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ABSTRACT 
 
In this paper, we summarize our initial experiences in designing head-worn displays with free-form optical surfaces. 
Typical optical surfaces implemented in raytrace codes today are functions mapping two dimensional vectors to real 
numbers. The majority of optical designs to date have relied on conic sections and polynomials as the functions of choice. 
The choice of conic sections is justified since conic sections are stigmatic surfaces under certain imaging geometries. 
The choice of polynomials from the point of view of surface description can be challenged. The advantage of using 
polynomials is that the wavefront aberration function is typically expanded in polynomials. Therefore, a polynomial 
surface description may link a designer’s understanding of wavefront aberrations and the surface description. The 
limitations of using multivariate polynomials are described by a theorem due to Mairhuber and Curtis from 
approximation theory. In our recent work, we proposed and applied radial basis functions to represent optical surfaces as 
an alternative to multivariate polynomials. We compare the polynomial descriptions to radial basis functions using the 
MTF criteria. The benefits of using radial basis functions for surface description are summarized in the context of 
specific magnifier systems, i.e., head-worn displays. They include, for example, the performance increase measured by 
the MTF, or the ability to increase the field of view or pupil size. Full-field displays are used for node placement within 
the field of view for the dual-element head-worn display. 
 
Keywords: Optical system design, alternative surface representation, radial basis functions, head-worn displays 

1. INTRODUCTION TO SURFACE REPRESENTATIONS IN OPTICAL DESIGN 

The case of stigmatic imaging can be covered using conic sections for certain imaging geometries. A parabola will image 
an object at infinity to its focal point perfectly within the geometrical optics approximation. An ellipse will image 
perfectly, within a geometrical optics approximation, an object placed at one of its foci to the other focus. Two aspheric 
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surfaces can be designed for stigmatic imaging with the sine condition imposed by integrating the Wasserman-Wolf 
differential equations, which generate the aspheric surface profiles1. Wasserman-Wolf is a non-iterative technique 
generating a pair of differential equations for stigmatic imaging of a point object. Coma correction is obtained by 
satisfying the sine condition. Essentially, by rewriting a vectorial version of Snell’s law at each aspheric interface, 
Wasserman-Wolf generates a slope field representing the tangents on each point of each aspheric surface, the slope field 
is integrated using a Runge-Kutta or Adams method to get the surface profile. The original paper deals with the case of 
rotationally symmetric aspheres. David Knapp's thesis work generalized the Wasserman-Wolf technique removing the 
axial symmetry assumption in the original work2.  
 
In the case of imaging extended objects, the exact functional form of the optical surfaces are usually unknown a priori. 
Therefore, often times an approximation to a function representing the ideal surface is used, where the approximation is 
represented as a linear combination of basis functions  
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where the nφ  represent the basis functions and the wn  represent the weights. We use the term approximation to mean 
that we are given a set of data sites {x1,x2,..xn} and a set of scalar data values {z1,z2,..,zn}, we are looking for the function 
s that is approximately equal to the data values at each data site, i.e., s(xi)≈zi.  
 
We will now briefly discuss the three standard choices for the basis functions ( nφ ), namely polynomials, trigonometric 
functions and rational functions.  

1. 1 POLYNOMIALS AND PIECEWISE POLYNOMIALS AS THE CHOICE OF BASIS 

The standard way to describe aspheres in imaging optics has been to add polynomials to a base conic as  
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where c represents the curvature, r is 22 yx + , and k is the conic constant.  
 
It is known that in 1D there will be a unique polynomial of degree N-1 that will interpolate N distinct points. 
Interpolation using polynomials with equally spaced points suffers from the Runge phenomenon. The Runge 
phenomenon can be observed by considering a set of equally spaced points on the interval [-1,1] and fitting a polynomial 

to the Runge function 2251
1

x+
. Increasing the polynomial order does not yield better approximations with a uniform 

spacing of the interpolation points. In fact, this introduces huge oscillations near the end points of the interval. Changing 
the point distribution from uniformly spaced to Chebyshev points (i.e., points equally spaced on a circle and projected to 
an axis) will improve the fit to the Runge function. Increasing the polynomial order, with a Chebyshev point distribution, 
helps achieving better fits in the case of the Runge function. The difficulty of choosing a basis in two or higher 
dimensions is stated by the Mairhuber-Curtis fact, which says that a multivariate basis, polynomial or otherwise, with a 
finite number of basis functions and a set of distinct interpolation points, may not lead to an invertible interpolation 
matrix, if the basis functions are independent of the data. The formal definition of the Mairhuber-Curtis fact is given by 
Fasshauer3.  
 
An alternative approach to using high order polynomials with a Chebyshev point distribution is to break up the domain 
into pieces. Low order polynomials, for example cubics, can be used in each sub-interval to achieve better 
approximations to the target function, and this approach is known as the spline approach. There are several kinds of 
splines (Bezier splines, B-splines, non-uniform rational B-splines (NURBS), for example). Stacy used cubic splines 
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within the ACCOS-V code as general surfaces in the design of unobscured reflective optical systems4. The basic aim in 
Stacy's work was to compare spline based designs to the classically designed Galileo narrow angle camera. Stacy found 
that the cubic spline designs allowed wider field angles and higher transmission than the Galileo with lower but still 
acceptable image quality. Chase did some initial work on the application of non-rational Bezier curves to the description 
of rotationally symmetric asphere design. Chase compared the spherical aberration correction of a non-rational Bezier 
curve against an even and odd polynomial in a Cassegrain system5. Davenport investigated third degree non-rational 
Bezier splines (section 3.3 and appendix A of his thesis detail the interpolation process) as a tool for creating an 
incoherent uniform circular illuminance distribution on a target plane6. 
 
Greg Forbes recently proposed a sum of Jacobi polynomials to represent axisymmetrical aspheres7. Forbes emphasizes 
the use of Jacobi polynomials, which are global and orthogonal. Forbes' representation has the property that the mean 
square slope of the normal departure from a best-fit sphere is related to the sum of squares of individual coefficients of 
Jacobi polynomials. This property facilitates the enforcement of fabrication constraints. 
Scott Lerner introduced a novel explicit superconic surface8. Lerner also explored parametrically defined optical surfaces 
and implicitly defined optical surfaces. A truncated parametric Taylor surface and an xyz-polynomial were shown to be 
general surface descriptions. Representations were compared for ray tracing speed, optimization complexity, the ability 
to correct highly aspheric wavefronts, and the ability to represent steeply sloped surfaces. Specifically, Table 5.2 in 
Lerner8 lists a superconic, explicit superconic, truncated parametric Taylor, and an xyz polynomial as the surfaces that 
were compared. 

1. 2 RATIONAL FUNCTIONS AS THE CHOICE OF BASIS 

The most flexible splines are the non-uniform rational B-splines (NURBS). A p-th degree NURBS curve is fully defined 
using control points, knots, and weights, see Piegl9 for the mathematical formula. The NURBS curve is essentially a 
rational basis. The NURBS curve can be extended to two dimensions using the ideas of a tensor-product or triangulation 
over a domain. The set of control points in two dimensions is called a control mesh. Generation of these meshes is a 
cumbersome task in three dimensions and higher.  

1. 3 TRIGONOMETRIC FUNCTIONS AS THE CHOICE OF BASIS 

Michael Rodgers considered alternative aspheric representations to the standard method of adding a power series to a 
base conic10. Rodgers' thesis discussed nonpolynomial basis functions added to a conic in order to yield perfect axial 
imagery. Examples of nonstandard aspheric functions are given in Table 2.1 of Rodgers' thesis to be hyperbolic cosine, 
logarithm, secant, inverse sine, tangent and a Gaussian. Convergence properties of such alternative representations were 
studied. Rodgers' dissertation considered rotationally symmetric systems only. Rodgers' thesis studied global and 
compact representations for optical surfaces. Rodgers' thesis includes noniterative as well as iterative approaches to 
generating aspheric profiles. The noniterative surface generation technique was based on Wasserman-Wolf. Imaging and 
energy redistribution examples of two, three, and four mirror reflective designs were given. These examples illustrated 
that basis functions like the hyperbolic cosine, logarithm, and the secant can represent a surface shape significantly better 
than the same number of power series terms. Lerner studied the possibility of a Fourier series based on cosine functions 
for rotationally symmetric surfaces8. Lerner found that a Fourier series is not suitable as an optical surface and this was 
illustrated in page 39 of his thesis with a plano-convex lens having a single field. Lerner shows designs with 10, 20, 60, 
100, 200 terms in the Fourier series and comments that the residual aberration is too large to be acceptable.  

2. RADIAL BASIS FUNCTION APPROXIMATION  

Our emphasis in this paper is on a local representation of shape that is suitable for the optimization of rotationally non-
symmetric free-form systems as well as rotationally symmetric systems. We are using the term free-form in reference to 
surfaces that are rotationally non-symmetric. Advances in fabrication technology (e.g., diamond turning) are making the 
design and use of free-form optical surfaces feasible in imaging and non-imaging optics. Benefits of free-form surfaces 
have been summarized by Rodgers and Thompson as ``greater control of the location of nodes in the aberration field, and 
potentially the larger number of nodes in the field"11. The potential of radial basis functions as a surface representation 
has been recognized by A.K. Chan et al.12, however such representation was not proposed or investigated in solving lens 
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design optimization problems. Greynolds used a linear combination of 1-dimensional Gaussians to represent and 
propagate wavefronts13.  
 
In the case where the function φ belongs to the set of radial basis functions, the surface s can be written as 

( ) .  ))( ∑ −=
n

nns wcxx φ      (3) 

where x is an evaluation point, cn are the centers of the basis functions, and wn are the weight vectors. The translated 
basis functions in equation (3) take the data into account by shifting the basis functions to the data sites (and thus there 
are no problems with the implications of the Mairhuber-Curtis theorem). This choice of basis does not require a mesh to 
generate a surface. The basis centers are placed within a domain ,1, ≥⊂Ω sRs and a discrete surface is approximated at 
the points of interest (i.e., evaluation points). The placement of the basis centers can be uniform, according to Chebyshev 
points, or even completely random. In our numerical experiments .  denotes the 2-norm. The impact of different p-
norms in our application, specifically, the p=1 and infinity norms, will be studied in future work. Composing the basis 
functions with the 2-norm makes these basis functions spherically radial.  
 
Using the approximation condition s(xi)≈zi ,where i=1,2,…,m, at m data points and using n basis functions for s(x) in 
equation (3), we can express the approximation at each point xi as a dot product. It is possible to express the collection of 
m products with a matrix-vector multiplication and arrive at the following m by n linear system 
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whereΦ is an mxn matrix, w is a length n vector of weights, and Z is the resulting discrete surface evaluated at the m 
evaluation points. Each column in theΦ matrix corresponds to a nonlinear basis function, and Φ  may be written as 
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Therefore, the question now becomes the conditions on the basic function φ , translates of which generate the Φ matrix. 
A popular point of view is to assume that Φ  is positive definite (and m=n). In this case, the connection between the 
choice ofφ and a desired positive definite interpolation matrix Φ is provided by the Bochner theorem3. The most 
important practical implication of the Bochner theorem is that the translated versions of a positive definite function 
φ indeed generate a positive definite Φ matrix.  A function is positive definite if it has a nonvanishing Fourier 

transform. A matrix A is positive definite if 0≥uuT A for all sRu∈ . Positive definite matrices have positive 
eigenvalues, and therefore positive definite matrices are invertible. The theory developed by Micchelli, using the results 
of Bochner, covers the case where the basis centers and the data points coincide (i.e, symmetric and positive definite 
interpolation matrix Φ ). There is not much theory available for the case when the data sites and the centers do not 
coincide3. The designs discussed in Section 3.4 and Section 3.5 did not require a user-defined error function which 
would trace rays only at the basis centers during optimization, which means that the basis centers and the data points in 
those experiments are not coincident.   
 
Examples of positive definite radial basis functions include the Gaussian, and the inverse multiquadric (i.e., β>0 in Table 
1). Thin-plate splines are conditionally positive definite. The mathematical expressions of these functions are given in 
Table 1.  
 
Given a particular surface Z, choice of a radial basis function, choice of basis centers and data points, and a shape factor 
in the case of a Gaussian or a multiquadric, the weights can  be found using least squares by 
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Figure 1 illustrates the approximation of a sphere using a linear combination of Gaussian radial basis functions. 
 
 

 
Fig. 1. Illustration of a linear combination of Gaussian basis functions approximating a sphere. Original sphere and the 
weighted basis functions are shown. The 2D Gaussians are spaced uniformly with means centered on a 6x6 grid. Each 

2D Gaussian has a variance of unity along the x and y dimensions. The weighted Gaussian basis functions shown 
underneath the sphere are found through least squares. 

We would like to note that except for the thin-plate spline, the Gaussian and the multiquadric functions contain a shape 

factor ε. In the case of the Gaussian, the shape factor is related to the variance as 2
2

2
1
σ

ε = . The impact of the choice of 

ε on the accuracy of function approximation, in the case of coincident basis centers and data points, is visualized in Fig. 
2. Figure 2 (a) is a plot of a parabolic function. A 6x6 uniformly distributed Gaussian RBF approximation of a 
paraboloid with ε=0.1 is shown in Fig. 2(b). The RMS error is on the order of 10-9. Therefore, a plot of it is not shown. A 
6x6 uniformly distributed Gaussian RBF approximation with ε=1 is shown in Fig. 2(c). The RMS error is on the order of 
10-3 and is plotted in Fig. 2(d). A 6x6 uniformly distributed Gaussian RBF approximation with ε=10 is shown in Fig. 
2(e). The RMS error is on the order of 10-2 and is plotted in Fig. 2(f). We observe that when the basis functions become 
“too peaky”, the quality of the approximation is reduced.  
A few natural model choices that come up in the application of radial basis functions to optical surfaces include the 
choice of the basic function, the number of basis functions to use in a particular problem, the spatial distribution of the 
basis centers, and the choice of the shape factor. To our knowledge, there is no theoretical guidance on choosing the 
number of basis functions for a particular optical design problem. The minimum number of basis functions that provides 
an adequate approximation is found through experiments and is application specific. In terms of the distribution of points, 
Chebyshev distribution of points is likely to be more desirable over a uniform distribution of points.  

Table 1. Definition of the Gaussian, thin-plate spline, and the multiquadric radial basis functions 

Gaussian Thin-plate spline Multiquadric 
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Fig. 2 Impact of the shape factor on the accuracy of the approximation (a) Plot of the function (paraboloid) being 
approximated (b) Plot of the 6x6 uniformly distributed Gaussian RBF approximation with ε=0.1 (c) Plot of the 6x6 

uniformly distributed Gaussian RBF approximation with ε=1 (d) Plot of the error | fapprox.– f | (e) Plot of the 6x6 
uniformly distributed Gaussian RBF approximation with ε=10 (f) Plot of the error | fapprox.–  f | 

3. OPTICAL SYSTEM DESIGN EXAMPLES: HEAD-WORN DISPLAYS 

A variety of visual displays, both on-body and in the environment, are being developed to support mobile augmented 
reality (AR) applications. A review of displays in the environment is provided in [12]. Despite several challenges, head-
worn displays (HWD) are becoming a viable visual display option for mobile augmented reality14. There is a general 
demand expressed by several AR users, developers and researchers that a mobile AR display should look like eyeglasses 
as much as possible. A top-down requirement such as the eyeglass form-factor restricts the volume of the optics, 
electronics and the mechanics assembly to the order of 20 to 30 cm3 per eye. This volume is estimated from a laser 
scanned CAD model of a human head15 and close fitting sunglasses. The whole display assembly can be broken down 
into sub-assemblies and certain sub-assemblies can be placed elsewhere on the human body. As an example, fiber 
bundles have been used to decouple the drive electronics and the image sources from the optical sub-assembly coupling 
to the human visual system. However, the optical sub-assembly coupling to the human eye must reside approximately 
within this volume. Such a volume constrains the geometry and the number of elements of the optics.  

 
In general, there are two design forms that can be pursued for the optical design of eyeglass displays: pupil forming and 
non-pupil forming designs. Pupil forming designs include eyepieces that magnify an intermediary image while imaging 
the pupil of the optical system forming the exit pupil. Other examples of pupil forming designs include projection optics, 
and retinal scanning displays that can optically be considered as scanning projection systems. Non-pupil forming designs 
include magnifiers. Once a microdisplay suitable for the task is chosen, the role of the optical system is to relay a 
magnified virtual image of the microdisplay to the human visual system. The gain in apparent size is typically quantified 
by comparing the image seen through the optical system to the image seen with the unaided or naked eye. For the 
unaided human eye, the apparent size of a microdisplay can be increased by bringing the microdisplay closer to the eye 
up to the accommodation limit. Compact and lightweight optical systems are necessary in many applications, especially 
when the users are mobile. Compactness of the microdisplay necessitates a magnification requirement since the 
microdisplay typically is too small to view with the unaided eye. In HWDs, the virtual image is often placed within 
about 1m for near-field tasks such as medical, maintenance and repair, or beyond 1m for far-field tasks16,17. The pupil of 
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the observer becomes the limiting aperture and is the exit pupil in a magnifier. Magnifiers are typically designed to 
accommodate a range of eye movements such as translations and rotations while observing the virtual image formed by 
the magnifier.  

 
In section 3.1, we will briefly summarize related work in eyeglass displays. In section 3.2, we will summarize our dual-
element system using a free-form optical mirror and lens with a diffractive optical element. In section 3.3, we will 
summarize our single mirror solution. Both the single and dual-element systems presented in sections 3.2 and 3.3 have 
been fabricated and both systems have relied on x-y polynomials to describe the free-form optical mirrors. In section 3.4, 
we provide one approach to addressing the question of  “what is the optimal mirror shape in a magnifier with 15mm eye 
clearance, a 3mm pupil and a 24 degree full field-of-view?”. 

3. 1 BRIEF SURVEY OF RELATED WORK 

Upton, in the mid 60’s and 70’s, integrated display systems within eyeglasses for applications in speech interpretation 
assistance. Initial prototypes were based on energization of small lights or lamps mounted directly on the surface of an 
eyeglass lens18.  A later prototype from around the early 70’s embodying small reflecting mirrors on the lens of the 
eyeglasses and moving the direct mounting of the light sources away from the lens resulted in being less noticeable and 
less obstructive to the wearer’s vision19. In the late 80’s, Bettinger developed a spectacle mounted display in which the 
spherical reflective surface of a partially transparent eyeglass lens was employed20. There was work in the late 90’s 
embedding the mirrors into the eyeglasses lens by Spitzer and colleagues21. Spitzer et al. decided that based on the ~20x 
practical magnification of a single lens and their image goals of 28x21cm at 60cm, they would need a 0.7” display, 
which they concluded would be too large for concealment in eyeglasses. Therefore, they concentrated on a relay system 
built into the eyeglasses’ frame to move the microdisplay away from the eyeglasses in their initial prototype. They have 
demonstrated a system with an overall thickness of the eyeglasses lens of less than 6.5mm, which fits in the commercial 
eyeglass frame. Holographic optical elements (HOE) were applied to the eyeglass-based display problem. An HWD with 
a 3mm exit pupil, 27x10 degrees of field of view, operating at the single wavelength of 532nm was designed based on a 
HOE and fabricated22. Sony recently proposed a 3mm thick lightpipe with two in and out coupling hologram elements as 
an approach to achieving a full-color display with a 20 degree field of view (pupil size was not reported) by using 
volume holograms23. Color crosstalk is eliminated by separating the red and blue hologram layers from the green 
hologram layer. Color uniformity is improved by tilting the microdisplay and using a color correction transform in the 
drive electronics. A second alternative in the design of compact optical magnifiers is to use a laser source and to 
temporally scan the image onto the retina. However, as can be explained by the Lagrange invariant, the exit pupil of such 
a scanner is small and pupil expansion mechanisms are required. Pupil expanders add additional complexity and size to 
the whole system, which deviate from the goal of compact magnifiers with high image quality. 

3. 2 DUAL-ELEMENT OFF-AXIS HEAD-WORN DISPLAY 

The optical layout is shown in Fig 3(a) and consists of an 8 mm exit pupil, a free-form mirror, a refractive and diffractive 
lens (referred to as a hybrid lens in Fig. 3 (a)), a flat fold mirror and a transmissive microdisplay. The system shown in 
Fig. 3 (a) is designed with a 20° diagonal field of view and a 15mm eye clearance. The line connecting the vertex and the 
center of curvature of the freeform mirror is tilted at 34 degrees in the x-z plane (e.g., “top view”) with respect to the 
optical axis of the human eye. We found this angle to be the minimum tilt angle that can provide the necessary 
clearances around a human head based on a database of publicly available CAD models of human heads. Typically, in an 
HWD, the pupil of the human eye is the aperture stop of the system. Therefore, the aperture stop and the exit pupil 
coincide in this system. A user would place their pupil at the exit pupil to view the computer generated images. Even 
though magnifiers do not form exit pupils, it is customary to optimize these systems across a finite pupil size that is 
larger than that of the human eye to accommodate natural eye movements. Since under photopic illumination the pupil of 
the human eye is about 3mm, it is customary to conduct the analysis for a 3 mm eye pupil for both centered and 
decentered pupils.   
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Fig. 3. Dual element magnifier: (a) Optical layout; (b) Gen-II dual-element eyeglass display; (c) Modulation transfer 
function  plotted out to 35 cycles/mm (evaluated with a 3mm pupil);    (d) Distortion grid. 

The polychromatic MTF evaluated for a centered 3mm pupil is plotted in Fig.3(c) for the on-axis field and the 
performance limiting fields. The performance of the MTF across decentered pupils up to 6 mm in various directions 
displayed similar performance to the centered pupil MTF. A red, blue, and green microdisplay pixel triplet is 14.1 µm in 
size, which yields a Nyquist frequency of ~35 cycles/mm. Thus the polychromatic MTF was plotted up to 35 cycles/mm. 
In reading the MTF plots, one desires all curves (each one corresponding to a selected design field point), to the extent 
possible, to be overlapped and provide ~20% contrast (i.e., modulation transfer function value) at the cut-off spatial 
frequency set by the microdisplay. Cutting off the spatial frequency of the microdisplay prevents pixelization effects that 
are visually resolvable.  In the current prototype, the microdisplay has a 0.44” diagonal and contains 640x480 pixels. In 
visual space, the display provides 1.5 arcminutes resolution as limited by the pixel spacing on the microdisplay. It may 
be noted that a calculation of Nyquist frequency, given a 2.5µm cone spacing of the human visual system, yields a 1 
arcminute resolution limit for the human visual system. The magnitude of maximum distortion occurs at (x=8.2°, y=-
6.2°) in the field and was measured in simulation to be -3.8%. Fig.3(d) shows a distortion plot with the real rays 
compared against the paraxial rays. The Gen-II system is shown  in Fig.3(b). The weight of the Gen-II system is 124 
grams. The Gen-I system was described in our earlier work24. 

3. 3 SINGLE-ELEMENT OFF-AXIS HEAD-WORN DISPLAY 

An ideal solution for an HWD would be a single surface mirror design. A single surface mirror does not have dispersion. 
Therefore, color correction is not required. A single surface mirror can be made see-through by machining the 
appropriate surface shape on the opposite side to form a zero power shell. From a system perspective, the system weight 
is reduced to a minimum.  
 
We found a solution to the single mirror magnifier problem using an x-y polynomial surface. The layout of the single 
mirror magnifier is shown in Fig. 4(a). The system shown in Fig. 4(a) has a 24° degree diagonal full field-of-view with 
an eye clearance of about 15mm and a 3mm exit pupil. Increasing the exit pupil size is a challenge in this configuration. 
The system is full-color operating across the visible regime (450-650nm). The mirror has a tilt angle of ~15° in the x-z 
plane with respect to the optical axis of the human eye. The fabricated mirror prototype is shown in Fig. 4(b) and it is 
currently being integrated into a pair of sunglasses. The modulation transfer function is plotted out to 35 cycles/mm and 
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I
shown in Fig.4(c). The Nyquist frequency of the modulation transfer function plot is based on a 15µm pixel spacing. 
This system has fewer degrees of freedom compared to the system in Fig. 4(a) which explains the different modulation 
transfer function curves. The distortion grid is shown in Fig. 4(d) and the system has a maximum distortion of about 
2.5%.  
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Fig. 4. Single element magnifier: (a) Optical layout; (b) Fabricated mirror prototype with a 13mm diameter; (c) 
Modulation transfer function plotted out to 35 cycles/mm (evaluated with a 3mm pupil); (d) Distortion grid. 

3. 4 APPLICATION OF RADIAL BASIS FUNCTIONS TO FREE-FORM SURFACE DESCRIPTION 

The single element design and prototype shown in Fig. 4 serves as an ideal testbed for the following question: what is the 
optimal surface shape in the case of a single element magnifier for our specific problem? Physically, the optical design 
problem in the case of a single element magnifier reduces to adjusting surface normals of the mirror at each point along 
the mirror surface. Therefore a notion of optimality has to enter the picture. Each point along the mirror surface receives 
rays from multiple fields, which means that a single position for the surface normal will not exactly satisfy the demands 
for each field. Therefore, the problem turns into an optimization problem where we minimize the error for each field and 
balance the demands from each individual field. The case of a single field can be solved by integrating differential 
equations of Wasserman-Wolf. Mathematically, we think of an optical mirror surface as a function. We choose to 
approximate the function describing the optical mirror using radial basis functions.  
 
Our implementation and initial experimentation have been with the Gaussian radial basis function listed in Table 1. 
Gaussians possess several desirable properties from the point of view of optical design. First, Gaussians are smooth 
functions ( ∞C ) having derivatives of all orders providing a desirable property given that optical surfaces are smooth. In 
addition, smoothness is desirable from a fabrication point of view. Second, theoretically, Gaussians are not local 
functions. However, practically they can be considered local since the value of a Gaussian outside of 3σ is small (<0.011, 
for a unit amplitude Gaussian). Third, the Fourier transform of a Gaussian is a Gaussian, which provides an analytical 
description for the power spectral density (PSD) of the surface. 
 
We will next describe the optimization procedure. The first step is to set the grid size. Optimal setting of the grid size for 
a particular problem requires further study and has not been considered yet. For the magnifier example in Fig. 5, we have 
found a 17x17 grid to perform well when compared against relatively general surface representations such as x-y 
polynomials or Zernike polynomials. The second step was to initialize the starting point. Our raytrace software requires a 
base sphere in order to perform paraxial image calculations. Therefore, we add a base conic to equation (1). 
 
Given a number of basis functions, we divided the aperture into numx  pieces in the x-dimension and numy  pieces in the 
y-dimension. The number of columns in the Φ matrix was set by the product of numx  and numy . The number of rows in 
the Φ  matrix is set by the number of evaluations points. We make a rectangular aperture assumption in this case. 
However, the representation of the surface as a linear combination of basis functions accommodates any aperture shape 
since the Gaussians can be moved spatially using their means, and placed anywhere within the aperture. We divided the 
aperture diameter into numx pieces in the x-dimension and uniformly placed each x-mean 1/ numx  apart from each other. 
Similarly, we divided the aperture into  numy  pieces in the y-dimension and placed each y-mean 1/ numy  apart from each 
other. Chebyshev point distribution is known to help reduce errors near the boundary3. However, we have not 
experimented extensively with this within the Code V implementation as of now. Preliminary experimentation also 
suggests that solving the problem on a slightly larger domain will help with errors near the problem boundary. The 
variances in the covariance matrix were set to 1.  
 
Unlike the function fitting example given in Fig. 1 where we have a surface S to fit, in the context of the optical design 
problem, the surface S is unknown a priori, and the goal of an iterative optimizer is to adjust the weights w in equation 
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(2) with the goal of reaching a minimum of the merit function given a starting point. We used the transverse error in the 
image plane, which is the sum of squares of the deviations of the rays from their respective reference wavelength chief 
rays, as our merit function. The weight vector is found using the built-in damped least squares optimizer in Code V.  
 
A user defined surface type 1 has been implemented in C/C++ for Code V as a dynamically linked library to test the 
surface representation. A full description of user defined type 1 surfaces is provided in the Code V documentation. Code 
V interacts with the surface one point at a time meaning that Code V will ask for the sag of the surface for a specific x, y 
and z point. Therefore, theΦ  matrix reduces to a row vector and the sag calculation becomes a dot product operation 
with the weights. 
 
We designed four systems to address the question of optimal shape for the off-axis magnifier problem. A 10th order 
anamorphic sphere, an x-y polynomial, a 10th order Zernike polynomial and a linear combination of Gaussians were 
compared. Each system under comparison had a >15mm eye clearance, 3mm pupil, 24 degree diagonal full field of view 
(9.6° x semi-field and 7.2° y semi-field), and a ~15° mirror tilt angle. Each system was optimized with the minimum set 
of constraints such as the effective focal length (14.25mm), real ray based distortion constraints, and the field weights. 
Each system had 17 field points defined.  The variables in each system included the surface coefficients, image plane 
defocus and tilt. The distance from the pupil to the mirror vertex was 16.9mm. The distance from the vertex of the mirror 
to the image plane was kept around 13mm since it is undesirable to have a microdisplay physically close to a human eye. 
The image plane has a rectangular aperture with a size of 4.8mm by 3.6mm in the x and y dimensions, respectively. The 
image plane needs to stay clear out of the ray path between the pupil and the mirror. 140 rays across the pupil were 
traced in each system during optimization. Figure 5(a) shows the layout of the optimal off-axis magnifier. The 
modulation transfer function (MTF), evaluated at λ =550nm (no dispersion), for the optimized linear combination of 
Gaussians surface is shown in Fig. 5(b). The interferogram of the surface with the base sphere subtracted is shown in 
Fig. 5(c). Distortion characteristics exhibit similar behavior with each design having a maximum of about 3 to 4%.  
Table 2 shows a comparison of the surface representation proposed and implemented in this paper against an anamorphic 
asphere, a Zernike polynomial up to and including 10th order, an x-y polynomial up to and including 10th order (good 
balancing achieved with order 5) with the maximum distortion and the average MTF across 17 field points as the 
comparison metrics. The sum of local basis representation proposed in this paper achieves the highest MTF performance 
averaged across 17 field points by 18.5% in the field with an acceptable level of maximum distortion, among the 
functions that were compared 25.  
 
Table 2. Comparison of the transverse error function value and 17 average tangential and sagittal MTF values between 
an anamorphic asphere, an x-y polynomial, a Zernike polynomial, and a linear combination of Gaussians surface type. 
 

Surface Type Average MTF Max. Distortion 
Anamorphic 
asphere 

26.5% 3.8% 

x-y polynomial 43.6% 2.65% 
Zernike 
polynomial 

42% 3.74% 

Gaussian RBF 60.5% 3.6% 
 

 

Waves

0.0000

1.0000

0.5000

WAVEFRONT ABERRATION
Mixture of Gaussians Surface

Field = ( 0.000, 0.000) Degrees
Wavelength =    550.0 nm
Defocusing = 0.000000 mm  

(a)   (b)   (c) 
Fig. 5. (a) Optical layout of the off-axis magnifier.  (b) MTF evaluated on-axis, 0.7 in the field, and at the maximum field. 

(c) Interferogram of the surface represented with a linear combination of Gaussian radial basis functions 
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3. 5 DUAL-ELEMENT DESIGN REVISITED: PUPIL SIZE AND FIELD OF VIEW LIMIT 

In this section, guided by the results given in Table 2, we apply the radial basis function framework to the description of 
optical mirror shapes in a dual-element magnifier and study field of view26 and pupil size27 limits in this section.  

3. 5.1 FIELD OF VIEW LIMIT WITH AN 8MM PUPIL 

This subsection shows our results on the field of view limit for a dual-element magnifier designed with an 8mm pupil. 
Figure 6(a) shows the optical layout of the 8mm pupil, 15mm eye clearance, 25 degree diagonal full field of display. The 
modulation transfer function plotted out to 35 cycles/mm and evaluated at a 3mm pupil is shown in Fig. 6(b). The 
distortion grid is shown in Fig. 6(c). Our initial results indicate a 25° field of view limit while having an 8mm pupil and 
~15 mm eye clearance. The interferogram of the optimized free-form surface at the He-Ne wavelength of 632.8nm is 
shown in Fig. 6(d).  
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            (a)                        (b)         (c)    (d) 
Fig. 6. 25 degree magnifier designed with an 8mm pupil (a) Optical layout (b) Modulation transfer function plotted out 
to 35 cycles/mm evaluated with a 3mm pupil (c) Distortion grid (d) Interferogram of the free-form surface at the He-Ne 

wavelength of 632.8nm 

3.5.2 PUPIL SIZE LIMIT WITH A 20 DEGREE FIELD OF VIEW 

Fig. 7(a) shows the layout of the dual-element off-axis catadioptric magnifier where the mirror is described with 
Gaussian radial basis functions. A red, blue, and green microdisplay pixel triplet is 15 µm in size, which yields a Nyquist 
frequency of about 33 cycles/mm. The polychromatic MTF evaluated for a centered 12 mm pupil is plotted in Fig. 7(b) 
for the performance limiting fields. In the case of a 3 mm pupil, the lowest MTF value at the Nyquist frequency is about 
50%. Thus the polychromatic MTF is plotted up to 35 cycles/mm. In this prototype, the microdisplay has a ~12 mm 
diagonal and contains 640x480 pixels. In visual space, the display provides 1.5 arcminutes resolution as limited by the 
pixel spacing on the microdisplay.  The maximum distortion occurs at (x=-8°, y=-6°) in the field and was measured in 
simulation to be -1.83%. Fig.7(c) shows the appearance of a rectilinear grid as viewed through the magnifier. Fig.7(d) 
shows an interferogram of the mirror surface compared to a flat reference wavefront. We found the pupil size limit to be 
12mm while having a 20° field of view and 15.5mm eye clearance.  

 
 

  
  (a)       (b)       (c)   (d) 

Fig. 7. 12mm pupil system with a 20° diagonal full FOV (a) Optical layout (b) Modulation transfer function plotted out 
to 35 cycles/mm (c) Distortion grid (d) Interferogram of the free-form mirror  
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4. APPLYING FULL-FIELD DISPLAYS TO ANALYZE THE DUAL-ELEMENT MAGNIFIER 

Full field displays from nodal aberration theory provide design insight into the aberration characteristics of tilted and 
decentered systems28. The full field displays are based on real raytrace data. The full field display plots can be used to 
provide magnitude and orientation information for individual aberration terms or for summary measures of image quality. 
Line length or circle size is proportional to the magnitude of the aberration of interest at the displayed grid point in the 
full field plot. To study the astigmatic aberration component in isolation, a generalized Coddington raytrace algorithm 
can be used in conjunction with the full-field display. In this case, the orientation of the displayed images aligns with the 
spot diagram.  Zernike coefficient based full field displays are generated by tracing rays, calculating the OPD for each 
ray with respect to the chief ray, and then fitting Zernike polynomials to the OPD map. Thompson applied full field 
displays to the analysis of a triplet in Chapter 7 of his thesis28. Figoski applied nodal aberration theory to find an alternate 
solution to a two mirror telescope problem29. Rogers illustrated an application of nodal aberration theory to guide the 
design of a head-worn display30.  
 
In Figure 8, we show field maps prior to targeted Zernike optimization for the system shown in Fig. 6(a). Figure 8(a) 
displays FRINGE Zernike terms Z5 and Z6 representing astigmatism and Fig. 8(c) displays FRINGE Zernike 
polynomial terms Z7 and Z8 representing coma. We provide an interpolated surface in Fig.8(b) to the astigmatism 
magnitude given in Fig. 8(a) in order to clearly display the binodal behavior with the nodes being close to ±2 degrees 
along the x-direction with a 0 degree y-field component. In Figure 8(c), the minimum coma magnitude is 0.003 waves 
(λ=550nm) occurring at (-7.97°, -7.6°) in the field. The RMS wavefront error across the field is displayed in Fig. 8(d). 
The RMS wavefront error is quasi-constant with an average value of about 1.1 waves (λ=544.7nm) and a standard 
deviation of 0.6 waves across the entire field of view.  
 
Figure 9 shows the field maps after Zernike targeted optimization. We further optimized the system by adding a 
constraint of targeting Z5, Z6, Z7 and Z8 to 0 at field 1 with the intention of collapsing the binodal astigmatism and 
coma nodes to the center of the field. Figure 9(a) displays Zernike terms Z5 and Z6 representing astigmatism. We can 
observe in Figure 9(b) that the binodal behavior is eliminated and we now have quadratic astigmatism at 0.5 degree in 
the x-field and 0.4 degree in the y-field. The RMS wavefront error across the field is displayed in Fig. 9(c). The RMS 
wavefront error across the field after Zernike targeted optimization and has an average of 1.1 wave (λ=544.7nm) across 
the field and 0.6 waves of standard deviation. 
 
Figure 10 shows the fields maps after Zernike targeted optimization with the nodes at (±6°,0°). Figure 10(a) displays 
Zernike terms Z5 and Z6 representing astigmatism. We can observe the binodal behavior in Figure 10(b). The RMS 
wavefront error across the field is displayed in Fig. 10(c). The RMS wavefront error across the field after Zernike 
targeted optimization and has an average of 0.72 waves (λ=544.7nm) across the field and 0.15 waves of standard 
deviation. 
 
Figure 11 summarizes the impact of moving the astigmatism nodes on the performance as measured with the MTF 
criteria. The MTF plots for the set of fields {(0°,0°),(0°,7.6°),(10.1°,0°),(-10.1°,0°),(9°,6.8°)} with binodal astigmatism 
nodes at (±2°,0°), (0.4°,0.5°), and (±6°,0°)  are provided in Fig. 11(a), Fig. 11(b), and Fig. 11(c), respectively.  

 
   

    (a)                         (b) 
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     (c)                     (d) 
Figure 8. Full field displays before targeting specific Zernike terms in the field (a) Full field display of the fringe Zernike 
Z5/Z6 components (astigmatism) in a 20x20 grid (b) Interpolated plot of the astigmatism magnitude to clearly visualize 
the binodal behavior (c) Full field display of the fringe Zernike Z7/Z8 (coma) (d) Full field display of the rms wavefront 

error (15x15 grid) 

 

 
         

                 (a)    (b)       (c) 
Figure 9. Full field displays with the astigmatism nodes collapsed at (0.5°, 0.4°) (a) Full field display of the fringe 

Zernike Z5/Z6 components (astigmatism) in a 20x20 grid (b) Interpolated plot of the astigmatism magnitude to clearly 
visualize the quadratic astigmatism behavior  (c) Full field display of the rms wavefront error (15x15 grid) 

 

 
           

       (a)            (b)                         (c) 
Figure 10. Full field displays with the astigmatism nodes at (±6, 0.4°) (a) Full field display of the fringe Zernike Z5/Z6 
components (astigmatism) in a 20x20 grid (b) Interpolated plot of the astigmatism magnitude to clearly visualize the 

binodal astigmatism behavior  (c) Full field display of the rms wavefront error (15x15 grid) 
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(a)    (b)           (c) 

Figure 11. Modulation transfer function plots for the set of fields {(0°,0°),(0°,7.6°), (10.1°,0°),(-10.1°,0°),(9°,6.8°)} in 
the cases of (a) nodes at (±2°,0°) (b) nodes at (0.4°,0.5°) and (c) nodes at (±6,0.4°). 

Results indicate that separating the nodes further apart along the x-dimension in a rectangular image field yields better 
wavefront RMS performance across the field with well behaved mid-spatial frequencies in the MTF; collapsing the 
nodes yields worse wavefront RMS performance with worse mid-spatial frequency behavior in the MTF. 

5. CONCLUSIONS AND FUTURE WORK 

Free-form surfaces provide additional degrees of freedom to optical designs having limited space requirements (in 
meter3). We summarized our initial experiences in the design and fabrication of free-form optical surfaces in the design 
of head-worn displays. Specifically, 1) a dual-element magnifier (20 degree field of view, 8mm exit pupil, 15mm eye 
clearance, 1.5 arcminute resolution in visual space) using an x-y polynomial free-form surface was fabricated and 2) a 
single-element magnifier (24 degree field of view, 3mm exit pupil, 15mm eye clearance, 3.6 arcminute resolution) using 
an x-y polynomial free-form surface was fabricated. Additionally, we proposed the radial basis function framework for 
describing free-form optical surfaces. Comparisons of radial basis functions to standard free-form descriptions such as an 
anamorphic asphere, Zernike polynomial and an x-y polynomial were provided.  The field of limit for an 8mm exit pupil 
dual-element magnifier with a Gaussian RBF free-form surface was estimated to be 25 degrees. The pupil size limit for a 
20 degree field of view dual-element magnifier with a Gaussian RBF free-form surface was estimated to be 12mm. Full 
field displays were used to analyze the impact of astigmatic node placement. 
 
The optical design examples given in section 3 used shape factors that were found through experimentation. The shape 
factor plays an important role in the accuracy of an RBF based approximation scheme. The theoretical tools for choosing 
a shape factor (e.g., cross-validation) take the data values into account. However, these data values are not known before 
our raytrace optimization procedure. This makes the application of techniques such as cross-validation challenging. 
Therefore, the link between a shape factor that yields maximal performance with respect to an optical performance 
criterion such as the RMS wavefront error or the modulation transfer function remains to be studied. Early 
experimentation suggests that it is possible to obtain a diffraction limited surface, in the case of different (not coincident) 
basis centers and data points, for the variances of  0.05, 0.1, 0.5, 1, 2, 3, 5, 10, 20, 30, 40 and 100. The high success rate 
for a relatively large range of variances could be either due to the simplicity of the paraboloid as a testcase or the 
differing centers and data points. Comparison of alternative radial basis functions such as a thin-plate spline and a 
multiquadric with the MTF criteria for the design problem shown in Fig. 5(a) remains to be studied as well.  
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