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Analysis and Design of Photonic Crystal Fibers
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Abstract—The modal characteristics of photonic crystal fibers
(PCFs), with guiding cores consisting of one or seven missing
airholes, are investigated with the finite element method and com-
pared to those of step-index fibers (SIFs). To extend the applica-
bility of the classical SIF theories to PCFs, the effective refractive
index of photonic crystal cladding and the effective core radius
of a PCF are studied systematically, based on simple physically
consistent concepts. With the new effective cladding index and
core radius of PCFs, the classical definition of the V parameter for
SIFs is extended to PCFs, and a highly efficient approach based on
the effective-index method is developed for the design of PCFs. The
new design approach has been successfully employed to analyze
the modal properties of PCF lasers with depressed-index cores
and further tested by using it to effectively estimate the number
of guided modes for PCFs with large cores.

Index Terms—Effective-index method (EIM), fiber laser, pho-
tonic crystal fiber (PCF), V parameter.

I. INTRODUCTION

NUMERICAL simulations of photonic crystal fibers
(PCFs) [1], [2] have confirmed that strong analogies can

be drawn between the modal behavior of the PCFs and that of
conventional circular step-index fibers (SIFs). In this paper, we
elaborate on some of these analogies, investigate the effective
refractive index of the photonic crystal cladding, the effective
core radius, and the V parameter of the PCFs, and show how
these results can be used to derive efficient design tools based
on the effective-index method (EIM) for PCFs. Our results
are particularly useful for experimentalists who would like to
readily design PCFs with specific modal characteristics before
studying them using a computationally expensive approach
such as the finite element method (FEM). Unlike axisymmetric
SIFs, there are no known analytical solutions to PCFs due
to their complex structures. Hence, the analogies between the
modal behaviors of the PCFs and the SIFs can be used to
gain intuitive understanding of the complex modal properties of
PCFs based on those of analytically solvable SIFs. For example,
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the endlessly single-mode behavior of PCFs, as reported ini-
tially in [3], can be explained by an effective V parameter
defined analogously to that of SIFs [3]–[8]. Such quantities as
the V parameter, the core and cladding refractive indexes, and
the core radius in SIFs have direct analogies in PCFs and can
be successfully used in the PCF design once properly defined
for PCFs.

To avoid using computationally expensive numerical ap-
proaches for designing PCFs, a great deal of research has been
devoted to thoroughly investigate the aforementioned analogies
between the modal properties of PCFs and the classical SIFs,
and various simplified approaches have been developed [3], [5],
[6], [8]–[10], [12]. In general, these approaches can be catego-
rized into the following: 1) empirical relation-based approaches
[6], [8], [9] or 2) EIMs [3], [5], [10], [12]. Approaches based on
empirical relations usually involve curve fitting the numerically
calculated V parameters as a function of the dimensionless
feature parameters d/Λ and λ/Λ of a PCF, where d, Λ, and λ
are the airhole diameter, the pitch of the lattice of air holes, and
the wavelength, respectively. The modal properties such as the
dispersion of the PCF are then derived directly from the V pa-
rameter. These approaches have the advantage of being compu-
tationally efficient; there, however, exists a major disadvantage
of having too many fitting parameters in the empirical relations
(e.g., in [9, Eq. (5)]) which are difficult to recalibrate if the
refractive index of the PCF glass is changed, even very slightly
(e.g., by 0.01). The approaches based on the EIM consider
a PCF as a special SIF with a cladding index determined by
computing the effective refractive index of the photonic crystal
cladding. Although the core index is well defined in the EIM,
the effective core radius is not uniquely specified. In practice,
different EIM-based approaches have adopted different effec-
tive core radii: fixed [3], [5], [12] or varying with d/Λ [10].
Compared with approaches based on empirical relations, the
EIM-based approaches are more physically intelligible; they,
however, render the computation of the effective cladding index
and the specification of the effective core radius.

In this paper, we propose a computationally efficient EIM-
based approach for PCFs with one or seven missing airholes
by systematically studying the effective refractive index of
the photonic crystal cladding and the effective core radius of
the PCF. Unlike the previous EIM-based approaches, where
computationally expensive numerical approaches such as FEM
were used to calculate the effective cladding index, an empirical
equation with only three parameters is used to efficiently and
fairly accurately approximate the effective cladding index over
a large parameter region of d/Λ (0.15–0.7) and λ/Λ (0.05–0.5).
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Another advantage of the empirical relation adopted here is that
the same set of parameters can be used without recalibration
if the refractive index of the photonic cladding glass is varied
by a small amount (between −0.02 and +0.02). In previously
proposed EIMs, the effective core radius was taken either as a
constant specified from numerical observations or geometrical
considerations [3], [5], [12] or as a function of d/Λ determined
by a pure statistical approach [10]. It is addressed in [10] that
a d/Λ-dependent R/Λ is physically intelligible and can greatly
improve the accuracy of the EIM. In this paper, the effective
core radius for PCFs with one or seven missing airholes is
calculated as a function of d/Λ and λ/Λ by matching the
fields of the fundamental mode in the core and the cladding.
This intuitive approach is more physically intelligible and has
been successfully tested and validated in this paper. Based
on the new effective cladding index and core radius of the
PCF, the classical definition of the V parameter for SIFs is
extended to be applicable to the analysis and design of PCFs.
Complex photonic crystal structures, such as depressed-index
core PCFs (with one or seven missing airholes) in [11] and
[12], can be easily understood and efficiently designed using
the V parameter defined here. It is worth noting that this paper
is focused on the PCFs made up of phosphate glass, which
allows for high Er- and Yb-doping levels without detrimental
clustering effects [13] and, thus, is important in fiber lasers and
amplifiers. It is expected that the design concepts developed in
this paper can be easily extended to other types of glass such as
silica-based glass, considering the small difference between the
indexes of phosphate glass and silica glass.

In Section II, an overview of PCFs with one or seven missing
airholes is provided, and the effective refractive indexes of
the cladding and the principal guided modes of these PCFs
are computed. An empirical equation with three parameters is
used to fit the effective cladding indexes as well as the effective
refractive indexes of the principal guided modes. The results
in Section II are used in Section III to compute the effective
core radii and the V parameters of the corresponding PCFs.
In Section IV, the EIM-based design approach is employed to
analyze the modal properties of the PCF lasers with depressed-
index cores [12]. The approach is further tested by using it to
estimate the number of guided modes in the PCF lasers.

II. CLADDING AND MODAL REFRACTIVE INDEXES

The PCFs considered in this paper are optical fibers with a
triangular lattice of airholes in the cladding region. The airholes
have a diameter d and run through the full length of the optical
fiber [1], [2]. One or several missing airholes in the center of
a PCF constitute a defect in the lattice (Fig. 1), acting as a
guiding core for the propagating modes in the PCF through
a mechanism similar to the total internal reflection in SIFs
[3]. The presence of airholes in the cladding region lowers
the effective refractive index of the cladding ncl below the
refractive index of the core nco, and an effective index step
is created between the core and the cladding regions. Unlike
SIFs, the effective refractive index of the cladding ncl of a
PCF is determined by the amount of overlap between the
fundamental space-filling mode (FSM) and the glass material

Fig. 1. PCFs with one or seven missing airholes. The cores are marked for
illustration purpose only.

in the cladding and, thus, is a strong function of parameters λ,
Λ, and d. In fact, the scale invariance of Maxwell equations
implies that any physical quantity that characterizes a PCF
and its guided modes must be a function of the dimensionless
feature parameters d/Λ and λ/Λ. The complex behavior of ncl

as a function of the feature parameters is responsible for such
exotic phenomena as endlessly single-mode behavior [3], large-
mode-area PCFs [14], and highly nonlinear PCFs with unique
dispersion properties [15]–[17].

A great deal of effort has been devoted to the calculation of
ncl as a function of the PCF feature parameters by semianalyti-
cal or numerical methods. It was observed in [3] that ncl can be
evaluated as the effective refractive index of the principal mode
(with the largest propagation constant) of the PCF without
defects, which is often referred to as the FSM. To calculate ncl,
Birks et al. [3] solve the scalar Helmholtz equation over the
unit hexagonal cell of the photonic crystal cladding, with the
Neumann boundary condition (BC) imposed on the edges based
on the reflection symmetry. The hexagonal cell is then approx-
imated with a circular cell whose circular symmetry allows
for an analytical solution, from which the FSM and ncl are
calculated. There are a few studies that use vectorial methods
to calculate the FSM and its refractive index ncl. For example,
Midrio et al. [19] find an analytical solution similar to the
one in [3] but in a vectorial form. The BCs on the circular
cell with which the hexagonal unit cell is approximated are
perfectly electric (PE) and perfectly magnetic (PM), derived
from symmetry arguments. The radius of the circle is undeter-
mined in this model, and numerical simulations were conducted
to justify the choice of Λ/2 as the radius. Another vectorial
approach discussed in [18] makes use of the fact that the defect-
free PCF is a periodic structure where the magnetic field and
the background dielectric constant can be expanded in discrete
Fourier series. The expansion coefficients of the dielectric con-
stant are calculated analytically, and the expansion coefficients
of the magnetic field are solved as an eigenvalue problem
in a matrix equation. The number of Fourier modes (plane
waves) determines the size of the matrix and, consequently,
the accuracy of the method. In this paper, we adopt a different
method that is based on a vectorial finite element analysis
introduced in [7]. It is worth noting that the results of the
vectorial methods indicate that the scalar approximation is not
adequate for calculating ncl, especially when d/Λ and/or λ/Λ
are large.
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Fig. 2. Rectangular region over which the effective refractive index of the
photonic crystal cladding is calculated.

Fig. 3. ∆ngc as a function of λ/Λ for fixed d/Λ. Adjacent lines are in
increments of d/Λ = 0.05. The lowest line corresponds to d/Λ = 0.15 and
the highest to d/Λ = 0.7.

The elementary region [7] as shown in Fig. 2 is used in the
vectorial finite element analysis to calculate ncl. With appro-
priate BCs [7], [19] applied on the edges of the rectangular
region in Fig. 2, the eigenmode with the largest propagation
constant is solved for the rectangular unit cell. A PE BC on
the longer sides and PM on the shorter sides of the rectangular
region or vice versa yield both polarizations of the FSM. The
two polarization-degenerate FSMs resemble two polarizations
of a plane wave in the limit of ω → 0. A refractive index of
ngl = 1.56, which is typical for phosphate glass, is chosen as
the default value in the simulations in this paper. The numerical
studies are performed mainly over a parameter region of d/Λ
(0.15–0.7) and λ/Λ (0.05–0.5), where there are a variety of
applications such as PCF lasers [11], [12].

The computed ∆ngc (i.e., ∆ngc = ngl − ncl, where ngl is
the refractive index of the cladding glass) is plotted in Fig. 3 as
a function of λ/Λ for a set of values of d/Λ on a log-log scale.
The parallel straight lines in Fig. 3 indicate that a power-law
relationship exists between ∆ngc and λ/Λ, where the power is
independent of d/Λ. An expression of the form

ln ∆ngc = c1 ln
(

λ

Λ

)
+ c2

d

Λ
+ c3 (1)

with parameters c1, c2, and c3 is adopted to fit the data in Fig. 3.
The parameters are determined using a curve-fitting scheme

TABLE I
FITTING PARAMETERS IN (1)

Fig. 4. Comparison of ∆ngc versus λ/Λ. The fitted curves are calculated
using (1).

and listed in Table I. In Fig. 4, the data of ∆ngc in Fig. 3 are
compared to those approximated with the empirical expression
of (1) for a few values of d/Λ. As shown in Fig. 4, except
for data points with small d/Λ and large λ/Λ, an overall good
agreement is observed in the entire parameter region, indicating
that (1) is an adequate approximation for the effective cladding
index in the region studied.

Due to the fact that the refractive index of phosphate glass
is dependent on its composition and usually deviates from
the value of 1.56 used in this paper, the variation of ∆ngc

with ngl is investigated with ngl = 1.56 ± 0.02. Over the entire
parameter region, the relative error in ∆ngc caused by the
variation of ngl is found to be less than 1.8%. Hence, if the
actual refractive index ngl of the cladding glass is between
1.54 and 1.58, the effective cladding index ncl can still be
approximated with ncl = ngl − ∆ngc, where ngc is the same as
in Fig. 3 or can be approximated with (1) without recalculating
the parameters.

The modal refractive indexes nmo of the principal modes
of PCFs with one and seven missing airholes are presented as
∆ngm = ngl − nmo in Figs. 5 and 6, respectively, and will be
used in the next section. Our fully vectorial FEM models for
the PCF structures have four layers of airholes [12] surrounding
the core area and are analyzed to find the principal modes and
corresponding propagation constants. The effect of additional
layers of airholes is found to be negligible on the value of the
propagation constant, largely due to the fact that the fundamen-
tal mode is mainly concentrated in the core area and decays
exponentially into the cladding region. For the PCF structures
considered in this paper, the model index change ∆ngm shows
a linear dependence on λ/Λ on a log-log scale as well and
can be approximated with (1) (with ∆ngm in place of ∆ngc).
The corresponding fitting parameters are listed in Table I
as well.
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Fig. 5. ∆ngm as a function of λ/Λ for a PCF with a single missing airhole.
Lines are in increments of d/Λ = 0.05. The lowest line corresponds to d/Λ =
0.2 and the highest to d/Λ = 0.7.

Fig. 6. ∆ngm as a function of λ/Λ for a PCF with seven missing airholes.
Lines are in increments of d/Λ = 0.05. The lowest line corresponds to d/Λ =
0.15 and the highest to d/Λ = 0.5.

III. EFFECTIVE CORE RADIUS AND THE V PARAMETER

The modal properties of a circular SIF can be characterized
by the V parameter defined as follows:

V =
2π

λ
R

√
n2

co − n2
cl (2)

where nco and ncl are the refractive indexes of the core and
the cladding, respectively, and R is the radius of the core. The
value of V ∗ = 2.405 is the single-mode cutoff for circular SIFs,
above which higher order modes are supported in the fibers. A
similar definition of the V parameter for PCFs was first adopted
in [3] and later expanded in [5] and [6]. The studies in [3]
and [5] consider Λ as the appropriate length scale to replace
R in (2), while the study in [6] uses Λ/

√
3. There are also

differences in the definition of nco among these references.
While the studies in [3] and [6] define nco as the refractive
index of the glass in PCF, the study in [5] assumes that nco

is the effective refractive index of the guided principal mode
nmo = β/k0, where β is the propagation constant, and k0 is the
wavenumber of the confined light in a vacuum. Nonetheless,
there is a common definition of the refractive index of the
cladding ncl as the effective refractive index of the FSM in

an infinitely extended PCF without any defect. Although all
these definitions are shown to be capable of properly describing
the modal behavior of PCFs for at least the simplest cases,
they result in different values of the single-mode cutoff V ∗.
For example, V ∗ holds the value of π in [5], while in [6], the
classical value of 2.405 is obtained. Koshiba and Saitoh [6]
argue that the definition adopted in [5] is intrinsically different
from (2) and actually corresponds to the normalized transverse
attenuation constant in the cladding region or the W number.
The U and W numbers of a circular SIF are given by

U =
2π

λ
R

√
n2

co − n2
mo (3)

W =
2π

λ
R

√
n2

mo − n2
cl (4)

where

V 2 = U2 + W 2. (5)

The choice of Λ/
√

3 in [6] as the effective core radius of PCF is
justified by the numerical observations in [7]. There is also an
intuitive explanation for why the effective core radius is close to
Λ/

√
3. As initially reported in [3], the fundamental unit cell in a

PCF with no defect is a hexagon with an edge-to-edge distance
of Λ and has an airhole in its center. The core of the PCF with
a single missing airhole is approximated by the central solid
hexagonal cell. Since Λ/

√
3 is the center-to-corner distance in

the hexagon that constitutes the core, the selection of Λ/
√

3
as the core radius by the study in [6] appears to be reasonable.
However, one might argue that a more suitable parameter would
be the effective radius of an equivalent circle whose area is the
same as the hexagon, resulting in a value of (

√
3/2π)1/2Λ that

is close to Λ/
√

3. Instead of using a fixed R/Λ for the effective
core radius for PCFs (as in [3], [5], and [6]), Park and Lee [10]
show that a d/Λ-dependent R/Λ is physically intelligible and
can greatly improve the accuracy of the EIM initially proposed
in [3]. In [10], a statistical approach is employed to determine
R/Λ as a function of d/Λ for PCFs with a single missing
airhole.

In this paper, the idea in [10] is generalized and extended to
PCFs with seven missing airholes. The effective core radius R
for a PCF with one or seven missing airholes is determined by
solving for the scalar modal field of a circular SIF equivalent
to the PCF and matching the BCs. For a PCF with the given
d/Λ and λ/Λ, the equivalent SIF has a radius of R, a core
refractive index ngl, and a cladding refractive index of ncl

(in Fig. 3). The scalar approximation is valid as long as the
index step is low and λ/Λ is small. As shown in the previous
section, the refractive index of the PCF cladding is only slightly
smaller than that of the core (ngl), which justifies the use of
scalar approximation in determining the effective core radius
of a PCF. In the scalar approximation, the fundamental mode
in the core and the cladding of the equivalent SIF is of the
forms of the zeroth-order Bessel function of the first type J0

and the zeroth-order modified Bessel function of the second
type K0, respectively. A characteristic equation is derived
from the continuity of the scalar field and its first derivative
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Fig. 7. Core radius of a PCF with a single missing airhole. The dashed line
is for R = Λ/

√
3. Lines are in decrements of d/Λ = 0.05. Lowest corre-

sponds to d/Λ = 0.7 and highest to d/Λ = 0.4. The gray area corresponds to
d/Λ < 0.4.

Fig. 8. V parameter of a PCF with a single missing airhole. Lines are in
increments of d/Λ = 0.05. Lowest corresponds to d/Λ = 0.2 and highest to
d/Λ = 0.7.

Fig. 9. Core radius of a PCF with seven missing airholes. Lines are in
decrements of d/Λ = 0.05. Lowest corresponds to d/Λ = 0.5 and highest to
d/Λ = 0.2. The gray area corresponds to d/Λ < 0.2.

at the boundary between the core and the cladding and is
expressed as

J0(U)
UJ1(U)

− K0(W )
WK1(W )

= 0. (6)

Since the modal refractive indexes nmo of the fundamental
modes of the PCFs with one and seven missing airholes are
available in Figs. 5 and 6, respectively, for the given d/Λ and
λ/Λ, U and W [in (3) and (4)] are only dependent on R.
Therefore, R can be solved from (6) as a function of d/Λ
and λ/Λ. The corresponding V parameter can be computed

Fig. 10. V parameter of a PCF with seven missing airholes. Lines are in
increments of d/Λ = 0.05. Lowest corresponds to d/Λ = 0.15 and highest
to d/Λ = 0.5.

Fig. 11. Transverse profile of the principal mode of a PCF from FEM (dots)
plotted against the Bessel functions from (6) (solid line) in different directions.
The analyzed PCF has a single missing airhole in the center.

from (2). It is worth nothing that in (2), both R and ncl are
dependent on the dimensionless feature parameters d/Λ and
λ/Λ. The effective core radius and the V parameter for PCFs
with a single missing airhole are plotted in Figs. 7 and 8; those
for PCFs with seven missing airholes are plotted in Figs. 9
and 10. To justify the use of (6) to calculate the effective core
radius R, we compute the principal mode of a PCF with a
single missing airhole, as shown in Fig. 1, and compare the
numerical results with the analytical solution of the principal
mode of the equivalent SIF. In Fig. 11, the plots in the left
column correspond to the modal profiles along the horizontal
line going through the center of the PCF, while the plots in the
right column are the modal profiles along a line through the
center and at an angle of 30◦ relative to the horizontal direction.
The dotted lines are from the FEM simulations, while the
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continuous lines are from analytical solutions. The first row is
for d/Λ = 0.7 and λ/Λ = 0.02, where a very good agreement
between the FEM results and our analytical approximations
is expected. The second row corresponds to d/Λ = 0.5 and
λ/Λ = 0.2, where moderate agreement is expected, and the
third row is for d/Λ = 0.2 and λ/Λ = 0.5 where we expect to
see the least amount of agreement. A fairly good agreement
is observed in all three cases in Fig. 11, indicating that our
approximations are holding well in the entire parameter region
studied in this paper. Deviations in the right column of Fig. 11
are due to the presence of the airholes in the lattice structure,
yet the overall envelope of the field is properly predicted by (6).

IV. VALIDATION OF THE DESIGN APPROACH

The design approach based on the concepts of the effective
cladding index, the effective core radius, and the classical defin-
ition of the V parameter (2) for PCFs is employed to investigate
the modal properties of PCF lasers (MOF7s) in [12], which
have depressed-index cores formed by seven missing airholes
in the center. The MOF7s have a 125-µm outer diameter and a
9-µm pitch (Λ). The lasing wavelength is around 1.535 µm and
is fixed. The refractive index of the photonic crystal cladding
glass ngl is 1.569, while the index of the active core nco is de-
pressed by ∆nd = nco − ngl. The experimental data on MOF7s
with ∆nd = −7 × 10−4 and −15 × 10−4 are investigated here.
In the experiment, MOF7s with different airhole diameters d are
tested, and the measured modal qualities (M2 values) versus
d/Λ are shown in [12, Fig. 2]. It is concluded in [12] that for
MOF7s with ∆nd = −7 × 10−4, the PCF laser with d/Λ of 0.2
(and a standard deviation of 0.025) is in the single-mode region.
To test our design approach, the V parameter defined in (2) is
redefined as

V =
2π

λ
R

√
(ngl + ∆nd)2 − (ngl − ∆ngc)2 (7)

for MOF7s with depressed-index core and is recalculated. It is
worth noting that in [12], a constant value is adopted for the
effective core radius R, and the vectorial FEM is employed
to calculate the effective refractive index of the PCF cladding.
With the new design approach, R is set to be dependent on
d/Λ and λ/Λ, and (1) is employed to determine the effective
cladding index ncl with good accuracy. Fig. 12 shows the
calculated V parameter as a function of d/Λ for ∆nd = −7 ×
10−4 and −15 × 10−4. Adapting the single-mode cutoff of
V ∗ = 2.405 for circular SIFs, a single-mode region of d/Λ less
than 0.188 is observed for ∆nd = −7 × 10−4 in Fig. 12. This is
consistent with the corresponding experimental data, where the
single-mode operation was obtained for MOF7s with d/Λ <
0.2 and a standard deviation of 0.025 in d/Λ. For ∆nd =
−15 × 10−4, a single-mode cutoff occurs at d/Λ around 0.29,
which agrees with the experimental observation of the single-
mode operation of the MOF7 with d/Λ = 0.264. For ∆nd =
−15 × 10−4 in Fig. 12, when d/Λ becomes so small that ncl is
greater than nco, the V parameter becomes zero (the real part of
a purely imaginary number), and no core confined mode will be
supported in the PCF. This is analogous to index antiguiding in
SIFs. The simulation results are consistent with the experiment

Fig. 12. V parameter versus d/Λ for MOF7s with depressed-index cores. The
light wavelength λ and lattice pitch Λ are fixed.

Fig. 13. Number of confined modes versus V parameter for MOF7s. The solid
line represents the predicted results using the V parameter of MOF7 and the SIF
theory, while the open circles are obtained with FEM simulation.

data, where M2 increases rapidly as d/Λ decreases below 0.25,
indicating that the MOF7s approach index antiguiding.

As mentioned above, the modal properties of an SIF is char-
acterized by the V parameter. To further validate the new design
approach for PCFs, it is important to compare the number of
confined modes predicted by the V parameter of a PCF and
that obtained from the FEM simulation. The MOF7s with both
∆nd = 0 and ∆nd = −7 × 10−4 are used here as an example
and analyzed with the vectorial FEM to yield the relation
between the number of confined modes and d/Λ. The relation
between the number of confined modes and the V parameter is
then obtained since d/Λ has a one-to-one correspondence with
the V parameter (e.g., the one-to-one correspondence between
the V parameter and d/Λ for ∆nd = −7 × 10−4 in Fig. 12).
Since the relations between the number of confined mode and
the V parameter are almost identical for both values of ∆nd,
only the results for ∆nd = −7 × 10−4 are presented and shown
in Fig. 13. The solid line in Fig. 13 is obtained from the
SIF theory, where the polarization degeneracy of the confined
modes is taken into account. For example, in a single-mode
SIF, there are two linearly independent HE11 modes that can
be resolved by FEM simulations. In Fig. 13, it can be observed
that an overall fair agreement between the results of the finite
element simulation and those of the V parameter-based design
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procedure is achieved. For the MOF7 with d/Λ = 0.5, the
corresponding V parameter is 6.205, indicating that there are
20 confined modes supported in the MOF7. From the SIF the-
ory, the 20 modes are HE11(2) (with “2” denoting twofold po-
larization degeneracy), TE01(1), TM01(1), HE21(2), HE12(2),
EH11(2), HE31(2), EH21(2), HE41(2), TE02(1), TM02(1), and
HE22(2). The FEM simulation of the same MOF7 yields the
same number of confined modes; furthermore, each mode from
the FEM simulation closely resembles one of the 20 modes
of the SIF with the same V parameter. It is worth noting that
since an MOF7 has a lower order of rotational symmetry than
its equivalent SIF, the cutoff values of higher order modes for
the MOF7 deviate from those of its equivalent SIF, leading to
the difference in the number of modes when the V parameter is
around five, as shown in Fig. 13. Encouragingly, the number of
confined modes estimated by the V parameter is consistent with
that from the FEM simulations as the V parameter increases.

V. CONCLUSION

In this paper, the modal properties of PCFs with guiding
cores consisting of one or seven missing airholes are compre-
hensively investigated. Based on the analogies between SIFs
and PCFs, the concepts of the effective refractive index of
photonic crystal cladding and the effective core radius are
systematically studied and reformulated for PCFs. With the new
effective cladding index and the effective core radius, the classi-
cal SIF theories, including the V parameter, are extended to be
applicable to the analysis and design of PCFs. The new design
approach is validated by using it in properly characterizing the
modal properties of the PCF lasers with depressed-index cores
and effectively estimating the number of core-confined modes
for PCFs. This EIM-based approach can be used as a simple and
efficient tool for experimentalists to design PCFs with specific
modal properties.
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