
B@

1
CA: (6)
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FIG. 2 (color online). (a) An example of a 3D state of polar-
ization and its projections on three orthogonal planes. (b) The
amplitude and phase distributions of the input field required to
produce, at the focal spot, the polarization state shown in (a).
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The functions I�
n ���, � � a; b; c, are given by

I�
n ��� �

�ik
2

Z �1

0
d�����H����Jn���k sin��; (7)

where Ha��� � sin��1� cos��, Hb��� � sin��1�
cos��, and Hc��� � 1� cos2�; Jn is the nth order
Bessel function of the first kind. Examining the behavior
of the functions I�

n ��� provides the justification for group-
ing the various terms in the transformations Mon-axis and
Moff-axis. Since J0�x� has its peak at x � 0, while Jn�x�
(n 	 1) peaks away from x � 0, one can verify that Ia0 , Ib0 ,
and Ic0 have their peaks at � � 0, while Ian , Ibn , and Icn (n 	
1) peak away from � � 0. Equations (4) and (5) thus show
that the ��, S2, and C1 harmonics produce on-axis x, y, and
z-polarized components, respectively. Note that Mon-axis is
independent of  , and hence the on-axis contributions of
the three harmonics are circularly symmetric, whereas
their off-axis contributions are not.

In general, moving in the parameter space of azimuthal-
spatial-harmonics coefficients results in tuning the 3D state
of polarization at the focal spot. We need only account for
the ratios of the peak values, Ia0 �0�, I

b
0 �0�, and Ic0�0�, which

depend on the NA of the lens and the radial distribution of
the input field ����. For example, an input field having a
uniform radial distribution and a lens with NA � 1:3 re-
sults in Ib0 �0�=I

a
0 �0� � 0:135 and Ic0�0�=I

a
0 �0� � 0:679.

Hence, in order to produce a 45
-linear polarization in
the x-z plane in this case, the required coefficients for the
azimuthal spatial harmonics are � ��; S2; C1� � �1; 0; 3�Eo,
with Eo an arbitrary constant; the amplitude and phase
distributions of this field are depicted in Fig. 1(b).
Choosing the coefficients �0; 1; 0:34e�i�3=4���Eo for the
input field [see Fig. 1(c)] results in a focused spot having
elliptical polarization in the y-z plane on the optical axis,
despite the fact that the input beam is x polarized.

Although it is known that the most general state of 2D
polarization (for TEM and paraxial waves) is elliptical, it is
not obvious a priori what the most general counterpart for
3D polarization might be, where the tip of the electric field
vector traces a periodic curve in 3D characterized by 4
parameters (2 relative amplitudes and 2 relative phases). It
turns out, however, that the most general 3D state of
polarization is still elliptical, albeit with the plane of the
ellipse tilted in space [12]. An example is given in Fig. 2(a)
where the projected polarization of the field in the focal
spot is elliptical in the x-y plane, circular in the y-z plane,
and linear in the x-z plane. The field components of this
focused field are �Ex; Ey; Ez� / �5; i

���
3
p
;
���
3
p
�, which may be

produced by an x-polarized input field having a uniform
radial distribution and azimuthal coefficients � ��; S2; C1� �
�1; i5:2; 1�Eo focused with an NA � 1:3 lens. The ampli-
tude and phase distributions of the input field required to
produce this 3D polarization state are shown in Fig. 2(b).

The separation of the radial and azimuthal variables
helps shed light on another issue, namely, that the resolu-
tion of the on-axis focal spot is not determined by the
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azimuthal distribution of the input field, only by its radial
dependence ���� through the functions Ian , Ibn , and Icn.
Thus, after choosing the coefficients of the azimuthal
spatial harmonics to obtain the required 3D state of polar-
ization, one then designs the radial distribution ���� to
specify the focal spot distribution [13].

In order to appreciate the usefulness of vector beams at
the input to the lens for control of the polarization at the
focal point, we consider the conversion efficiencies from
these three azimuthal harmonics to the three focused po-
larization components. For an x-polarized input field hav-
ing a uniform radial distribution (NA � 1:3), the �� har-
monic results in 70.2% of the input power transferred to the
on-axis x component, while the rest of the power is trans-
ferred to the off-axis x, y, and z field components. The C1

harmonic transfers 20.2% of the power to on-axis z com-
ponent, while 10.1% is in the off-axis z component. As ex-
pected from the Ib0 �0�=I

a
0 �0� ratio given above, the conver-

sion is lowest from the S1 harmonic to the y component
(only 1%). There are two approaches to the optimization of
these conversion ratios. The first is through the design of
the input-field radial spatial distribution and the lens NA
[12], which can lead to a considerable alteration of these
conversion efficiencies. The second approach is the use of
a vector beam in lieu of a scalar one, especially in order to
produce a y-polarized component efficiently, as we pro-
ceed to show.

We generalize our approach by including a y-polarized
component in the input field, resulting in a vector beam.
Revisiting Eq. (1), the polarization vector p��;�� for a
y-polarized input field is pT��;�� � ���1� cos���
sin� cos�; cos�� �1� cos��cos2�; sin� sin��, and the
azimuthal distribution relevant to our goal is

�y��� � Sy2 sin2�� ��y � Sy1 sin�; (8)

with these y-polarized harmonics producing on-axis polar-
ization components in accordance to �Sy2;

��y; Sy1� )
�Ex; Ey; Ez�. To produce a 3D linearly polarized beam
having Ex � Ey � Ez, one can use an input field having
the following azimuthal vector distribution:
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FIG. 3. (a) Intensity distributions for on-axis, off-axis, and
total components of the x, y, and z polarizations in the focal
plane (x-y) that correspond to an on-axis field having Ex � Ey �
Ez (see text for details). The scale bars refer to the last column
normalized with respect to the peak of the total intensity distri-
bution. All plots have a radius of 1 �m. (b) Intensity distribu-
tions for on-axis, off-axis, and total components in the y-z plane
for the total polarization. The dimensions of each square are
2 �m in the y direction, as in (a), and 4 �m in the z direction.
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� ��� � f ��x � Cx1 cos�gx̂� f ��y � Sy1 sin�gŷ; (9)

with ��x� ��y�
Ic0�0�
Ia0 �0�

Eo, and Cx1�S
y
1�2Eo. Placing ��x �

��y � 0 in Eq. (8) removes the focused x and y compo-
nents, and results in a z-polarized focal spot, and the
special case of Cx1 � Sy1 corresponds to a radially polarized
input beam (and, hence, a circularly symmetric focal field).
Furthermore, the off-axis z components produced by the
Cx1 and Sy1 harmonics cancel out, resulting in a circularly
symmetric on-axis z-polarized focal spot. An input beam
having a uniform radial distribution (NA � 1:3) would
result in 44% of the input power focused to the on-axis z
polarization, while a radial distribution of the form
r sin�0:5 r

f�, for example, raises this percentage to 63%.
We present a specific example of the application of the

principles outlined in this Letter in Fig. 3, using NA � 1:3,
� � 800 nm, and f � 1:5 mm. The azimuthal dependence
of the input beam was chosen to produce an on-axis
focused field having Ex � Ey � Ez [Eq. (9), Cx1 � Sy1],
and the radial dependence of the input field has the form
r cos�4:5 r

f� (resulting in
Ic0�0�
Ia0 �0�
� 0:8613). It is clear that the

off-axis components [second row in Fig. 3(a)] are weaker
than the on-axis components [first row in Fig. 3(a)], and
may be further discriminated against by placing a pinhole
at the detector plane for spatial filtering. The difference
between the on-axis and off-axis contributions are further
highlighted by examining the field away from the focal
plane. In Fig. 3(b) we plot the on- and off-axis components
in the y-z plane, and it is clear that the off-axis components
contribute to the field away from the optical axis.

Although this technique was couched in the terms of the
electric field vector, it can alternatively be presented in
terms of the focused magnetic field vector [12]. Further-
more, a similar approach can be formulated for controlling
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the 3D Poynting vector in the focal spot. Finally, in contrast
to a recent proposal for 3D polarization control [14], our
technique does not require the use of a femtosecond light
source nor the proximity of a metallic nanoprobe.

In conclusion, we have presented an approach to high-
NA lens focusing that delivers prescribed 3D states of
polarization to the focal spot. We analyze input fields
that are separable in the radial and azimuthal variables,
and find that only the low-order azimuthal spatial harmon-
ics contribute to the on-axis field. We identify the harmon-
ics that contribute to each on-axis polarization component
individually. Therefore, by controlling the azimuthal-
harmonic content of the input field, one may exercise full
control over the focused 3D state of polarization.
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