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Differential Shack–Hartmann curvature sensor:
local principal curvature measurements
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The concept of a differential Shack–Hartmann (DSH) curvature sensor was recently proposed, which yields
wavefront curvatures by measuring wavefront slope differentials. As an important feature of the DSH curva-
ture sensor, the wavefront twist curvature terms can be efficiently obtained from slope differential measure-
ments, thus providing a means to measure the Monge-equivalent patch. Specifically, the principal curvatures
and principal directions, four key parameters in differential geometry, can be computed from the wavefront
Laplacian and twist curvature terms. The principal curvatures and directions provide a “complete” definition
of wavefront local shape. Given adequate sampling, these measurements can be useful in quantifying the mid-
spatial-frequency wavefront errors, yielding a complete characterization of the surface being measured.
© 2008 Optical Society of America
OCIS codes: 220.4840, 080.0080, 120.6650.
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. MID-SPATIAL-FREQUENCY ERROR
EASUREMENT AND CURVATURE

ENSING
ecently, high-accuracy wavefront sensing has been in de-
and in applications such as high-resolution adaptive op-

ics, or ExAO, and high-accuracy mirror figuring. As the
umber of elements in an adaptive optic increases, it be-
omes imperative to sense and recover higher-spatial-
requency errors in the wavefront in addition to the low-
patial-frequency errors. In general, wavefront errors can
e categorized into three groups: the low-spatial-
requency errors that contribute to the core of the point-
pread function, the mid-spatial-frequency errors that
ontribute as noise to closely adjacent point-spread func-
ions, and the high-spatial-frequency errors that create a
early constant background across the sensor. If we de-
ne the wavefront errors below 6 cycles per aperture as
he low-spatial-frequency errors and those above
0 cycles per aperture as the high-spatial-frequency er-
ors, then the mid-spatial-frequency errors are defined to
ie between these two values. Most of the existing wave-
ront sensing techniques focus on the recovery of the low-
patial-frequency errors. In order to achieve the next level
f functionality in wavefront sensing, we need to recover
he mid-spatial-frequency errors.

The measurement of the mid-spatial-frequency errors
f a mirror surface can be achieved with profilometry. A
echnique that measures the test surface curvature on a
oint-by-point basis was first proposed and implemented
y Glenn [1]. His method simultaneously measures the lo-
al slope at two slightly displaced surface locations with
ptical probes to obtain the surface slope differentials.
his technique was further developed by Weingaertner
1084-7529/08/092331-7/$15.00 © 2
t al. as the large area curvature scanning (LACS)
ethod that used an extended-area optical probe to re-

lace the point-sized optical probe [2–4]. By scanning the
est surface, a profile of curvature was built, and the
eight profile could be deduced. This technique demon-
trates subangstrom accuracy and � /1000 sensitivity
ith the differential distance of 0.3 mm and a sample

pacing of 10 �m on a 10 mm test piece [5].
For a discrete wavefront-based test, assuming ad-

quate spatial sampling, the accuracy of wavefront esti-
ation depends on how much information is known about

he wavefront local shape. For the second-order approxi-
ation, the shape parameters most commonly measured

or a wavefront local patch include the Laplacian curva-
ures (cxx and cyy), the average slopes (sx and sy), and an
verage piston value d [6–8]. Given that curvature sens-
ng is a means to achieve vibration-insensitive measure-

ents, curvature sensing is highly desirable when seek-
ng to reach a higher accuracy. In this paper, we focus on
ntrinsic shape–parameter measurements in characteriz-
ng the wavefront local shape, which are the principal
urvatures (�1 and �2) and the principal directions (�1
nd �2).
Curvature, the rate of the surface normal change, is an

ntrinsic parameter of surface shape. Unlike the slopes
gradients or the first-order derivatives of shape) that
ary with changes in surface orientation, the curvature is
nsensitive to tip/tilt and whole body movement of a sur-
ace. The slope measurement at a local patch is a linear
pproximation of a surface with a tangential plane, while
he curvature (the second derivative of shape) is a qua-
ratic approximation of a surface with an osculating
uadric spherical surface patch [9]. Thus, in terms of
008 Optical Society of America
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avefront local shape estimation, curvature measures
rovide higher-frequency information about wavefront lo-
al shape.

While the Laplacian curvature (in the x or y direction)
s defined as the derivative of the wavefront slope along
he same direction of slope, a twist curvature term is de-
ned as the derivative of the wavefront slope (e.g., the x
lope) that is perpendicular to the slope direction (i.e., the
direction). If we rotate the normal plane at a surface lo-

al patch about its normal line, the normal curvature will
hange and reach its two extreme values: a maximum and
minimum. The wavefront principal curvatures are de-

ned as the maximum and the minimum normal curva-
ures at a given wavefront patch. The directions of the
aximum and the minimum curvatures are orthogonal in

pace, which are called the principal directions. The
avefront curvatures along the principal directions are

imply the principal curvatures, and along the local coor-
inate frame aligned with the principal directions, the
wist curvature terms reduce to zero. Principal curva-
ures and principal directions are two pairs of important
arameters for characterizing the surface local shape in
ifferential geometry and have many applications in com-
uter vision and computer graphics.
While the Laplacian measurements at a local patch ap-

roximate the surface with an osculating spherical sur-
ace, the principal curvature measurements approximate
he surface with an osculating paraboloidal patch, which
rovides a better estimation of wavefront local shape. The
ocal principal directions do not generally fall along the x
nd y directions. The knowledge of the principal curva-
ures and directions allows us to compute the Laplacian
urvatures along an arbitrary direction, but the reverse is
ot true. The principal curvatures and directions provide
ore freedom in characterizing wavefront local shape.
hat is an essential merit of principal curvature measure-
ents toward wavefront mid-spatial-frequency error re-

overy.
There are sensors available for measuring wavefront

ocal slopes and Laplacian curvatures, such as the Shack–
artmann slope sensor [10], the pyramid wavefront slope

ensor [11], and Roddier’s Laplacian curvature sensor [6].
he methodologies for wavefront estimation from slopes
r Laplacian curvatures or both have been established.
owever, none of them could provide real-time measure-
ents of wavefront local twist curvature terms, and the

efinition of the wavefront local shape is incomplete with-
ut them. In this paper, we will show how to perform
avefront slope differential measurements in the x and y
irections to simultaneously obtain the wavefront twist
urvature and Laplacian curvature terms, from which the
avefront local principal curvatures and principal direc-

ions may be computed.

. REVIEW OF PREVIOUS WORK
everal techniques have been developed for curvature-
ased wavefront sensing [6–8]. Among them, the curva-
ure sensor proposed by Roddier [6] and the hybrid curva-
ure sensor proposed by Paterson and Dainty [7] can
rovide Laplacian curvatures plus the slope boundary
onditions, which are required for solving a Neumann’s
oundary problem. The coherent gradient sensing tech-
ique proposed by Tippur extracts the wavefront curva-
ure information from the gradient field by the finite-
ifference method [8]. However, none of the previous
echniques can provide simultaneously two-dimensional
2-D) measurements of the wavefront Laplacian curva-
ure and twist curvature terms from which the principal
urvatures and directions can be extracted. The differen-
ial Shack–Hartmann (DSH) curvature sensor was pro-
osed and is being developed to enable such measure-
ents [12,13].
The idea of a differential measurement has been exem-

lified by the technique called differential image motion
onitor (DIMM), a well-known method for measuring at-
ospheric seeing in astronomy [14,15]. Because DIMM
easures the difference in the wavefront tilts over two

ubapertures some distance apart, it has the advantage of
eing insensitive to vibration and tracking errors. In this
aper we shall show how the DSH simultaneously mea-
ures the wavefront Laplacian and twist curvature terms
n a 2-D manner. Such a technique, because it is curva-
ure based, is proved to be vibration insensitive.

. DIFFERENTIAL SHACK–HARTMANN
URVATURE SENSOR
iven a wavefront W�x ,y� in a coordinate system with

wo arbitrary but orthogonal directions as the x and y
xes, the Shack–Hartmann sensor provides wavefront
lope information by comparing the Hartmann grid coor-
inates of the measurement beam and the reference beam
10], as shown in Fig. 1. The wavefront slopes in the x and
directions at each Hartmann grid point can be obtained
y

� �W

�x �
i

=
xi

mea − xi
ref

f
,

� �W

�y �
i

=
yi

mea − yi
ref

f
, �1�

here �xi
ref ,yi

ref� and �xi
mea ,yi

mea� (i=1,2, . . . ,m, and m= t
t is the total number of grid points) are the Hartmann

rid coordinates of the reference beam and the measure-
ent beam, respectively, and f is the focal length of the

enslet array. As a slope sensor, it is sensitive to rigid body
otations and displacements of the surface under test,
nd thus such a technique is well known to be vibration
ensitive

The DSH curvature sensor builds on the conventional
hack–Hartmann sensor with the collimated beam split

Fig. 1. Concept of the Shack–Hartmann wavefront sensor.
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nto three channels to yield three wavefronts exactly the
ame as one another. As shown in Fig. 2, measuring the
ifferentials of the wavefront slopes along the x or y di-
ection will yield the wavefront curvature along that di-
ection, which can be implemented by measuring two
lopes simultaneously over a given lateral differential dis-
ance on the wavefront grid. A lenslet array is mounted in
ach channel at the image position of the optical system
ntrance pupil generated by a pupil relay lens. As shown
n Fig. 3, the lenslet array in the z direction is conjugated
o each of the other two by beam splitters. Shearing de-
ices make two of the three Hartmann grids displaced
wo differential distances in the x and y directions inde-
endently with respect to the third one. Irradiance detec-
ion devices, such as CCD cameras, may be used to record
he beamlet centroidal positions relative to the Hartmann
rid coordinates defined by the CCD pixel positions. As a
ost important feature of the DSH curvature sensor, it

an measure both the twist curvature terms and the La-
lacian curvature terms required for computing the prin-
ipal curvatures and principal directions.

As illustrated in Fig. 2, the slope differentials in the x
nd y directions can be computed as

cxx�i� = � �2W

�x2 �
i

=
1

sx
�� �W

�x �
i�

− � �W

�x �
i
�

=
1

f �xi�
mea − xi

mea

sx
� − c0,xx�i�,

cyy�i� = � �2W

�y2 �
i

=
1

sy
�� �W

�y �
i�

− � �W

�y �
i
�

=
1

f �yi�
mea − yi

mea

sy
� − c0,yy�i�, �2�

here sx and sy are the differential grid shears in the x
nd y directions, respectively, and the constants c0,xx�i�
nd c0,yy�i� are given by

c0,xx�i� =
1

f �xi�
Ref − xi

Ref

sx
� ,

ig. 2. (Color online) The x- and y-differential shears of the
artmann grid.
c0,yy�i� =
1

f �yi�
Ref − yi

Ref

sy
� . �3�

he twist curvature terms are the slope differentials in
he cross directions, which can be obtained by

cxy�i� = � �2W

�x�y�
i

=
1

sx
�� �W

�y �
i�

− � �W

�y �
i
�

=
1

f �yi�
mea − yi

mea

sx
� − c0,xy�i�,

cyx�i� = � �2W

�y�x�
i

=
1

sy
�� �W

�x �
i�

− � �W

�x �
i
�

=
1

f �xi�
mea − xi

mea

sy
� − c0,yx�i�, �4�

here c0,yx�i� and c0,xy�i� are constants given by

c0,xy�i� =
1

f �yi�
Ref − yi

Ref

sx
� ,

c0,yx�i� =
1

f �xi�
Ref − xi

Ref

sy
� . �5�

In Eqs. (2)–(5), �xi
mea ,yi

mea�, �xi�
mea ,yi�

mea�, and
xi�

mea ,yi�
mea� �i=1,2, . . . ,m� are the coordinates of the

easurement beam at the original Hartmann grid, the
-sheared, and the y-sheared Hartmann grids, respec-
ively; �xi

Ref,yi
Ref�, �xi�

Ref,yi�
Ref�, and �xi�

Ref,yi�
Ref� �i

1,2, . . . ,m� are the corresponding coordinates of the ref-
rence beam.

Theoretically, c0,xx and c0,yy should both be “1/ f,” and
0,xy and c0,yx should both be zero for the second-order ap-
roximation. However, they all need to be calibrated in
ractice, as the three CCD cameras used in the three
easurement channels are different from one to another.

n the experimental setup shown in Fig. 3, a reference
ight beam is introduced to generate the reference Hart-

ann grid arrays for the three channels, and the con-
tants c0,xx, c0,yy, c0,xy, and c0,yx can be computed with Eqs.
3) and (5). To make the principal curvature measure-
ents unique, it is assumed that the twist curvature

erms are equal, i.e., cxy=cyx.

. COMPUTATION OF PRINCIPAL
URVATURES AND DIRECTIONS
iven the measurements of the Laplacian curvatures and

wist curvature terms, we will show how to compute the
rincipal curvatures (say, �1 and �2) and directions. Con-
idering a local surface patch, the principal curvatures
re invariants that are insensitive to the surface orienta-
ion change. In order to evaluate the principal curvatures,
e assume that the local wavefront patch is represented
y a “Monge patch” of the form
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X = xe�1 + ye�2 + W�x,y�e�3, �6�

here (e�1, e�2, e�3) is an orthogonal frame in 3-D Euclidean
pace. To describe the local surface shape, the Second
undamental Form has a matrix form as [16]

II = ���1
13 ��1

23

��2
13 ��2

23� , �7�

here �� j
i3�i=1,2; j=1,2� defines the component in e�i of

he turning rate of the normal as the frame is moved
cross the given point along e�j. For a wavefront traveling
n the z direction �e� �, W�x ,y� is the “height” as a function

ig. 3. (Color online) Experimental system of a possible imple
color online) optical layout, (b) Hartmann sampling grid, (c) (col
3

f x and y in the pupil plane. Then, at each “Monge
atch,” the matrix II becomes

II = �cxx�i� cyx�i�

cxy�i� cyy�i��, i = 1,2, . . . ,m. �8�

The determinant of matrix II, denoted as K=cxxcyy
cxycyx, is known as the local wavefront Gaussian curva-

ure. The trace of the matrix II, denoted as 2H, is the lo-
al wavefront Laplacian, where H= �cxx+cyy� /2 is known
s the local wavefront mean curvature. Both Gaussian
urvature and mean curvature (or Laplacian curvature)

tion for the differential Shack–Hartmann curvature sensor: (a)
ne) picture of the experimental system.
menta
or onli



a
t
[

c
o
t
t
p
a

f
p

w

w
T

w
t
c
b
s
m

w
v

e
a

T

t
p

T

w
b

S

w

5
E
A
D
t
t
g
a
g
c
i
w
i
m
o
s
1
g
l
t
l
a
a
f
l
t
p

t
(
w
c
a
t
t
v
s

6
S
S
f
a
p
s
w
L
c
e
p

Zou et al. Vol. 25, No. 9 /September 2008 /J. Opt. Soc. Am. A 2335
re algebraic invariants, which do not change with rota-
ion of the orthogonal frame (e�1, e�2, e�3) about the normal
9].

Within this mathematical framework, the principal
urvatures are the eigenvalues of the matrix of the Sec-
nd Fundamental Form, and the principal directions are
heir corresponding eigenvectors [9,16]. By diagonalizing
he matrix of the Second Fundamental Form, the princi-
al curvatures can be computed from the twist curvature
nd the Laplacian curvatures terms [16].
To diagonalize the matrix II is to rotate the orthogonal

rame about axis e�3 to make the off-diagonal terms disap-
ear. Then we obtain a new matrix II� by

II� = PTIIP, �9�

here P is an orthogonal matrix defined by

P = �cos � − sin �

sin � cos � � , �10�

here the angle � is defined as the frame rotation angle.
he new matrix II� is a diagonal matrix, which is

II� = ��1�i� 0

0 �2�i�� , �11�

here �1�i� and �2�i���1�i���2�i�� are the eigenvalues of
he matrix II, also known as the first and second principal
urvatures, and i=1,2, . . . ,m, where m is the total num-
er of Shack–Hartmann grid points. Combining the re-
ults of Eqs. (8)–(11), the principal curvatures �1 and �2
ay be obtained at each grid point by

�1,2�i� =
cx�i� + cy�i� ± ��cx�i� − cy�i��2 + 4cxy�i�2

2
, �12�

ith the rotation angle � between the first principal cur-
ature and the x direction is given by

��i� =
1

2
tan−1� 2cxy�i�

cx�i� − cy�i�� . �13�

The principal curvatures can also be computed by
valuating the eigenvalues of the matrix II with its char-
cteristic equation given by

det��I − II� = 0. �14�

he result is the same as Eq. (12).
According to the Euler curvature formula (1760) [9],

he Laplacian curvature in the x direction can be ex-
ressed as

cx�i� = �1�i�cos2	��i�
 + �2�i�sin2	��i�
. �15�

hen the rotation angle � can also be computed by

cos 2	��i�
 =
2cx�i� − 2H�i�

�1�i� − �2�i�
, �16�

here H is the mean curvature. Then the angle � is given
y

��i� =
1

2
cos−1� cx�i� − cy�i�

�1�i� − �2�i�� . �17�

ubstituting Eq. (12) into Eq. (17), we obtain

��i� =
1

2
cos−1� �cx�i� − cy�i��

��cx�i� − cy�i��2 + 4cxy�i�2� , �18�

hich is equivalent to Eq. (13).

. SYSTEM IMPLEMENTATION AND
XPERIMENTAL RESULTS
n experimental system for an implementation of the
SH curvature sensor is shown in Fig. 3 [12,17], where

wo micrometer-level displacement mechanisms are used
o make the lateral differential shears of the Hartmann
rid in the x and y directions. The shearing distance is
bout 1/6–1/8 of the pitch size of the Shack–Hartmann
rid. The optical layout of the sensor combined with a
ommercial quality mirror with a working f-ratio of f /6 is
llustrated in Fig. 3, which is used to generate a sample
avefront for principal curvature measurements. Follow-

ng the output beam, which is collimated by an achro-
atic lens, two cube beam splitters are used to split the

utput beam into three channels. As a proof-of-concept
ystem, a 10�10 lenslet array with the pitch size of
.79�1.79 mm2 and focal lengths of 90 mm were used to
enerate a Hartmann grid in each channel [18]. The point
ight source O1 is the measurement light source, and O2 is
he reference light source. After calibration, no reference
ight beam is needed in this system, and all the system-
tic errors cancel out except for the discrepancy errors
mong the lenslet arrays (usually negligible), the errors
rom the first surface mirror that introduces the reference
ight, and the error from the beam splitter that introduces
he measurement light, which need to be considered in
ractice.
Figure 4 shows a result for wavefront principal curva-

ures and principal directions estimated from curvature
i.e., Laplacian and twist) measurements. The solid lines
ith an arrow on each end represent the first principal

urvatures and directions, while the dotted lines with an
rrow on each end represent the second principal curva-
ures and directions. The lengths of these lines represent
he values of the principal curvatures. The principal cur-
ature map in Fig. 4 is shown to agree with the wavefront
hape estimated from slope data.

. DISCUSSION AND CONCLUSION
ince the DSH curvature sensor is derived from the
hack–Hartmann slope sensor, it shares the important

eatures of the Shack–Hartmann slope sensor, while it
dds the important features of a curvature sensor. Com-
ared with previous techniques, the DSH curvature sen-
or provides an efficient and convenient way to measure
avefront local twist curvature terms in addition to the
aplacian curvature terms from which the local principal
urvatures and directions can be estimated. To our knowl-
dge, the DSH curvature sensor is the first instrument to
rovide real-time measurements of wavefront twist cur-
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atures, wavefront principal curvatures, and wavefront
rincipal directions beyond the Laplacian curvatures.
The DSH curvature sensor employs a Shack–

artmann with three channels and loses 75% of light ir-
adiance on the CCD camera, but it yields ten parameters
bout wavefront local shape: the wavefront slopes in the x
nd y directions (sx and sy), the Laplacian curvatures in
he x and y directions (cxx and cyy), the twist curvature
erms (cxy and cyx), the principal curvatures (�1 and �2),
nd the principal directions (�1 and �2). According to the
nalysis provided by Hardy and Guyon [19,20], the root-
ean-square (RMS) value of the CCD centroiding noise is

n inverse proportion to the square root of the number of
hotons collected per subaperture. The DSH curvature
ensor collects only 25% of the photons per subaperture as
ompared with a regular Shack–Hartmann sensor; there-
ore the RMS value of the CCD centroiding error doubles.

ig. 4. (Color online) Map of the principal curvatures and princ
arrow length scale=0.6). Solid arrow lines, first principal curvatu
irections.
owever, in some metrology applications, the beam inten-
ity of the wavefront under test can be increased to be ad-
quately high, and the irradiance reduction in the DSH
ensor is no longer a limit for the CCD centroiding accu-
acy.

In Roddier’s curvature sensor, the determination of the
efocus distance and focal plane is affected by the seeing
lur and the caustic zone, especially for the slow f-ratios
21], which makes the Laplacian measurements less accu-
ate and less convenient. In the DSH curvature sensor,
he slope differential measurements are performed at the
upil plane of the optical system under test, so the diffi-
ulties associated with operations close to the caustic zone
s in Roddier’s curvature sensor are avoided.
The DSH curvature sensor is derived from the Shack–

artmann slope sensor, and its wavefront phase estima-
ion does not depend on the wavelength of the testing

rections on a wavefront estimated from the measured slope data
d directions; dotted arrow lines, second principal curvatures and
ipal di
res an
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ight. Therefore it does not have a “2�-ambiguity” prob-
em in wavefront estimation, while most of the irradiance-
ased phase retrieval methods do. This feature allows the
SH curvature sensor to work well with large aberra-

ions.
Usually, vibration noise is the limiting factor for high-

ccuracy wavefront estimation, especially for the mid-
patial-frequency recovery. Compared with a slope sensor,
he DSH sensor measures Laplacian curvatures and twist
urvatures terms that are insensitive to all types of vibra-
ions and drifts, both in surface height and in surface
lope. Moreover, the slope differential measurements in
he DSH curvature sensor are performed simultaneously
n 2D, so the scanning errors as in profilometry are
voided.
In summary, a “complete” measurement of wavefront

ocal shape, which extends the surface characterization
btained in a single measurement to include both low-
nd mid-spatial-frequency errors, is needed to support
he advancing density of actuators in adaptive component
ptical systems. The DSH curvature sensor presented
ere for the first time provides this capability. The essen-
ial merit of the DSH curvature sensor over a common La-
lacian curvature sensor is its superior estimation of
avefront local shape. The principal curvatures and di-

ections construct an osculating paraboloidal surface
atch that provides a more accurate description of local
avefront shape when compared with the two osculating

pherical surfaces that are derived from the Laplacian
urvatures. Based on the above discussion and given that
he slope and Laplacian-based wavefront sensing tech-
iques are popular today, we can expect that principal-
urvature-based wavefront sensing will in the future con-
ribute much across many applications.
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