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The mode expansion approach in vectorial form, using a complete set of guided modes of a circular step-index
fiber (SIF), is developed and applied to analyze multimode interference in multimode fibers (MMFs) for the
first time, to the best of our knowledge. The complete set of guided modes of an SIF is defined based on its
modal properties, and a suitable modal orthogonality relation is identified to evaluate the coefficients in a
mode expansion. An algorithm, adaptive to incident fields, is then developed to systematically and efficiently
perform mode expansion in highly MMF's. The mode expansion approach is successfully applied to investigate
the mode-selection properties of coreless fiber segments incorporated in multicore fiber lasers and the self-

imaging in MMFs. © 2007 Optical Society of America
OCIS codes: 060.2270, 060.2340, 140.3510, 140.3290.

1. INTRODUCTION

In a multimode step-index fiber (SIF), multiple modes can
be guided along the fiber. A general incident optical field
typically excites higher-order modes in addition to the
fundamental modes of the fiber; consequently, the excited
propagating field is a combination of guided modes and is
subject to multimode interference (MMI). Due to the MMI
effect, multimode fibers (MMFs) can be designed to con-
trol field propagation and therefore be utilized as MMI
components in fiber optic devices. It has been demon-
strated, both numerically and experimentally, that by ap-
plying the MMI theory, MMFs can be successfully de-
signed and employed in optical devices such as fiber-optic
displacement sensors [1], wavelength tunable fiber lenses
[2] and lasers [3], refractometer sensors [4], bandpass fil-
ters [5], phase-locked multicore fiber lasers [6,7], etc. For
photonic devices based on optical fibers, an all-fiber de-
sign is always highly desirable, considering its advantage
of being compact and free of alignment. MMF-based ele-
ments fit naturally in all-fiber designs and have been
proved capable of controlling the propagation of light
[1-7]. To effectively design MMF's for MMI-based applica-
tions, it is crucial to be able to simulate and understand
the MMI effects of MMF's.

MMI was first proposed and investigated for slab
waveguides. Self-imaging in step-index slab waveguides,
a phenomenon due to MMI, was proposed in [8] and later
described in detail in [9]. Since then, optical devices based
on MMI and self-imaging in slab waveguides have been
widely used in various photonic integrated circuits for op-
tical communications, including optical couplers, combin-
ers, switches, modulators, filters, etc. Soldano and Pen-
nings [10] suggested modal propagation analysis, ray
optics, hybrid methods, and the beam propagation
method (BPM) as potential approaches for analyzing
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MMI in slab waveguides. The guided-mode propagation
analysis was employed by Soldano and Pennings [10] to
investigate the self-imaging principle in multimode slab
waveguides, which led to a number of fundamental find-
ings. The great success in the analysis of MMI in slab
waveguides can be attributed to the fact that there exists
an analytical formula for evaluating the propagation con-
stants of the guided modes of highly multimode slab
waveguides [10]. In contrast, for highly multimode SIFs,
the majority of the guided modes are hybrid and not lin-
early polarized, with no generic analytical formula avail-
able for evaluating the propagation constants. This com-
plicates the analysis of MMI in multimode SIFs and
renders the necessity of relying on numerical approaches.

Two numerical approaches have been reported in the
literature regarding analyzing MMI effects and self-
imaging properties of MMF's, namely, the mode expansion
approach [1,2,5] and the BPM [4,11]. In [1,2,5], the fun-
damental scalar mode of a single-mode SIF is coupled to
the center of an MMF segment, where the MMI in the
MMF segment is analyzed with the mode expansion ap-
proach. In this approach, the weakly guiding approxima-
tion is adopted for the MMF, so the guided modes of the
MMF, which form the basis for the mode expansion ap-
proach, are linearly polarized (LP) (or scalar). Since the
amplitude of the incident scalar field is circularly sym-
metric with respect to the MMF, the modes excited in the
MMF are circularly symmetric as well. As a result, the
number of guided modes used in the mode expansion is
greatly reduced. In summary, the mode expansion ap-
proach is efficient and has the inherent advantage of
avoiding numerical error accumulation when the length
of the MMF increases. Given that only circularly symmet-
ric modes are used, this approach, however, cannot be ap-
plied to study, e.g., the effect of misalignments between
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the single-mode fiber (SMF) segment and the MMF seg-
ment [5]. In [4,11], MMI in the MMF segment of an SMF-
MMF-SMF structure is investigated with the BPM, where
the optical field inside the structure is assumed to be lin-
early polarized and the scalar wave equation is solved ac-
cordingly. Considering the circular symmetry of the struc-
ture, the optical field is further simplified to be
independent of the angular coordinate in the cylindrical
coordinate system. The Padé approximation is employed
in the finite-difference scheme to ensure the accuracy of
the BPM if the propagating field contains large angle
components. Since the BPM makes use of the circular
symmetry of the fiber structure and assumes that the op-
tical field is linearly polarized with circularly symmetric
amplitude, this approach, like the mode expansion ap-
proach in [1,2,5], is not applicable to cases where mis-
alignments between different fiber segments need to be
considered.

The vectorial finite-difference beam propagation
method (VFDBPM) is a more general approach and ca-
pable of analyzing the effect of misalignments between
different fiber segments. However, VFDBPM relies on
finite-difference schemes for discretization of the trans-
verse domain of a given structure, and therefore treats
discontinuity in the material and nongrid aligned bound-
aries separately. The vectorial finite-element beam propa-
gation method (FE-BPM), being an integral formation on
an irregular grid of the transverse domain of a structure,
can be used as an alternative to VFDBPM to overcome
the above-mentioned disadvantages of finite-difference
BPMs. In both methods, the matrix exponent of beam
propagation is represented with Taylor or Padé approxi-
mation, leading to linear increases in numerical errors as
the propagation distance increases. This is illustrated in
Section 4, where the vectorial FE-BPM is employed to
analyze MMI in MMFs. Therefore, no matter how accu-
rately a numerical discretization can be devised for the
VFDBPM or vectorial FE-BPM, the fundamental disad-
vantage of error accumulation with propagation distance
is unavoidable.

In this paper, the mode expansion approach in vectorial
form, using a complete set of guided modes of a multi-
mode SIF, is developed and employed to analyze MMI in
MDMFs for the first time, to the best of our knowledge. Un-
like the scalar approaches presented in the literature, the
vectorial mode expansion approach can be applied to ana-
lyze the MMI of an optical field that is noncircularly sym-
metric to its host MMF. To systematically calculate the
guided modes of an SIF with computer procedures, the
modal characteristics of the SIFs are explored in detail,
and a set of simplified formulas is derived for describing
the electromagnetic field of the guided mode with a given
propagation constant. The guided modes with negative
angular orders, being largely neglected in the literature,
are elaborated to form the complete set of the guided
modes of an SIF for the mode expansion approach. To
evaluate the coefficients in a mode expansion, a suitable
orthogonality relation for the guided modes used in this
study is identified and verified both analytically and nu-
merically. Since a large number of guided modes are al-
lowed in an MMF for MMI applications, an adaptive algo-
rithm is developed in Section 3 to perform mode
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expansion of optical fields in highly MMFs systematically
and efficiently. In Section 4, the mode expansion approach
developed in this study is validated by utilizing it to ana-
lyze MMI in two MMF-based components, namely, the
coreless fiber segment for mode selection in a multicore fi-
ber (MCF) laser [6,7] and the MMF segment in an SMF-
MMF-SMF structure [4,5]. The results in Section 4 show
that the vectorial mode expansion approach can capture
the polarization effect on MMI that cannot be resolved by
scalar approaches.

2. MODAL PROPERTIES AND
ORTHOGONALITY RELATION

For circular SIFs the optical field and the corresponding
propagation constant of a guided mode can be solved rig-
orously. The analytical formulas describing the field and
the characteristic equations for the propagation constant
have been presented in the literature [12—15]. In addition,
the orthogonality relations between guided modes of
waveguides, mainly used for microwave applications,
have been extensively discussed and applied in the litera-
ture [13,16—22]. In this section, we elaborate on some as-
pects of the modal properties of circular SIFs that have
not been adequately explored in the literature; these as-
pects, however, are crucial to the implementation of the
mode expansion approach in computer procedures. A suit-
able orthogonality relation is identified for the guided
modes described in this section and is validated both ana-
lytically and numerically. It is worth noting that the radi-
ating eigenmodes of SIFs are not important for MMI-
based applications [2] and therefore are not discussed in
this section.

A. Modal Properties of Circular Step-Index Fibers

For a circular SIF with a core of refractive index n; and
radius a, and a cladding with refractive index n,, the elec-
tric and magnetic (EM) field of a guided mode propagat-
ing along the z axis can be expressed as [15]

E(r,,2,0) = E(r)explil ¢)expli(wt - B2)],  (1a)

H(r,$,2,t) = H(r)exp(il ¢)expli(wt - Bz)],  (1b)

where o is the angular frequency of the field; B is the
propagation constant; and / is a nonnegative integer de-
noting the angular dependence of the mode. Based on
Maxwell’s equations and the boundary conditions at the
interface between the core and the cladding, the propaga-
tion constant B8 must satisfy the characteristic equation
[15] of

Jyq(ha) n?+n2 K (qa) ( l

hadi(ha)  2n? anl(qa)+ (ha)Z_R>’ 2

for EH modes (or TE modes when [/ equals zero), or that of

Jiatha)  ni+ni Kj(ga) ( !
= - + -
had;(ha) Zn% qaK;(qa) (ha)?

R) , (2b)

for HE modes (or TM modes when [ equals zero), where J
is a Bessel function of the first kind, K is a modified
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Bessel function of the second kind,

|:(n§ —n%)z( K;(qa) )2
R= 5
2n7 qaKi(ga)

1B \* 1 1 172
' <”lko> ((QGL)2 ’ (ha)2>:| ’ (2¢)
W =niks- B, q*= - niki, (2d)
VP=(ha) +(qaP = 3 -ndia®, ()

where k( is the wavenumber of the light in free space, V' is
the V parameter of the SIF, and ha and ga are within the
range of (0,V). The EM field of the guided mode with
propagation constant B is described by Egs. (3.2-6) to
(3.2-9) and Eq. (3.2-12) in [15].

The discussion indicates that the propagation constant
B is a key parameter for guided modes of an SIF; once B is
determined, the EM field can be readily computed. To sys-
tematically solve Egs. (2a) and (2b) for the propagation
constants of guided modes of angular order [ with a nu-
merical procedure, it is important to investigate the prop-
erties of Egs. (2a)—(2¢) and thus determine proper bound-
ary conditions required by the numerical procedure. Note
that as ha increases from zero to the V parameter of the
fiber, the left side of Eq. (2a) or Eq. (2b) resembles the tan-
gent or cotangent function, with the singularities of the
left side occurring at ha that satisfies the equation of
J;(ha)=0; the property of the right side of Eq. (2a) or Eq.
(2b), however, is very complicated, except that the right
side is a smooth function of ha (or ga). In Appendix A, the
properties of the right-hand sides (RHSs) of Egs. (2a) and
(2b) are examined in detail and the results can be sum-
marized as follows:

1. For TE, TM, or EH modes, i.e., [=0 in Eq. (2a) or Eq.
(2b), or >0 in Eq. (2a), the RHS of Eq. (2a) or Eq. (2b) is
negative for ha between 0 and the V parameter of the fi-
ber. The RHS has a finite negative value when ha equals
0 and goes to negative infinity when ha approaches V.

2. For HE modes, i.e., [ >0 in Eq. (2b), the RHS of Eq.
(2b) is positive for ha between 0 and V and has a finite
positive value when ha is equal to 0. As ha approaches V,
the RHS is expressed as

lim RHSyg(ha)= + © forl=1, (3a)
ha—V
2
ny
lim RHSyg(ha) = s— forl>1. (3b)
ha—V - 1 niy+ny

Based on the properties of Egs. (2a) and (2b) discussed
previously, the cutoff values of the V parameter for guided
modes of SIFs can be easily obtained with the graphic ap-
proach [13,15]. For example for HE;,, modes, the cutoff
values V,, satisfy

Jl(Vm) = 07 Vl = 07 (4)

where m is a positive integer, indicating that there is no
cutoff for HE; modes. For the HE;,, mode with / greater
than 1, V,, satisfies the equation of
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Ja(V,) 1 nj

rra— > Va#0, (5)
Vi i(V:y)

—_—
l-1ni+n;

which can be obtained intuitively with the graphic ap-
proach [13,15] and is equivalent to Eq. (24) in [12]. Note
that the cut-off conditions for TE, TM, EH, and HE,,
modes are only dependent on the V parameter of the fiber,
while the appearance of an HE;,, mode with [/ greater
than 1 is also dependent on the refractive indices of the
core and cladding of the SIF.

With the properties of the characteristic Eqs. (2a) and
(2b), the number of guided modes and the corresponding
propagation constants can be systematically and accu-
rately determined for a given SIF by numerical proce-
dures. It is suggested that the propagation constant 8 of a
guided mode can be used to fully determine the EM field
of the mode based on Egs. (3.2-6)—(3.2-9) and Eq. (3.2-12)
in [15]. In the current paper, these equations are rewrit-
ten to a set of simplified formulas for the EM field of a
guided mode that can be readily implemented in com-
puter procedures. For EH, HE, and TM modes of a SIF,
the parameter P defined in Eq. (16) of [12], i.e.,

1 1 (Jl’(ha) Kj(ga) \™!
P=l q2a2 h2a? haJl(ha)+ ©)

qaK(qa)
is adopted and the EM field of the mode with propagation
constant B can be expressed as the following:

1. in the core, i.e., r<a,

B
E,(r,¢)=- ﬁA[(l = P)J;_1(hr) = (1 + P)Jy,(hr)Jexp(il ¢),

(7a)
B
Eolr, )= o AL =P a(r) + (L PUT (b lexp(il ),
(7h)
E.(r, ) = AJ (hr)exp(ild), (70)
Hr,d) = 2—‘:A[<flP 1)) - (P
+ Dy () Jexplil ), (7d)
H(r,d) = A[qu 1), (hr)
+ P+ D) lexplild),  (Te)
H(r,¢) = 7Af1PJl<hr>exp(zl¢> (70

where A is a scalable coefficient, 81=80n§, and
f1=B/(nik3); (7g)
2. in the cladding (i.e., r>a),
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B
E,(r,¢)=- ZC[(I - P)K;_1(gr) + (1 + P)K;,4(qr)]lexp(il¢),

(8a)

B
Eyr,¢) = ZC[(l - P)K;_1(gr) - (1 + P)K},1(gr)lexp(il ¢),

(8b)
E.(r,¢) = CK(qr)exp(il ¢), (8c)
wWE9
H,(r,¢)=- EC[(l - foP)K;_1(qr)
- (1+foP)K;,1(qr)lexp(il @), (8d)
lweg
Hyr,¢) =~ EC[(l - foP)K;_1(qr)
+(1+£,P)K;,1(qr)lexp(il ¢), (8e)
H,(r,¢)= ?Cf oPK,(qr)exp(il ), (89
where 82=80n§,
C=AdJ,(ha)/K)(qa), (8g)
fa= B (n3k3). (8h)

The complete description of the EM field of the guided
mode is obtained by multiplying Eqgs. (7a)—(7f) and (8a)—
(8f) by the ¢ and z dependence of exp[i(wt—Bz)]. Note that
for TM modes, [ is zero and hence P is zero. It can be veri-
fied from Eqs. (7a)—(7f) and (8a)—(8f) that the field compo-
nents H,, H,, and E, are zero for TM modes. For TE
modes, Jy(ha)/[hady(ha)]+Ky(ga)/[gaKy(ga)]=0, so the
parameter P is not defined by Eq. (6); therefore, Eqs.
(7a)—(7g) and (8a)—(8h) are not applicable in this case. The
EM field of a TE mode with propagation constant 8 can be
derived as follows:

1. in the core,

1B
Eyr,¢)=- —AJ 1(hr), (9a)
e ,82
H,(r,$) = AJ 1(hr), (9b)
g3
H,(r,¢) = —5-Ado(hr), (9¢)
()

2. in the cladding,

8, Jo(ha)
Ko( a)

Eyr,¢)= Ki(gr), (10a)
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inOﬁz Jo(ha)

Hr(r5¢) == qk(Q) Aml{l(qr)’ (1Ob)
)= S LATD e am) (10¢)
zr>¢— k(2) Ko( ) qu’ C

all the other components of the EM field of the TE mode,
namely, E,, E,, and H, are zero.

In the previous discussion, the guided modes are con-
sidered having an angular dependence of exp(+il¢). Ref-
erence [15] briefly mentioned that for />0, the angular
dependence of exp(-il¢) in Egs. (1a) and (1b) corresponds
to an independent set of eigenmodes for a given SIF;
therefore, +/ and —/ modes together constitute the full set
of the guided modes for the mode expansion approach. For
modes propagating in +z direction, the electric fields of +/
and -/ modes can be expressed as

EX(r,¢)=E(r, ;1) = EO(rexp(ilg),  (11a)

E(r,¢)=E(r, ;- 1) = ED(r)exp(~il¢).  (11b)

Similar expressions can be derived for the magnetic
fields. With Maxwell’s curl equations of Egs. (3.1-3a)—(3.1-
4c) in [15], it can be verified that if an EM field of
E\r,¢;0), Efr,@;0), E.(r, @30, Hy(r,e;0), Hy(r,¢;0), and
H,(r,¢;l) is a solution to the Maxwell’s curl equations, so
is the EM field of E (r @5 ), E LT, @50), -E.(r,e;0),
H: A, 3l), H (r,@;0), and -H. L(r, (p,l) Therefore, the elec-
tric field of — l mode can be obtamed directly from the cor-
responding +/mode as follows:

E7V(r) =[E ()] B () = [EJn)]ES () =~ [EDM)]

(12)

and the magnetic field can be determined in a similar
way. Since a -/ mode has the same propagation constant
as the corresponding +/ mode, these two modes are degen-
erate. The complex amplitudes of the transverse compo-
nents of the electric fields of the -/ and +/ modes further
indicate that left-hand (LH) polarization and right-hand
(RH) polarization can be associated with these two modes,
respectively [13]. Thus, the -/ and +/ modes, with differ-
ent polarization states, are degenerate. Due to the degen-
eracy, any linear combination of the —/ and +/ modes is an
eigenmode with the same propagation constant of 3. For
weakly guiding SIFs, the double degenerate LP modes
LPy,, [23] can be derived using HE;,, and HE_;,, modes.
Additionally, the discussion on —/ modes allows for the un-
derstanding of the fourfold degeneracy of the LP;,, modes
with [ greater than 0 [23]. The four independent LP,,
modes can be obtained with linear superposition of the
two degenerate modes HEy,, and HE_,,, and the two ad-
ditional modes TE,, and TM,,,. It needs to be clarified
that there is not another mode that is degenerate with a
TE,, or TM,,, mode. For LP;,, modes with / greater than
1, the modes EH;,4 ,,, and EH_g,4) ,, modes are degenerate
with the modes HE,_; ,, and HE_;_;) ,; thus, the degen-
eracy of LP;,, modes is fourfold.

According to this discussion, a complete set of guided
modes of a circular SIF can be described as follows, (1) for
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[=0, the guided modes are TEg,, and TM,,, modes, and
each of them is nondegenerate; and (2) for />0, the
guided modes are HE,;,, and EH,;, modes, and each
mode with +/ has a degenerate counterpart with -/ that
has the same propagation constant. It is noteworthy that
since any linear superposition of two degenerate eigen-
modes is an eigenmode, other complete sets of guided
modes can be derived from the set of modes described
above.

B. Mode Orthogonality Relation

With the modal properties of SIF's described in Subsection
2.A, the complete set of the guided modes can be com-
puted for a given SIF, forming a Hilbert space where an
arbitrary propagating field in the fiber can be expanded
as a linear superposition of the guided modes of the SIF.
To facilitate mode expansion of an EM field in an SIF, it is
important to adopt a suitable orthogonality relation be-
tween the guided modes of the fiber.

The orthogonality relations presented in the literature
are mainly derived for waveguides with closed transverse
boundaries in microwave applications, where the trans-
verse boundaries are perfectly electric or magnetic, or
subject to the impedance boundary condition [16—-22]. The
Lorentz reciprocal principle or its generalized version for
anisotropic materials is applied in [16,17,19,21,22] to the
normal modes of waveguides (and those of the comple-
mentary waveguides if waveguides are nonreciprocal)
[22] to derive the orthogonality relations. In [18,20], Max-
well curl equations for the normal modes of waveguides
are expressed in terms of linear operators, and the spec-
tral theory of linear operators is utilized to obtain the or-
thogonality properties of the eigenvectors of the linear op-
erators (i.e., the normal modes of the waveguides). The
two approaches have yielded the same orthogonality rela-
tions. For a bidirectional waveguide whose normal modes
are in the form [16] of

E™(x,y,2,t) = (€ (x,y) + 2e"(x,y))exp(- y,2)expliot),
(13)

where the subscript 7" denotes the transverse component,
the orthogonality relation between the modes can be ex-
pressed as

ﬂ dsz - (@ X B§Y) = N, 8, (14)
S

where the integration is over the cross section of the
closed boundary waveguide, N,, is the normalization con-
stant, and §,,,, is the Kronecker delta. It is worth noting
that the orthogonality relation in Eq. (14) is valid for
lossy, amplifying, or lossless waveguides. If the waveguide
is lossless, y, in Eq. (13) becomes purely imaginary and a
similar orthogonality relation,

ﬂ dss - (& X R = 2P, 8,00 (15)
S

can be derived, where the superscript * denotes the com-
plex conjugate. Equation (15) is known as the power or-
thogonality relation [16], meaning that in a lossless uni-
form waveguide, the powers of individual modes
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propagate independently in the waveguide.

Although it is mentioned in [18,22] that the orthogonal-
ity relations derived for closed boundary waveguides are
applicable to open boundary waveguides such as optical
fibers, no details are provided to justify the statement.
For an SIF, the dielectric function is discontinuous at the
material interface and thus can play an important role in
the orthogonality properties of the guided modes. With
the material interfaces in fibers taken into account, the
Lorentz reciprocal theorem is applied in Appendix B to
derive the orthogonality relations for the guided modes of
bidirectional optical fibers with discontinuous dielectric
functions. It is demonstrated that the guided modes of bi-
directional optical fibers satisfy an almost identical or-
thogonality relation to Eq. (14) [or Eq. (15) for a lossless
fiber], except that for optical fibers, the domain of integra-
tion in Eq. (14) [or Eq. (15)] is the entire two-dimensional
plane.

For optical fibers with a weak guidance approximation,
the guided modes can be considered as linearly polarized,
or equivalently scalar, and the orthogonality relations in
Eqgs. (14) and (15) can be simplified to

ﬂ Asé) - S =M 5, (16)
S

ﬂ dséf) - & = QO (17)
S

respectively [23]. The orthogonality relation in Eq. (15),
denoted as OR I, and that in Eq. (17), denoted as OR II,
are applied to the guided modes of a circular coreless fiber
with a 200 um diameter core of the refractive index of
1.565 and a cladding of air. The normalized orthogonality
coefficient N,,, between modes m and n are calculated
with OR I and OR II to demonstrate the validity of the
two orthogonality relations. The coefficient N,,, is defined
as

N = Pyl [Py Prn] 2, (18)
where P,,, is
j . ﬂ dss - (& x B, (19a)
S
for OR I, or
Pl _ ﬂ dsdm . ) (19b)
S

for OR II. The guided modes of the fiber are computed for
the wavelength of 1.535 um; then, the normalized or-
thogonality coefficient between two guided modes is com-
puted with highly accurate numerical schemes. Since two
guided modes with different angular orders satisfy Eqgs.
(15) and (17) automatically, a set of HE and EH modes
with the same angular order is used to calculate the nor-
malized orthogonality coefficients for OR I and OR II in
double precision, and the results are listed in Tables 1
and 2, respectively. It can be observed that the normalized
orthogonality coefficient matrix in Table 1 has negligibly
small off-diagonal elements, implying that OR I is a suit-



2712 J. Opt. Soc. Am. B/Vol. 24, No. 10/October 2007

Table 1. Normalized Orthogonality Coefficients
N,,., Based on OR 1

HE59; HE 599 EHyg; EHig 09

HE;g, 1.00 9.87x10712 —9.00x 10713 -2.26x 10712
HEgq 9.86Xx10712  1.00 -7.33x10713 -3.47x 10712
EHjgg -9.97Xx107% -9.00x107  1.00 5.38x 10713
EHyg9 -2.46Xx10712 -3.76x10712 5.39x107¥ 1.00

able orthogonality relation for the guided modes of the
SIF considered. The coefficient matrix in Table 2, how-
ever, has relatively large off-diagonal entries, denoting
that OR II is not valid in this case. The two orthogonality
relations have been extensively tested for other guided
modes of the 200 um core fiber; the results consistently
show that OR I is well satisfied, while OR II does not hold
well. Therefore, OR I is adopted for the mode expansion
approach in this study.

3. AN ADAPTIVE ALGORITHM FOR THE
MODE EXPANSION APPROACH

According to the normal mode theory [23], a propagating
field inside an SIF can be expressed as a superposition of
the guided modes of the fiber, i.e.,

N N
E(r,$,2)= > CLEV(r,¢,2)= >, C,é™(r,p)exp(-iB,z2),
n=1 n=1
(20)

where N is the number of the guided modes and E™ is the
electric field of mode n. This superposition (with the same
coefficients) also applies to the magnetic field in the fiber.
With the orthogonality relation as defined in Eq. (15), the
coefficient C,, can be determined as follows:

ﬂ dsz - [E(r, 2 = 0) X AP (r,d)]
c, == ' , (21
ﬂ dst - @0, ) X B (r, )
S

where the domain of integration S is the transverse plane

and E™ is the field incident on the fiber. Once the coeffi-
cients of the guided modes are determined, the field along
the entire fiber is known from Eq. (20). Therefore, to
study the MMI of a field in a multimode SIF with the
mode expansion approach, the first step is to perform
mode expansion of the incident field described by Eq. (21).

For an MMF used as an MMI component, it is neces-
sary that a number of guided modes are supported by the

Table 2. Normalized Orthogonality Coefficients
N,,., Based on OR II

HE 591 HE590 EHig0: EHig90

HE;gs  1.00 -3.86x107% -1.48x10"3 7.11x10*
HE55 -3.86x10° 1.00 -9.97x107% -1.53x1073
EH;gy -148x1073 -9.97x107%  1.00 -2.86%x107°
EHjggp 7.11x107* -153x107% -2.86x10°  1.00
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fiber. For example, the outer diameter (OD) 200 um core-
less fiber as described in [6] allows for more than 10°
guided modes. Given the high mode density in such
MMFs, it is impractical to directly implement the mode
expansion described in Egs. (20) and (21) in numerical
procedures. A more efficient algorithm to perform the
mode expansion is to first identify a small subset of the
guided modes of an MMF according to the incident field
and then expand the field based on these guided modes.
More specifically, the algorithm must be capable of adap-
tively determining a proper subset of the guided modes
for expanding a given incident field. This is feasible, as
the guided modes of a fiber generally are not equally ex-
cited by an incident field; some modes are strongly excited
and carry more power, while others are weakly excited.
Therefore, in an adaptive algorithm, a proper subset of
guided modes for an incident field can be defined to con-
sist of those strongly excited guided modes. To systemati-
cally identify a subset of guided modes for a given inci-
dent field, it is important to simplify the representation of
the incident field and accordingly adopt a complete set of
guided modes defined in a suitable form.

Given the circular symmetry of multimode SIF's consid-
ered in this study, the transverse components of an arbi-
trary incident field can be expanded in Fourier series as
follows:

L
Ef(r,$z=0)= X é(r;Dexp(ild),  (22a)
I=-L
L
Ijliff(r, $z2=0)= }Zij’}(r;l)exp(ilgb), (22b)
I=-L

where L is the Fourier order corresponding to the highest
spatial frequency of the incident field in the angular di-
rection. It is evident that fast Fourier transform (FFT) is
a natural choice to perform the Fourier series expansions
in Eqgs. (22a) and (22b) with high efficiency. Based on
these expansions, it can be derived that

L

ﬂ dst-[En x Hr 1=S) || dst-[62G0) x B (r3D)],
S I=-L WJS
(23a)
R,=2- (B x HM/2, (23b)

where R, is the z component of the complex Poynting vec-
tor of the incident field. Equations (23a) and (23b) imply
that the total power of the incident field in the z direction
is the sum of the powers of its Fourier components in the
same direction. As a result, the percentage of the power of
each Fourier component out of the power of the incident
field can be determined systematically, and the set of the
Fourier orders carrying most of the power can be identi-
fied accordingly. Consequently, a simplified representa-
tion of the incident field can be defined using its major
Fourier components, i.e.,
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~ER(r,z=0)= >, éF(r;Dexplile),

leSL

Ef(r,¢,2=0)
(24)

where SL is the subset formed by the major Fourier or-
ders. Note that the difference between the incident field
and its approximation can be made desirably small by in-
cluding more Fourier orders in the subset SL.

It is recognizable that the set of the guided modes de-
scribed in Section 2, with the orthogonality relation de-
fined in Eq. (15), is a suitable set for the mode expansion
approach since (1) modes with + angular orders fit natu-
rally in the context where the Fourier expansions of Egs.
(22a) and (22b) are used to represent an incident field,
and (2) the Fourier component of the incident field with
the dependence of exp(il¢) only excites the guided modes
with the same angular dependence. Therefore, for the
simplified incident field in Eq. (24), the complete set of
modes with + angular orders allows for a suitable subset
of the modes to be systematically defined as consisting of
the ones with an angular order in subset SL. For ex-
ample, if the transverse component of an incident field is
real and linearly polarized, it is known that in a cylindri-
cal coordinate system, only the exp(+i¢) terms are non-
zero in the Fourier series expansion of the components of

the incident field such as Ei"(r, ¢,2=0). Therefore, a suit-
able subset of the guided modes to expand the incident
field can be chosen to consist of modes with angular order
+1, namely, the HE, ,, and EH.; , modes.

According to the modal properties discussed in Section
2, two integers [ (positive or negative) and n; (positive)
can be used as mode numbers to label a guided mode in a
circular SIF, where / denotes the mode having an angular
dependence of exp(il¢). For example, TEj,, and TM,,
modes are sorted in the descending order of their propa-
gation constants and are labeled as modes (0, n(). Simi-
larly, HE;,,, and EH;,, modes are labeled as modes (/, n;).
With this notation for labeling modes, the mode expan-
sion in Eq. (20) can be rewritten as [24]

L N

Epr,2) = 2 3 Craey ™ (Mexplilh - Bra2)],

I=-L n;=1
(25a)

and the expansion coefficient is
J rdrz - [E(r;1) X hy™ ()]
0

Cipy=— . (25b)
f rdrs - [65"(r) X RE™ ()]
0

Unlike in Eq. (21), where two-dimensional integrals are
involved, only two one-dimensional integrals need to be
evaluated in Eq. (25b), indicating that the complexity in
calculating the expansion coefficients is greatly reduced.
This represents another advantage of using the combina-
tion of the Fourier series representation of an incident
field and the set of the guided modes described in
Section 2.
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Based on Eqs. (24), (25a), and (25b), the adaptive algo-
rithm for mode expansion, capable of analyzing MMI in
highly MMFs, can be summarized as follows:

1. FFT is employed to obtain the Fourier series expan-
sion of an incident field. The percentage of the power of
each Fourier component is determined and used to define
a subset of the Fourier components SL that carry a desir-
able percentage (e.g., 99.9%) of the total incident power,
yielding a simplified incident field of Eq. (24).

2. For Fourier order [ in subset SL, Eq. (25b) is evalu-
ated to determine the expansion coefficients of the guided
modes with angular order /. With the orthogonality prop-
erties of the modes, it can be similarly derived that the
total power carried by all the modes with angular order [
is the sum of the powers of individual modes (I, n;). As a
result, a subset of the guided modes with angular order /,
denoted by SN,, can be defined by neglecting the modes
that are weakly excited by the incident field.

3. Step 2 is repeated for each Fourier order in subset
SL to obtain the mode expansion of the excited field in the
fiber, i.e.,

S X Cépmexplillg - B2l

leSL n;eSN;

ET(T’, (,b,Z)

(26)

The error induced by using a subset of the guided modes
can be reduced to a desirable level by including more
modes in the subset.

4. MULTIMODE INTERFERENCE IN FIBERS

With the adaptive algorithm discussed in Section 3, the
mode expansion approach can be effectively employed to
investigate MMI in highly MMF's. In this section, the new
approach is validated with two MMI-based applications:
(1) using coreless fiber segments for in-phase supermode
selection in MCF lasers [6,7], and (2) applying an SMF-
MMF-SMF structure to design a refractometer sensor [4]
or a bandpass filter [5].

A. Coreless Fibers for In-Phase Supermode Selection

It has been demonstrated in [6,7] that coreless fibers can
be utilized as mode-selection components to build mono-
lithic MCF lasers operating in the in-phase supermode. A
coreless fiber can be viewed as an SIF with a large glass
core and an air cladding; hence, a large number of modes

Fig. 1. (Color online) Two guided supermodes of the 19-core
MCEF: (a) HE;;-like fundamental supermode and (b) TM,;-like
higher-order supermode.



2714 J. Opt. Soc. Am. B/Vol. 24, No. 10/October 2007

()

Fig. 2.

(b)

Li et al.

()

(Color online) Amplitude profiles of the field at distances of (a) 300, (b) 500, and (c¢) 1000 um along the coreless fiber, respectively.

The fundamental supermode shown in Fig. 1(a) is the incident field and the FE-BPM is used to obtain the results.

are guided by the fiber. When a supermode of an MCF is
coupled into a coreless fiber, the supermode excites a
number of guided modes of the coreless fiber, and there-
fore is subject to MMI. Different supermodes experience
different types of MMI in coreless fibers, leading to the in-
phase supermode selection in MCF lasers [7]. To under-
stand the mode-selection properties of a coreless fiber, it
is important to simulate MMI or the propagating fields of
different supermodes in the coreless fiber.

The 19-core MCF laser in [6] is analyzed to investigate
the mode-selection properties of the coreless fiber with an
OD of 200 um. First, a mixed high-order vector finite-
element method [25] is employed to compute the guided
supermodes of the MCF with high accuracy. Two of the
guided supermodes, namely, an HE;;-like fundamental
supermode and a TM;-like high-order supermode, are il-
lustrated in Figs. 1(a) and 1(b). Each supermode is then
coupled into the OD 200 um coreless fiber, and the propa-
gation of the supermode inside the coreless fiber is simu-
lated to obtain the MMI. For comparison, the mode ex-
pansion approach developed in this study and the
vectorial FE-BPM [26] are employed to study the propa-
gation of a field along the coreless fiber independently.
The Padé approximant operator [27] is implemented in
the FE-BPM to allow for wide-angle beam propagation.
Using the fundamental supermode in Fig. 1(a) as the in-
cident field, the amplitude profiles of the electric field at
various locations along the coreless fiber are determined

(a)

Fig. 3.

(b)

with the two approaches and are illustrated in Figs.
2(a)-2(c) and Figs. 3(a)-3(c), respectively. The similarity
between the amplitude profiles from the two different ap-
proaches implies that the mode expansion approach prop-
erly simulates the field propagation in the coreless fiber. A
careful examination of Figs. 2(a)-2(c) shows that as the
propagation distance increases, the amplitude profiles ob-
tained with the FE-BPM become noisy and start to lose
symmetry. This is due to the fact that for the BPM, the
numerical error accumulates with the propagation dis-
tance and contaminates the physical field in the coreless
fiber. In the case of the mode expansion approach, the am-
plitude profiles shown in Figs. 3(a)-3(c) are clear and pre-
serve the symmetry at all three distances. The reason is
that for the mode expansion approach, the numerical er-
ror is introduced only by neglecting the weakly excited
modes, and hence does not increase with the propagation
distance. The simulation with the mode expansion ap-
proach shows that for the fundamental supermode, more
than 99.8% of its total power is coupled to fewer than 220
guided modes of the coreless fiber, which are used to form
the mode expansion and generate the results in Figs.
3(a)-3(c). It is also known that the computational cost for
the BPM is proportional to the propagation distance,
while for the mode expansion approach, the cost is fixed.
Based on these facts, the mode expansion approach is
preferable to the FE-BPM in cases where field propaga-
tion over a substantial distance is required.

()

(Color online) Amplitude profiles of the field at distances of (a) 300, (b) 500, and (c) 1000 um along the coreless fiber, respectively.

The fundamental supermode shown in Fig. 1(a) is the incident field and the mode expansion approach is employed here.
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The self-imaging properties of a field along a coreless
fiber, due to MMI, can be quantified by an effective am-
plitude reflection coefficient y [28], which is redefined
here in vectorial form as

ﬂ dsz - [Eq(r,¢,z) X Hy(r, ¢,z = 0)]
He) = ——— @7
ﬂ dsz - [E’T(r, ¢,z =0) X I}*T(r,qﬁ,z =0)]
S

With Eq. (26) and the mode orthogonality relation, Eq.
(27) can be rewritten as

Ho)=| X X [C, [P exp(=ifraz)| | TP,
leSL n;eSN;
(28a)
TP = E E |Cl,nl|2P(l’nl)’ (28b)
leSL n;eSN;
Pl = f rdrg - [60700) X A" (). (28¢)
0

The coefficients y of the fundamental supermode in Fig.
1(a) and the higher-order supermode in Fig. 1(b) are cal-
culated as functions of the propagation distance z along
the coreless fiber and are shown in Figs. 4(a) and 4(b), re-
spectively. To compare the self-imaging properties of a su-

1 T
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Fig. 4. (Color online) Effective amplitude reflection coefficient y
of (a) fundamental supermode in Fig. 1(a) or (b) higher-order su-
permode in Fig. 1(b) as a function of the propagation distance z
along the OD 200 um coreless fiber or a bulk medium of the same
refractive index as that of the coreless fiber, respectively.
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permode in a coreless fiber with those in a Talbot cavity
[28-30], the two supermodes are also propagated in a
bulk medium (i.e., a Talbot cavity) with the same refrac-
tive index as that of the coreless fiber. The corresponding
coefficients y are calculated with the vectorial diffraction
theory and are illustrated in Figs. 4(a) and 4(b) with
dashed black curves. For each supermode, the results
show that when the propagation distance is less than a
critical value, the self-imaging properties of the super-
mode in the coreless fiber are the same as those in the
Talbot cavity. This is physically consistent since a super-
mode can be considered as being composed of spatially
distributed beams, with each beam located at a corre-
sponding core of the MCF laser. If each beam propagates
a short distance, the diffracted beam is inside the lateral
boundary of the coreless fiber, implying that the propaga-
tion of the beam in the coreless fiber is not affected by the
lateral boundary of the fiber; therefore, it is the same as
that in the bulk medium. When the propagation distance
exceeds the critical value, the self-imaging properties of
the supermode in the coreless fiber start to deviate from
those in the Talbot cavity. This is due to the fact the dif-
fracted beams in a supermode are larger than the lateral
size of the coreless fiber, causing the propagated field of
the supermode in the coreless fiber to be different from
that in the bulk medium.

In [7], the effective amplitude reflection coefficients 7y of
all guided supermodes are calculated with the mode ex-
pansion approach to investigate the mode-selection prop-
erties of the OD 200 um coreless fiber segment in a 19-
core MCF laser. Based on the coefficients v, it is predicted
that in the MCF laser, the in-phase supermode selection
can only be achieved with the coreless fiber segment
within a certain length range. If the coreless fiber is
longer than a critical value, the in-phase supermode se-
lection cannot be realized. The experimental results in [7]
show that the in-phase supermode selection is obtained
for the MCF laser with a coreless fiber segment of
1660 um (i.e., the equivalent propagation distance z along
the coreless fiber is 3320 um). When a coreless fiber with
a longer length of 3380 um (i.e., z is 6760 um) is utilized
in the MCF laser, the beam quality of the laser deterio-
rates and the MCF laser is not operating in the in-phase
supermodes. To investigate how the numerical simula-
tions compare with the experimental results, the coeffi-
cients vy of all guided supermodes at the propagation dis-
tances of 3320 and 6760 um are illustrated in Fig. 5. As it
is shown, the two in-phase supermodes have the largest

—6—z=3320 um
—8—2z=6760 um ||

0 5 1I0 1‘5 2I0 2I5 3I0 3‘5 40
supermode index

Fig. 5. (Color online) Coefficients vy of all guided supermodes of

the MCF laser at the propagation distances of 3320 and 6760 um

along the coreless fiber segment.
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coefficients y among all guided supermodes at 3320 um,
indicating that the in-phase supermodes are favored by
the MCF laser. However, at 6760 um, eight high-order
guided supermodes have larger coefficients y than the in-
phase supermodes, with high-order modes favored by the
MCF laser. This indicates that the numerical prediction is
in good agreement with the experiment data. In the case
of a Talbot cavity, numerical simulations show that for
the MCF laser, the in-phase supermodes are favored as
long as the cavity length is beyond a critical value (see
similar results in [29,30]). Therefore, it can be concluded
that for long cavity length, the physical mechanism for
the mode selection with a coreless fiber is dominated by
the MMI effect and is fundamentally different from that
utilizing a Talbot cavity.

B. Self-Imaging in a Multimode Fiber

In [4,5], the MMI and self-imaging of optical fields in the
MMF segment of an SMF-MMF-SMF structure is utilized
to design an all-fiber refractometer sensor and an all-fiber
bandpass filter, respectively. Although the numerical
schemes employed in [4,5] to obtain the optimum designs
are suitable for the designs with circular symmetry, they
are not applicable to studying the effect of a misalignment
between the SMF and MMF segments. In this section, the
mode expansion approach developed in Section 3 is ap-
plied to analyze the effect of a misalignment on the self-
imaging in an MMF segment.

In the SMF-MMF-SMF structure studied here, the
Corning SMF-28 is used as the input and output SMF's
and a coreless fiber with an outer diameter of 62.5 um is
used for the MMF. The refractive indices of the core and
the cladding, denoted by n.,. and ng,q, and the core ra-
dius a e of each fiber are listed in Table 3. It is assumed
that the field propagating along the input SMF is the
HE;; mode of the fiber with its transverse component of
the electric field linearly polarized in the vertical (or y) di-
rection, as illustrated in Fig. 6(a). As a reference case, the
centers of the SMF and MMF segments are considered as
being perfectly aligned, and the mode expansion approach
is employed to calculate the coefficient vy of the field in the
MMF segment as a function of distance z along the MMF,
as illustrated by the solid black curves in Figs. 7(a) and
7(b). The computed y(z) shows that the first self-imaging
position of the HE;; mode incident on the MMF is at the
distance of 58.412 mm along the MMF, where the coeffi-
cient y has a maximum value of 93%. It can be easily de-
rived that the coupling efficiency 7 in Eq. (3) of [5] equals
Y2, yielding a coupling efficiency of 86% for an MMF seg-
ment of 58.412 mm. Note that the amplitude of the elec-
tric field at the self-imaging position, as illustrated in Fig.
6(b), is not circularly symmetric. This is due to the fact
that the field coupled into the MMF segment is linearly

Table 3. Parameters for the SMF-MMF-SMF
Structure at the Wavelength of 1.55 yum

aCOre

Neore Nclad (um)

SMF31:32 1.44924 1.44402 4.2
MMF 1.44402 1.0 62.5
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Q

(a) (b)
Fig. 6. (Color online) (a) HE;; mode of the SMF segment of the
SMF-MMF-SMF structure and (b) the amplitude of the field at
the self-imaging position along the MMF segment of the perfectly
aligned SMF-MMF-SMF structure.

polarized in the vertical direction and, therefore, experi-
ences noncircularly symmetric Fresnel reflection at the
interface between the core and cladding of the MMF, lead-
ing to the break of the circular symmetry in the ampli-
tude of the field. It is clear that the polarization effect
shown in Fig. 6(b) cannot be obtained with the scalar ap-
proaches in [4,5], where the field in the MMF is always
circularly symmetric.
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Fig. 7. (Color online) Coefficient vy of the field in the MMF seg-
ment of the SMF-MMF-SMF structure as a function of the propa-
gation distance z. The solid curves are for the perfectly aligned
structure, and the dash-dot curves are for the misaligned struc-
ture. The dashed curve corresponds to the coefficient y of the
field in a bulk medium of the same refractive index as that of the
MMTF core.
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Fig. 8. (Color online) Coefficient y at the self-imaging position

as a function of the offset between the centers of the input SMF

and MMF segments.

The effect of a misalignment between the SMF and
MMF segments is studied by analyzing a misaligned
structure where the centers of the SMFs are shifted by
5 um with respect to the center of the MMF in the hori-
zontal (or x) direction. The coefficient y of the field in the
MMF segment is similarly calculated and illustrated by
the dash-dot blue curves in Figs. 7(a) and 7(b). For com-
parison, the HE;; mode in Fig. 6(a) is also propagated in a
bulk medium of the same refractive index as the MMF,
and the coefficient y of the field in the bulk medium is cal-
culated with the vectorial diffraction theory and is shown
by the dashed red curve in Fig. 7(a). Similar to Figs. 4(a)
and 4(b), the perfect overlap among the lines of the three
different structures at short propagation distances indi-
cates that the results obtained from the mode expansion
approach are physically consistent and intelligible. It can
be observed that when the propagation distance is beyond
a critical value, the coefficient y for the misaligned struc-
ture deviates from that for the aligned structure. Al-
though a small misalignment between the SMF and MMF
segments shifts the self-imaging position by a relatively
small amount, as shown in Fig. 7(b), the maximum coef-
ficient vy, occurring at the self-imaging position, is greatly
reduced.

To further demonstrate the polarization effect on MMI
in the MMF segment of a misaligned structure, the center
of the input SMF segment is shifted away from the center
of the MMF in either the horizontal (x) direction or the
vertical (y) direction. In each case, the coefficient y at the
self-imaging position is calculated as a function of the off-
set between the centers of the input SMF and MMF seg-
ments and is shown in Fig. 8. The figure shows that for
the same amount of misalignment in the range consid-
ered, better self-imaging is always obtained for the
y-misaligned structure than the x-misaligned structure.
It is clear that this polarization effect on MMI has to be
resolved with vectorial approaches.

Based on the two examples presented in this subsec-
tion, it can be concluded that the mode expansion ap-
proach developed in this study is a valuable tool that is
capable of analyzing and designing MMF's for MMI-based
applications. Considering that the mode expansion ap-
proach essentially uses a complete set of guided modes of
a MMF, the field incident on the fiber can have complex
polarization and amplitude distribution.
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5. CONCLUSION

In this paper, the mode expansion approach in vectorial
form, using a complete set of guided modes of a circular
multimode SIF, is developed and employed to study the
MMI of optical fields in MMF's for the first time, to the
best of our knowledge. The properties of the characteristic
equations that govern the propagation constants of
guided modes are investigated, and a set of simplified for-
mulas for the EM fields of modes with given propagation
constants is introduced to systematically calculate the
guided modes of a SIF with numerical procedures. Guided
modes with negative angular orders, which are largely
missing in literature, are adequately explored to develop
a complete set of guided modes of a SIF necessary for the
mode expansion approach. To facilitate the calculation of
the mode expansion coefficients, a proper orthogonality
relation between the guided modes of SIFs is identified
and further validated numerically.

Based on the modal properties of an SIF and the or-
thogonality relation between guided modes, an adaptive
algorithm designed for highly MMFs is derived to system-
atically and efficiently perform the mode expansion of op-
tical fields in MMF's. The mode expansion approach is fur-
ther employed to analyze the two MMI-based
components—the coreless fiber segment in a monolithic
MCF laser and the MMF segment in an SMF-MMF-SMF
structure. For the cases that can be treated by FE-BPM
and the diffraction theory, an excellent agreement is ob-
served among the results from the mode expansion ap-
proach, the FE-BPM, and the diffraction theory. In addi-
tion, the mode-selection properties of the coreless fibers in
MCF lasers, predicted by the mode expansion approach,
are in good agreement with experimental observations.
With the complete set of guided modes effectively utilized,
incident fields are allowed to have complex polarization
and amplitude distributions. As a result, the mode expan-
sion approach developed in this study can resolve the po-
larization effect on MMI that cannot be captured by sca-
lar approaches, providing a valuable tool for analyzing
and designing MMFs for MMI-based applications.

Compared with other mode expansion approaches
where circularly symmetric scalar modes are used and ex-
pansion coefficients are determined by evaluating one-
dimensional integrations, the mode expansion approach
presented here, although a vectorial one, also involves
only one-dimensional integration with no significant in-
crease in complexity and computational cost. It is worth
noting that the concept of the adaptive mode expansion
algorithm presented in this paper can be applied to other
systems such as circularly symmetric gradient-index fi-
bers.

APPENDIX A

In this section, the properties of the right sides of Egs.

(2a) and (2b) are discussed for EH and HE modes with an-

gular order [ greater than 1. To facilitate the derivation of

the properties, Egs. (2d) and (2e) are geometrically illus-

trated in Fig. 9, where the line segment nyk, is perpen-

dicular to the plane formed by line segments & and q.
The right side of Eq. (2a) can be expressed as
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n 2ko

Fig. 9. Graphical representation of Eqgs. (2d) and (2e).
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When ha approaches the boundaries of range (0,V),
RHSgy takes an asymptotic form as follows:
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Similarly, the right side of Eq. (2b) can be expressed as
RHSyg(ha) =RA+RB-R. (A3)

When ha holds a value within in the range of (0,V),
RHSyy is less than 0, since
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sin? 6

K, i(qa)| 1  nj ( ! 2l K_,(qa) )
2= 2t 3 2t 2t
qaK(qa)| (ha)* n3i\(ha)® (qa)* qaK(qa)
>0. (Adc)

When ha approaches the boundaries of range (0,V),
RHSyg takes an asymptotic form as follows:

I ni+n3 K 4(V)
lim RHSHE(ha) = lim = o) s
ha—0 ha—0(RA+RB+R)  2n7 VEK,(V)
(Aba)
1 Sug(h 1 !
im RH =lim—————
Jim RHSue(ha) = lim 0 /B + R)
) 2n2
=lim - ——— In(qa)
ga—0 Nij+ny
— + 0o forl=1, (A5Db)
1 n2
lim RHSyg(ha) = ————— forl>1. (Abc)
ha—V l-1n7y+nj

Note that two limiting properties of K;(x) [15,33,34],
Ky(x)/(xK;(x)) — - Inx, (A6a)

K, 1(x)/(xK;(x)) — - 1/(2(I - 1)) (A6b)

for x approaching 0, are employed in these derivations.

APPENDIX B

The orthogonality properties of the guided modes of a gen-
eralized bidirectional SIF, as illustrated in Fig. 10, are

y

S>

®
z X

Fig. 10. Schematic of the cross section of a generalized SIF.
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discussed in this section. In Fig. 10, S; and S5 correspond
to the core and cladding regions of the step-index fiber, re-
spectively; C is the interface between S; and Sy, going
counterclockwise; and 7 is the unit outward normal. Let

(E™, H™) and (E™, H™) be two linearly independent
solutions to Maxwell’s equations for monochromatic fields
of frequency w; the Lorentz reciprocal principle can be ex-
pressed in a differential form as follows [21]:

V- (E™ x H™ -~ Em x H™) =0, (B1)

where no free or bond charge is present in the system. If

E™ and H™ are the EM fields of the normal mode 7 of
the fiber in Fig. 10, they can be written as [16,19,21,22]:

E™W=EP + E™2 = P (x,y) + e (x,y)3)exp(- T,2),
(B2a)

H™ =HP + HY% = (AP (x,y) + b (x,y))exp(- T',2),
(B2b)

where the subscript 7' denotes the transverse component
and I',, is a complex number (or a purely imaginary num-
ber for a lossless fiber). Note that the modes considered
here are confined in the x—y plane. For normal modes m
and n, Eq. (B1) reduces to

Vp- (E'(n) x Hm™ _ gm) % I_}(n))
=T, +T,)3- (E™ x H™ _Em x H™)  (B3)

With the two-dimensional form of the divergence theo-
rem, Eq. (B3) can be written in an integral form as

AS(E™ x H™ - E™ x H™) -2

S1+S9

(T + )

=3§ dU(E™H™ — E™ x Hm)D
c

—(E™ x H™ _Em x F0)@)|. 5 (B4)

where the superscripts (1) and (2) represent the fields in
the regions of S; and Sy, respectively. With the relation of

(E™ x H™) - i = (B x H™3 + E™3 x HM) - 7,
(B5)

and the continuity of the tangential components of the
fields along the interface C, the right side of Eq. (B4) re-
duces to

RS = % dl[(ﬁ(j{t)(h _ E%)(2))H£m) _ (E({{L)(D _ E(T(n)(2))Hin)]
C

X3 A. (B6)
Given that
BpY - Bpe - BRO-ER®E, (B

where N in the subscript denotes the component of the
transverse field in the direction of 72, Eq. (B6) reduces to
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RS= ﬂi A[(E" - BRI - (B3 - Efy@)aH!"]
C

X2n=0. (B8)
The combination of Egs. (B2a), (B2b), (B4), (B6), and (B8)
leads to the final result of

dS(E x by — & x By -5 =0.

S1+S9

T, + 1)

(B9)

Then, Eq. (14) is obtained for bidirectional waveguides (fi-
bers) by following the same procedure in [21], with the in-
tegration region S replaced by regions S; and S,.

For lossless fibers, the Lorentz reciprocal principle can
be written as

V- (E™ x H™" + E™* x HW) =0, (B10)

and Eq. (15) can be similarly derived. Note that Eqgs. (14)
and (15) are both valid for lossless fibers since they are
automatically bidirectional [22]. For a fiber with loss or
gain, bidirectionality can be ensured by specific spatial
symmetries of the fiber. Interested readers are referred to
[22] for details on bidirectionality.

It needs to be pointed out that the derivation for Eqs.
(14) and (15) is valid for modes m and n with I',, #T",, (or
nondegenerate modes). For a set of degenerate modes of a
lossless fiber, an independent set of modes can be formed
by linear superposition of the modes in the original set so
that Eqgs. (14) and (15) can be selectively satisfied by the
modes in the new set [23].
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