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Abstract. Proposed is silicon-photonics-based phased array antenna
beamforming for high-resolution long-range radars with wide instanta-
neous radio frequency �rf� bandwidth. Specifically, the proposed silicon-
photonics beamformer platform offers the potential for cost-effective
monolithic chip-scale integration of photonic delay lines, 2�2 optical
switches, variable optical attenuators, and optical amplifiers that form the
base unit of a rf transmit/receive array signal processor. In effect, the
proposed silicon-photonics devices empower the design of a powerful
proposed photonic beamformer with one time-delay unit per antenna
element. Device-level designs studies are shown that promise meeting
the high-resolution radar mission-critical requirements via time delays of
up to 2.5 ns, switching times of less than 100 ns, optical isolations as
good as 50 dB, and optical gains of up to 6 dB. Longer delays are
achieved off chip using optical fibers. © 2010 Society of Photo-Optical Instrumen-
tation Engineers. �DOI: 10.1117/1.3280286�
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Introduction

hotonics has long been recognized as a viable technology
or distribution and processing of millimeter and micro-
ave signals in modern phased-array antennas �PAAs�.1
dvantages of photonics over electronics for these beam-

orming control systems include reduced weight and size,
mmunity to electromagnetic interference �EMI� and elec-
romagnetic pulses �EMP�, and low rf transmission loss. In
articular, photonic technologies have been successfully
mployed to demonstrate true time-delay beam steering,
hich is essential for squint-free wide-instantaneous-
andwidth operation of high-performance radar systems.

A typical advanced wideband radar beamforming system
esign is shown in Fig. 1, where each antenna element uses
n independent rf signal-conditioning unit. Note that a
eamformer is a complex interconnection of rf waveguides
splitters and combiners� that can produce different time-
elay errors per antenna element depending on system con-
itions such as the beamformer temperature and stresses
nd strains in different parts of the waveguides. Therefore,
ny robust beamformer architecture such as the Fig. 1 de-
ign involves an independently controllable time-delay unit
TDU� per antenna element. Electronically, a beamformer
ystem includes high-power amplifiers �HPAs�, low-noise
mplifiers �LNAs�, rf attenuators, and transmit/receive
T/R� rf switches. In addition, if optical fibers are deployed
n the rf signaling control system, such as for distribution
nd rf-optical-rf links, then again temperature changes and
tresses can put strains in the fibers that can independently
ffect the different rf time-delay paths in the beamforming
etwork. Thus, any practical deployed wide-instantaneous-
andwidth radar beamformer for demanding outdoor envi-
onments must use an independently controllable TDU per
ntenna element, and this TDU should produce both long
ptical Engineering 018201-
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delays �e.g., 10 ns� and high-resolution delays �e.g., 10 ps�,
equivalent to 1000 settings, or 10 bits. In addition, the TDU
should have other general features such as wideband rf op-
eration �e.g., S/C band 2 to 8 GHz or X band
�8 to 12 GHz��, low loss �e.g., �5 dB optical�, low
crosstalk �e.g., �50 dB optical�, and fast �submicrosecond
time delay� reset.2 To date, such a desired TDU is alto-
gether lacking in the all-electronic domain.

Fig. 1 An advanced rf PAA beamformer design using one variable
TDU per antenna element. HPA: high-power amplifier; LNA: low-
noise amplifier; T/R: rf transmit/receive switch; TDU: time-delay unit
with rf in and rf out.
January 2010/Vol. 49�1�1
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A wide variety of schemes and device technologies have
een proposed and used for realizing optical
eamformers,3–25 including silica glass, III-V semiconduc-
ors, polymers, electromechanical and microelectrome-
hanical systems �MEMS�, lithium niobate, and nematic
nd ferroelectric liquid crystals. However, these proposed
nd implemented systems do not meet the requirements
entioned for advanced TDUs. Recently, it was shown that

coustooptic switching26 can indeed meet the desired TDU
equirements, but this device technology, like many others
efore it, is presently limited in capability of cost-effective
caling to practical PAA TDU counts �e.g., �500� required
n large PAAs. Given this motivation, this paper uses sili-
on photonics as the base platform to propose the desired
esign of a superperformance �e.g., 10 bits�, superfast �e.g.,
1 �s� optical TDU design that can realize the wideband

AA radar control mission. Shown are basic device design
nd simulation studies indicating the performance expected
rom the proposed silicon photonic TDUs.

Many years ago, silicon photonics was proposed for op-
ical switching at 1300 nm.27 Meanwhile, silicon photonics
as matured in the last few years as a viable technology for
host of applications, particularly for passive and active

ntegrated optics.28 Silicon-based delay lines with subpico-
econd time-delay accuracy have been demonstrated, al-
hough with very short time delays of the order of tens of
icoseconds.29 A new CMOS-compatible material named
ydex®, allowing delays as high as 2 ns, has also been

eported.30 Compared to competing technologies based on
onlinearity in fibers and the electro-optic �EO� effect in
ithium niobate and III-V semiconductors, silicon photonics
as several key advantages, which include:

�a� Cost-effectiveness: Lots �e.g., thousands� of
TDUs per large-aperture advanced phased-array
radar �e.g., Aegis class� are required, particularly
for a fully agile three-dimensional �3-D� elec-
tronic or e-scan system with complete beam
power. A monolithic technique capable of pro-
cessing all these TDUs simultaneously would
substantially reduce manufacturing costs.

�b� CMOS compatibility: Unlike competing materi-
als, silicon has the great advantage of compatibil-
ity with silicon integrated circuit �IC� technology
required to electrically drive the devices. In addi-
tion, compatibility of silicon photonics with
CMOS processing and integration with variable
optical attenuators �VOAs� and rf-to-optical
modulators also implies further cost reduction
and high-yield manufacturing.

�c� Compactness: The high refractive index contrast
between silicon and SiO2 provides a platform for
submicron waveguide dimensions in silicon-on-
insulator �SOI� waveguides, leading to a smaller
footprint and reduced weight for a silicon photo-
nic beamformer.

�d� Integration: Compact ��1 cm�, fast ��1 �s�,
high-attenuation ��40 dB� VOAs have been re-
cently demonstrated31 and can be monolithically
integrated with the optical switches, photonic de-
lay lines, and optical amplifiers of the proposed
TDU. In addition, the rf-to-optical modulator that
ptical Engineering 018201-
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provides the PAA’s rf signal can also be inte-
grated on the same silicon chip, a feature pres-
ently hard to achieve in the competing material
technologies.

Another vital component of an optical TDU is a high-
speed rf-band photodetector. Because of its optical trans-
parency in the 1300 and 1550-nm wavelength bands typi-
cally used for rf EO modulation, silicon is not a suitable
material for rf demodulation via photodetection. With a
smaller bandgap, germanium �Ge� has strong absorption at
these wavelengths, and Ge photodetectors can be integrated
on silicon chips. High-performance hybrid Ge�Si�-on-Si
photoreceivers have been demonstrated28—for example, a
Ge-on-SOI photodetector with a 6.6-GHz bandwidth.32

2 Proposed Beamsteering System
Figure 2 shows the proposed basic silicon-based TDU for
implementing PAA beamsteering. The unit employs a clas-
sic serial digitally switched N-bit TDU scheme using the
proposed silicon 1�2 and 2�2 routing switches. Using an
N-bit delay line, one can produce 2N−1 independent rela-
tive time delays. The delay lines can be on chip, using long
integrated waveguides for shorter delays ��2.5 ns�, or can
be external optical fibers �for 2.5- to 20-ns delays�. One
advantage of silicon photonics is that the losses caused per
TDU bit stage can be partly compensated by Raman optical
amplification. In addition, a VOA can be monolithically
integrated on the chip per TDU for signal conditioning re-
quired for antenna pattern control as well as rf loss calibra-
tion within the beamforming network.

Critical to the design of any TDU is the realization of
low-loss, high-speed, low-crosstalk 1�2 and 2�2 optical
switches to meet the mentioned TDU requirements. Due to
the lack of a linear EO effect in silicon, the free-carrier
plasma effect has been the most popular mechanism for
achieving EO modulation. Specifically, the principle of EO
operation involves the modulation of the free-carrier den-
sity in which the optical loss and/or refractive index is rf
modulated by injection, depletion, accumulation, or inver-
sion of free carriers.28 The very first silicon photonic device
was a 2�2 switch based on n-type waveguides fabricated
on n+ substrate.27 More recently, EO switches based on SOI
substrates have been demonstrated33 that exhibit high
5-MHz switching speed but lack the TDU’s required low
�e.g., �40 dB� crosstalk.

To realize the TDU switching goal, Fig. 3�a� shows the
proposed novel 1�2 fast ��1 �s� switch based on the
free-carrier plasma effect using carrier injection via lateral
pn junction diodes that straddle SOI waveguides. The de-
sign of these devices is optimized for the targeted beam-
forming control application, i.e., fast switching time �
�0.1 to 1 ns� and high on/off extinction ratio, leading to
50-dB interchannel optical isolations. The proposed 1�2
switch design uses a silicon Mach-Zehnder interferometer
�MZI�. At the output of the MZI, the phase-shifted signals
are directed into a multimode interference �MMI� coupler
that selects the desired output channel. To control the
phase-shifting process, refractive index variation is induced
by carrier injection �i.e., the plasma effect� via the electrical
biases applied to the two pn junction diodes. Shorter de-
January 2010/Vol. 49�1�2

32.170.11.35. Terms of Use:  http://spiedl.org/terms



v
j
T
b

Fathpour and Riza: Silicon-photonics-based wideband radar beamforming: basic design

O

ices can be achieved at the expense of higher carrier in-
ection �slower switching operation� via the pn junctions.
his trade-off can be optimized according to the specific
eamforming system requirements, another useful feature

Fig. 2 Proposed N-bit program

Fig. 3 Proposed �a� 1�2 and �b� 2�2 silicon
design in Fig. 2.
ptical Engineering 018201-
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of silicon photonics. Note that low-crosstalk switching can-
not be obtained merely based on MMI couplers, and re-
ported optical extinction ratios are on the order of
−22 dB.34 To overcome this shortcoming, the design in Fig.

silicon photonic TDU module.

l switch designs to be used to realize the TDU
mable
optica
January 2010/Vol. 49�1�3
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�a� proposes inserting two 1�1 photonic switches at the
utput arms of the integrated device. Specifically, by apply-
ng a forward bias to the off arm, the 1�1 switch essen-
ially acts like a VOA and can provide an extra 40 dB or

ore extinction ratio at high biases, leading to the desired
igh-isolation photonic switch for routing the no-delay and
elay rf signals on the light carrier. It is emphasized that the

pn junctions in the MZI arms and those in the output arms
erve different purposes. In essence, with the appropriate
hoice of bias, the same device, consisting of a silicon
aveguide with a straddling pn junction, is employed as a
hase modulator in the MZI arms, while it is employed as
n intensity �loss� modulator in the 1�1 switches follow-
ng the MZI.

To realize the desired 2�2 optical switch required for
DU assembly, a second MMI coupler is inserted at the

nput of the MZI as depicted in Fig. 3�b�. The working
rinciple remains similar to that of the 1�2 switch. The
hoice of biases V1 and V2 allows selecting one of the input
orts to be routed to one of the output ports via phase
odulation. Similar to the 1�2 switches, two 1�1

witches �biases V3 and V4� are inserted at the output arms
o provide more than 40-dB extra isolation via intensity
loss� modulation in the off port.

Guided-wave optical delay lines on the TDU silicon
hip in Fig. 2 provide high precision for rf beamforming
ystems, because the waveguides are defined using photo-
ithography, by which waveguide lengths can be controlled
ith submicron precision with accuracy limits typically set
y processing variations or the mask quantization. The
igher refractive index of silicon than that of silica �3.4
ersus 1.45� suggests that a larger time delay per wave-
uide length ��12 ps /mm� is possible in silicon. Figure 4
hows how long �2.5-ns� time delays are achievable in a
0-cm-long S-shaped waveguide. The footprint of such a
hip is 3.5�1.5 cm2. Note that the proposed silicon photo-
ic delay lines would induce a typical waveguide linear
oss of 0.3 dB /cm,35 and thus the overall loss can be as
igh as 6 dB for a 2.5-ns waveguide delay. Given that
eamforming requires cascaded delay lines, a 6-dB loss is
onsidered high. Given that silicon Raman amplifiers have
roven successful,36,37 we propose their use for optical loss
ecovery in the silicon TDU chip. Note that stimulated Ra-
an scattering �SRS� has been long exploited in optical
bers to create amplifiers and lasers. However, several ki-

ometers of fiber are typically required to create a useful
evice. The gain coefficient for SRS in silicon is approxi-
ately 103 to 104 times higher than that in silica fiber.

ig. 4 Proposed S-shaped waveguides for achieving long on-chip
hotonic delay lines in the silicon TDU of Fig. 2.
ptical Engineering 018201-
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Additionally, silicon waveguides can confine the optical
field to an area that is approximately 100 times smaller than
the modal area in a standard single-mode optical fiber.
Combined, these facts make it possible to observe SRS
over the interaction lengths encountered on a chip. To
achieve net cw gain, a pn junction diode can be used to
sweep the carriers out of the waveguide core region. Up to
6.5 dB of optical gain has been demonstrated,38,39 which is
sufficient to compensate for the loss of a 2.5-ns silicon
waveguide delay. Hence, we propose the integration of
such Raman amplifiers in the silicon TDU. For these opti-
cally pumped amplifiers, an off-chip laser source is re-
quired, whose beam ought to be combined with the rf-
modulated signal for the PAA. As shown in Fig. 5, a
Y-junction combiner can achieve this goal.

3 Performance Predictions
Next, the critical performance parameters of the silicon
photonic devices used to realize the proposed TDU are pre-
sented. First, the diode waveguides shown in Fig. 3 are
analyzed using the lateral geometry shown in Fig. 6, with
ridge height H=2.0 �m, waveguide width W=1.5 �m, slab
height h=1.1 �m, and ridge-to-contact spacing d=2 �m
used in the numerical simulations. The model used in the
calculations follows Ref. 40. The dependence of free-
carrier absorption �FCA�, �FCA, on carrier density is given
by

Fig. 5 Proposed method for integrating a photonic delay line and a
silicon Raman amplifier needed for the TDU design of Fig. 2.

Fig. 6 Schematic of the proposed silicon EO modulator with a strad-
dling pn junction diode. Modulation of carriers �electrons and holes�
in the waveguide core region via the pn junction allows phase or
intensity modulation of the guided light. Ridge height H=2.0 �m,
waveguide width W=1.5 �m, slab height h=1.1 �m, and contact-to-
ridge spacing d=2 �m are used in the numerical simulations.
January 2010/Vol. 49�1�4
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FCA = 8.5 � 10−18 · �N + 6.0 � 10−18 · �P , �1�

here �N and �P are the free-electron and hole concen-
rations, respectively. In the presence of FCA and two-
hoton absorption �TPA�, the propagation of optical inten-
ity Ip�z� along the z direction �Fig. 6� is given by the
ollowing nonlinear differential equation:

dIp�z�
dz

= − �� + �FCA�z��Ip�z� − �Ip
2�z� , �2�

here �=0.7 centimeter per gigawatt �cm/GW� is the TPA
oefficient, and � is the linear absorption coefficient of the
aveguide. Here �FCA is a function of the optical intensity

p and bias voltage V. The device was simulated using a
ommercial drift-diffusion simulator �ATLAS by Silvaco
nternational�. TPA was emulated by specifying a carrier
eneration rate G at the waveguide core with G=dN /dt=
�1 /2E�dIp /dz=�Ip

2 /2E, where E=0.8 eV is the photon
nergy and N is the carrier density. The values of the elec-
ron and hole bulk recombination lifetimes were 3 and
0 �s, respectively. A surface recombination velocity of
00 cm /s was used for both types of carriers. The simula-
or provides the carrier concentration as a function of V,
rom which, by using Eq. �1�, the output optical intensity
nd modulation depth are obtained. The optical transmis-
ion and modulation depth can be extracted from
p�L� / Ip�0� as a function of V. In order to accommodate the
-D nature of the problem, a quasi-3D model is developed
n which the 2-D results of ATLAS at several optical inten-
ities are interpolated to numerically solve Eq. �2�. The
imulator also provides the diode current per unit length, J
A /�m�.

The switching speed of intensity EO modulators is a key
gure of merit for rf photonics. Up to 10-GHz bandwidth
as been reported in EO �carrier injection type� silicon op-
ical modulators.41 Figure 7 shows a summary of the con-
ucted switching �intensity modulation� simulation results
n a 0.4-cm-long waveguide. A 10-MHz �100-ns period�
quare waveform electrical signal with trise= tfall=200 ps is
pplied to the diode. An external resistance of 5 � cm2 was
ssumed. The simulated optical response shows ton
12.9 ns, toff=5.6 ns, giving fmax�54 MHz ��18.5-ns

witching time� achievable in this particular bias case of

ig. 7 Simulated switching results for a silicon intensity �loss�
odulator, showing: �a� applied electrical signal; �b� output optical

ransmission with �50-dB extinction ratio.
ptical Engineering 018201-

Downloaded from SPIE Digital Library on 17 Jan 2010 to 1
Voff=−2.0 V and Von=2.0 V. Up to 49.3-dB modulation
depth �i.e., extinction ratio� is attainable by this choice of
biases.

The characteristic �static attenuation versus bias current�
of the diode waveguide is shown in Fig. 8. By trading off
some of the 18.5-ns switching time, one can achieve higher
extinction ratios, which can be beneficial for noise suppres-
sion in the TDU.

To estimate the performance of the MZI-based Si
switches �phase modulation�, a 5-MHz �200-ns period�
square-waveform electrical signal with trise= tfall=35.5 ps is
applied to the diodes. In a 0.5-cm-long waveguide, a 	
phase shift is achievable for Voff=0.75 V and Von=0 V,
that is, V	=0.75 V. An optical loss of 0.9 dB loss in the off
state �0.75 V� is obtained. Figure 9 shows the transient re-
sponse of phase shift under these conditions. The transient
optical response shows ton=6.2 ns, toff=24.2 ns, indicating
that fmax�33 MHz �or �30-ns TDU switching time� is at-
tainable. These initial design studies of the proposed
silicon-photonics-based TDU indicate the road to achieving
the desired numbers for loss, crosstalk, delay range, and
switching speed.

4 Conclusions
Over the years, the stringent rf beamformer system require-
ments have impeded deployment of an optically controlled
PAA. Silicon photonics is a promising technology for ful-
filling this elusive goal. For the first time, to our knowl-
edge, this paper proposes, analyzes, and simulates a silicon-

Fig. 8 Attenuation versus bias current of the ridge waveguide with
pn junction diode under forward bias for intensity �loss� modulation.

Fig. 9 Simulated switching results of a silicon phase modulator,
showing: �a� applied electrical signal; �b� transient response for at-
taining 	 phase shift. The result confirms that �30-ns switching time
is attainable in the proposed switches.
January 2010/Vol. 49�1�5
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hotonic TDU design to enable an element-level wideband
eamformer.42 The novel chip-scale TDU uses silicon 2
2 switches, photonic delay lines, integrated Raman am-

lifiers, and VOAs. The reported design simulations sug-
est that it is feasible to obtain a high-performance all-
ilicon TDU that provides the low crosstalk �50 dB
ptical�, high speed ��1 �s�, long delays �up to 2.5 ns�,
nd low insertion loss ��6 dB� required for an advanced
eamforming TDU.

Future work relates to the fabrication of the proposed
ilicon TDU.
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