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Effects in composite volume Bragg gratings (VBGs) are studied theoretically and experimentally. The math-
ematics of reflection is formulated with a unified account of Fresnel reflections by the boundaries and of VBG
reflection. We introduce the strength S of reflection by an arbitrary lossless element such that the intensity of
reflection is R=tanh? S. We show that the ultimate maximum/minimum of reflection by a composite lossless
system corresponds to addition/subtraction of relevant strengths of the sequential elements. We present a new
physical interpretation of standard Fresnel reflection: Strength for TE or for TM reflection is given by addition
or by subtraction of two contributions. One of them is an angle-independent contribution of the impedance
step, while the other is an angle-dependent contribution of the step of propagation speed. We study an assem-
bly of two VBG mirrors with a thin immersion layer between them that constitutes a Fabry—Perot spectral
filter. The transmission wavelength of the assembly depends on the phase shift between the two VBGs. Spec-
tral resolution AN(FWHM) =25 pm at A=1063.4 nm is achieved with the device of small total physical thickness

Vol. 25, No. 3/March 2008/J. Opt. Soc. Am. A

751

2L=5.52mm. © 2008 Optical Society of America
OCIS codes: 090.7330, 260.2110.

1. INTRODUCTION

Propagation of light in layered media is one of the funda-
mental problems in general electrodynamics and in optics
in particular. Almost any textbook devotes considerable
space to this problem, where, by definition of the term
“layered,” all the media properties depend on one coordi-
nate only (for definiteness, on z); see, e.g. [1-3]. Special-
ized texts devoted to layered media are abundant as well;
see, e.g. [4,5]. At the same time, diffractive transforma-
tions of light beams by volume Bragg gratings (VBGs) has
been considered in numerous publications; see, e.g. [6-8].

One of the purposes of the present paper is to consider
the interference between three processes of reflection. The
first and third ones are the Fresnel reflections by the
boundaries of a parallel glass plate. The second is the pro-
cess of holographic reflection by a VBG located inside that
glass plate; see Fig. 1.

There is a certain technical difficulty in the simulta-
neous consideration of all three processes. Fresnel reflec-
tions require “stitching” full electromagnetic fields via
boundary conditions, and the step in the refractive index
may be arbitrarily large there. On the other hand, reflec-
tion by a VBG is correctly considered in the slowly vary-
ing envelope approximation (SVEA), since the modulation
n; of the refractive index profile n(z),

n(z) =ng+ny(z) + ni(z)cos[Qz + y(2)] + inf(z)cos[Qz + &(z)],

(1.1)

is assumed to be small: |n;| <n(. Indeed, for the VBGs
of our interest typically |nq{|=38X10"%ny; see [9,10].
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Equation (1.1) also takes into account possible deviation
ng(2)=ny+ing of a smooth refractive index profile from its
constant real value ny. The imaginary part of ny(z) takes
into account background absorption. The grating in Eq.
(1.1) in most of this paper is assumed to be purely refrac-
tive, n1(z) =Re[n(z)], but the basic equations will allow
for inf{(z) as well.

To overcome these differences in description of discrete
boundary reflection and VBG reflection, we reformulate
the approach to the solutions of Maxwell’s equations.
Namely, we produce an exact system of first-order coupled
equations for the counterpropagating waves. That system
allows us to account, in a unified manner, for both SVEA
and reflection by sharp steps. It is worth noting that the
same task could, in principle, be performed by existing
matrix methods. The approach closest to ours is adopted
in the text [5]; nevertheless, there are some particular im-
portant differences.

An important role in our approach is assigned to the
parameter S, strength of reflection by a lossless element: S
is defined in such a way that the intensity reflection coef-
ficient may be written as

R =|r|?=tanh2S. (1.2)

An extra advantage of introduction of the strength pa-
rameter S is that even if S — o, reflection intensity |r|? ap-
proaches 1 only asymptotically for media without loss or
gain.

Our consideration of the general electrodynamic prob-
lem takes into account two distinctly different mecha-
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Fig. 1. Notations for the incident a(z) and reflected b(z) waves in the approximation of infinitely wide plane beams with account of the
reflections from both boundaries, z=0 and z=L, as well as of the reflection by a VBG.

nisms of reflection: by the gradients of propagation speed
v, and by the gradients of impedance Z. Here ¢ and w are
the local values of dielectric permittivity and magnetic
permeability, respectively, while e, and u,. are the re-
spective values in vacuum, where the speed of light ¢
=1/Veyacttvac=3 X 108 m/s, n is local refractive index, and

c M ep
v=—, Z=1|—, n= . (1.3)
n € evacﬂ‘vac

We were able to show that the strength S of the reflec-
tion from a single sharp boundary is a linear sum (for TE
polarization) or a linear difference (for TM polarization) of
two contributions. One of these contributions does not de-
pend on polarization and on impedance, but is governed
by the change of propagation direction: a kinematic effect
depending only on the step in the refractive index (i.e., of
propagation speed). The other contribution also does not
depend on polarization; neither does it depend on the in-
cidence angle. This contribution is provided only by the
step in the impedance Z. In this sense in the present pa-
per we claim new understanding of old phenomena:
Fresnel reflection and the Brewster effect.

We use a particular kind of matrix approach to the
waves in layered media (compare also with the approach
from [5]). While the incident and reflected waves are
propagating in (+z) and (-z) directions, respectively, our
approach requires the solution of the system of coupled
ordinary differential equations (ODE) in one direction
only (e.g., +z). In this way we reduce the original two-
boundary (z=0 and z=L) problem to the Cauchy problem
of an ODE system, i.e., to the one with initial conditions
at z=0 only. That allows use of various analytical and/or
numerical methods of solving these ODE.

The results of our consideration of the mutual influence
of VBG reflections and Fresnel reflections depend explic-
itly on their relative phases. An important general conclu-
sion is that the argument S of reflection function R
=tanh?S by a lossless element lies within the limits

Sypg — (1S1] +[Sg)) =8 = Sypg + (1S1] +[Sal),  (1.4)

where Sypg, S1, and S, are the strength parameters for
VBG and for the two boundaries, respectively.

We consider a combined VBG that has a shift between
the phases of two gratings. Actually, in recent years,
phase-shifted fiber Bragg gratings have drawn great in-
terest by researchers [11,12]. Under introduction of a =
phase shift into a fiber Bragg grating during its fabrica-
tion, the spectral transmission acquires a narrow band-
pass appearing within the middle of the central lobe of
the fiber Bragg grating. In [9,10], the authors established
how to record high efficiency and low loss VBG in photo-
thermorefractive (PTR) glass. In using this material a
relative diffraction efficiency as high as 99.9% has been
achieved, and the level of losses has been kept below
102 cm™!. Such material therefore represents an ideal
one for the fabrication of a combined VBG filter. In Sec-
tion 8 we present analytical and numerical calculations of
such a cavity, and compare them with the solutions of
similar problems for distributed feedback and related sys-
tems [13-16]. Finally we present an experimental demon-
stration of this filter in air.

2. TRANSFORMATIONS OF MAXWELL
EQUATIONS

It is instructive to write the Maxwell equations for the
general case, when both dielectric permittivity e(z)
[farad/m] and magnetic permeability w(z) [henry/m] are
functions of z. Later we will limit ourselves to the optical
case, where =iy, £(2)=€y,2(z). We take the Maxwell
equations for electric field vector E(r,#) [volt/m] and mag-
netic vector H(r,#) [ampere/m] as

JE JH
—=VXH, —=-VXE. 2.1
e(r)— plr)— 2.1)

Maxwell’s equations (2.1) may be written in a form that
explicitly shows certain symmetry between E and H:
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1
H(r,t) =h(r,t)—=, E(,)=e(r,)\Z(),

\r’Z(r)’

g=-3V InZw), (2.2)
ndh nde
——=-VXe+gXe, ——=VXh+gXh,
c ot c Jdt

(2.3)

Below we will use the monochromatic amplitudes of the
type

Ascal(r,t) = [A(r)exp(- iot) + A*(r)exp(iot)], (2.4)

where w=2mc/\,,., and c is speed of light in vacuum. Ad-
vantages of the complex amplitudes e and h are as fol-
lows: (1) For a plane wave propagating through the me-
dium with constant real refractive index n and constant
real impedance Z in direction m=k/|k|, one has |e|=]|h],
e=—[mXh], h=[m Xe]; (2) the time-averaged Poynting
vector S [watt/m?] in a region of the medium where the
loss is absent may be expressed via e and h as S=(e,.,
X Qo) =(e Xh*+e*XxXh)/4.

We consider the incidence plane to be the (x,z) plane
for a wave of A\, incident on a layer 0=z=L of the me-
dium, with the properties being z dependent only. By 6,;,
we denote the incidence angle of the wave in air, so that

w
kair = ka + Zkair,z’ kx = ;nair sin O,

w
kair,z = ;nair COS By (25)

In most cases the approximation n,,~1 works quite well.
Nevertheless, we keep it for the case of large 6,;,, when
high angular selectivity of the VBG may require a more
accurate value of n,,. The incidence of light on a holo-
gram’s surface from some other medium than air may
also be covered by Eq. (2.5), by assigning an appropriate
value to ng,. Incidence angle 6,; means x-dependence of
the wave amplitudes proportional to exp(ik,x), and &, is
the same at all z. The waves in a layered medium are
naturally separated into transverse electric (TE) and
transverse magnetic (TM) parts, with components u,, u,,
u, for the electric vector of both TE and TM waves and w,,
w,, w, for the magnetic vector of these waves:

TE: e(r)=-yu,(2)exp(ik,x),
h(r) = [Rw,(2) + Zw,(z) ]exp(ik,x); (2.6)
TM: e(r) = [Xu,(z) + Zu,(z)]exp(ikx),

h(r) = Jw,(2)exp(ik,x). (2.7)

Here and below we use the quantities k(z), p(z), g(z), f(z)
defined by
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k() = ;—On(z), p() = @) -1,

1d 1d pl2)
g(2)=—§£1nZ(Z), fle)=-—1In— (2.8)

2dz  k(z)’

Maxwell’s equations in the form (2.3) for the monochro-
matic amplitudes u,, w,, w, in case of TE polarization are

iku, = dw, - ikw, + gw,,

—ikw,=1ik,u,. (2.9)

-thw,=-du, +gu,,

The system of Egs. (2.9) may be rewritten for the two
functions u,(z) and w,(z) only:

duy=gu, +ikw,, dw,=ip*ku,-gw,.  (2.10)
It is convenient to express the functions u,(z) and w,(z)
via newly introduced amplitudes a(z) and b(z) for TE po-
larization:

1 p k .
. RTINS
1 P 2 '
bre(z) = \’—gl \/;uy(z) - \/;wx(z):|e‘kair,zz.

(2.11)

The physical sense of the amplitudes arg(z) and brg(2) is
especially clear when the propagation direction of the in-
cident wave is close to the z axis. Then

o)~ - 2 \F bap(e) ~ - 22 \/7
arg(z) = - —+ | -H,, z)=~-—-|-H,.
TE 5z 3 TE 87 3

(2.12)

The Poynting vector’s z component (for any incidence
angle in a lossless part of the medium) according to Egs.
(2.6) and (2.11) is

S. = largl® - [brsl. (2.13)
If the medium exhibits weak loss, then Eq. (2.13) is still
valid with good accuracy. In the regions where the imped-
ance Z(z)=const;, and the refractive index has real value
n(z)=const,, the moduli of our amplitudes |ayg| and |byg|
stay constant. The amplitudes and phases of a1y and by
stay constant under propagation in “air.” The exact Max-
well Egs. (2.10) for TE polarization are reduced to the
simple coupled pair

i|:aTE(Z)] _v [aTE(z)]
dz bTE(Z) C bTE(Z) ’
i[p(2) = kyir 2] [g(2) + flz)]e2kairz

VTE B |:[g(2) + f(z)]eZikair’zz - I,[p(Z) - kair,z]

Similar transformations may be made for the field compo-
nents (2.7) of the TM polarization:

}. (2.14)
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-iku,=-d,w,-gw,,

o du,=gu,+ipk,

with the same parameters k(z), g(z), p(2).
We now introduce the amplitudes of coupled (+z) and
(-z) propagating waves for TM polarization by

1 2 k ,
arm(z) = \Tg Zwy(Z) + ;ux(z) e“kair,zz,
e 1{ Ve 2 “}"’”
TMZ—V@ - kwyz+ puxz e'airz®

(2.16)

Finally, the exact Maxwell equations for TM polarization

are
i|:aTM(Z):|_V |:aTM(Z):|
dz| bru2) |~ ™| brul2) |

) [ i[p(2) =y
™ =

lg(z) - f(z)]e—Zikair,zz]
[g(2) = f(2)]e?airz

- l[p(Z) - kair,z]
(2.17)

The expression for the z component of the Poynting vector
is perfectly analogous to Eq. (2.13).

3. MATRIX APPROACH

Without coupling of the waves in a homogeneous medium
our amplitudes a and b (be they of TE or TM polarization)
would propagate according to the law

a(zy) Rl -k a(zy) 51
b(Zz) = ((p_ air,z)(ZZ_Zl)) b(Zl) . ( )

Here we have introduced the notation for the matrix K(cp):

. e'¢ 0
K(p) = [ 0 e-“"}' (3.2)

Reflection of the wave a by a specimen of arbitrary lay-
ered medium z;=z=zy is described by two separate
boundary conditions: a(z;)=1 at z=z; and b(z,)=0 at z
=z,. The quantities sought are r=b(z;), t=a(zy), the am-
plitude reflection and transmission coefficients, respec-
tively. Here |r|? and |t|? are reflection and transmission co-
efficients, respectively, for the intensities.

The numerical solution of the problem for ODE with
conditions at two separate boundaries may present seri-
ous difficulties, including possible divergence of iterative
procedures. To get around these difficulties, we will use
the linearity of our system of ODE, which allows us to
write the relationships

Glebov et al.

-tku, =ikw,,—tkw,=iku, - du, +gu, <

. 2.15
dw, =iku, - gw,, ( )

a(22) —M a(zl) M _ Maa Mab
b(zs) =M(z5,21) bzy) | (29,21) = M,, My, |
(3.3)

Here the matrix M (z9,21) satisfies the following equation
and the initial condition, respectively:

dM(z,z) . X .
——=V(@)M(z,21), M(z1,21) =1, (3.4)

where the particular expressions for evolution matrix

V(z) for TE and TM polarizations are given by Eqgs. (2.14)
and (2.17). The fact that the trace of the evolution matrix

V is zero for both TE and TM polarizations leads to an im-
portant property of matrix M (29,21):

det M=1. (3.5)

Then application of the boundary conditions a(z;)=1 and
b(z9)=0 allows finding r and ¢ as
M ba(2252 1)

r(b—a)=bz))=- Myyoazs)
25<1

det M(Zz,zl)

Myy(20,21)  Myp(29,21)

tla—a)=alzy) = (3.6)

and we used Eq. (3.5). Similarly, applying boundary con-
ditions a(z;)=0 and b(z9)=1, one gets transmission and
reflection coefficients for the case when the incident wave
is b(z), i.e., comes from z= +0c:

Mab(z2?zl)

rla—b)=al(zy) = + M—bb(22,21) s

t(b—b)=tla—a)=b(z)= (3.7)

Myy(29,21)

The advantage of using the M matrix is the possibility
of solving the standard Cauchy problem for our ODE, i.e.,
the problem with “initial” conditions for a and b. Another

aspect of the usefulness of the M matrix is that one can
calculate such matrices for each of the constituent ele-
ments of the device, and then just multiply them in order
of increasing coordinate z. In some cases we will write

matrix M(z) depending on one argument that will corre-
spond to the initial coordinate z;=0.

With the assumption of no loss or gain our system pre-
serves the Poynting vector, dS,/dz=0. In that case our
system of equations satisfies the conservation law:

la|? — |6]? = const (no-loss assumption). (3.8)

To explain the consequences of this important conser-
vation law, let us discuss for a moment the case of trans-
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formation between waves a and b in a transmission VBG.
A plus sign (instead of the minus sign just above) would
be valid for transmission holograms: |a|?+|b|>=const (no
loss, transmission). We know that matrices of z evolution
would satisfy the unitary condition, U *T(z)f] (z)=1 for
transmission lossless holograms. Our minus sign means
that the M (2) matrix for reflection by a lossless medium
satisfies the condition

MM = 7,
2 1 0 2 2 2 2
n= -1 7:>|Maa| _|Mba| =1=|Mbb| _|Mab| 5

MM, M;,M,,=0. (3.9)

Equation (3.9) and the unity determinant condition mean
that matrix M belongs to the SU(1,1) group, i.e., it is a
complex analog of Lorentz group SL(1,1). Indeed, (1) the
unit matrix belongs to our set; (2) if a matrix belongs to
our set, then the inverse matrix exists and belongs to that
set as well; (3) the product of two matrices is associative
and also belongs to our set. The most general form of such
matrix M depends on three real parameters: strength S
and phases « and 3:

. eia 0 . e—iB
M 0 i@ S 0

{ e@Peosh S e@Pginh S }

0 Ao
ei5:| = K(@3(SK(- )
e @Bginh §  ¢!B-¥cosh S

3(S) =

cosh S
{ (3.10)

sinh S
sinh S ’

cosh S

Thus 3(S), which may be called “matrix of hyperbolic ro-
tation” (compare with the terminology of Lorentz trans-
formations), is another basic building block for the prob-

lem of lossless reflection, along with K(ae). As a result the
scattering matrix Uis
a(+ ©) i a(— ») & tla«—a) r(a <« b)
b(— o) | T|b+®) ]| rb—a) tb<b) ]|

(3.11)

ta —a)=e@P r(a — b)=e?*tanh S,

r(b—a)=-e2Ptanh S, t(b«—b)=t(a—a).
(3.12)

The scattering matrix U of such reflection hologram is
unitary for media without absorption or gain. Thus one
can express the strength parameter S via reflection or
transmission as
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S = arctanh\s’ﬁ, T=1-R (no-loss assumption).
(3.13)

To be able to understand better the physical meaning of
individual matrix factors in Eq. (3.10), consider a problem
of integration when the refection is lossless and is local-
ized at z=z;=z,; then it is described by

_$(s cosh S sinh S 1
M=2(8)= sinhS  coshS |’ tzcoshS’
|r|=|tanh S|, [t]%+|r)?=1. (3.14)

Equations (3.10)—(3.12) mean that the reflection by the
most general composite lossless element may be pre-

sented as if it consisted of a phase plate element K(,B),
pure reflector (3.14), and one more phase element K(a).

The matrix M is useful even if absorption is present,
but in this case it does not satisfy Eqgs. (3.8)—(3.10), and
the notion of reflection strength S is no longer useful.

However, matrix M still has unit determinant, even in the
case of loss present, and Eqgs. (3.6) and (3.7) still hold. In
that case our matrix must satisfy the inequalities

ds,
ESO_)l_|Maa|2+|Mba|2207 |Mbb|2_|Mab|2_1207

|MZbMaa - Mszba|

= V/(l - ‘Maa‘Z + |Mba‘2)(|Mbb|2 - |Mab|2 - 1)’

allatz=0. (3.15)

The matrices satisfying relations (3.15) constitute a
mathematical object “semigroup with identity element.”
Namely, the unit matrix is a member of the set. The prod-
uct of two matrices with zero or positive loss is associative
and also belongs to the set. Moreover, an inverse matrix

exists (since det M= 1), but it does not always describe an
element with loss, and thus sometimes it may belong to
the set and sometimes not.

For better understanding of the possible structure of a

matrix M satisfying relations (3.15), let us consider one
more particular case of solutions of Egs. (2.14) and (2.17).
Namely, consider the propagation of waves in a medium
with a presence of loss and with the power attenuation co-
efficient of the material aj,[1/m]=2wng/c. One should
also take the factor 1/cos 6, to account for the path AL
=Az/cos 6;, of the ray in the material. In such a case, and
ignoring the interaction between the counterpropagating
waves, one gets



756 J. Opt. Soc. Am. A/Vol. 25, No. 3/March 2008

Qoss 0
(' — .. __ foss
. L(p alr,z) 9 cos 0
V= ,
0 Qoss '(p' A )
2 cos 6 ' e
i VM, M(z)=K(p' - kqir)2)L(Y), (3.16)

= 3.17
0 2 cos ( )

N e 0 Woss?

A =
In other words, the matrix ﬁ(Y) describes a pure attenu-
ator by the amplitude factor exp(-Y) with no energy ex-
change between counterpropagating waves and with no
phase shift. Still, we were not able to find the most gen-
eral expression of the matrix satisfying the conditions
(3.15) of no gain and of possible loss.

The most dramatic new property that loss may intro-
duce is that now the power reflection coefficients R.
=|r(a+«0b)? and R_=|r(ba)|®> may be not equal to each
other. This is especially evident in the case when a
strongly reflecting mirror, Ry~ 1, is attached to one side
of a strongly absorbing piece of glass, Ty ~exp(-2Y) <« 1.
In that case one of the reflection coefficients is large, e.g.,
R, =1, while the other is very small, R_=~exp(-4Y) < 1.
Reciprocity relationship 7', =T is valid even in the case of
loss or gain presence. In some cases R, and R_ may still
be equal, even in the presence of loss or gain. Appendix A
to this paper contains some further examples.

Our matrix approach is quite close to the approach
used in the monograph [5] by Yeh. Our designations of co-
ordinates x and z are interchanged in comparison with
those of [5]. A more important difference is that our vari-
ant of Maxwell’s equations (2.2) and (2.3) allows us to ac-
count for variations both of dielectric permittivity ¢ and of
magnetic permeability u, while the approach in [5] ac-
counts for the optical case only, where u= u,,.=const. Fi-
nally, there is a quite important difference in our normal-
ization of amplitudes a and & in such a manner that the
expression for the z component of the Poynting vector in a
transparent region of the medium is Eq. (2.13), i.e., just
the difference |a|?>-|b|? of square moduli of amplitudes a
and b. In the approach by Yeh in [5] one should multiply
these square moduli by the local value of (cn cos 6)/2. By
itself this simple factor does not make particular calcula-
tions from [5] any more difficult than ours. However, the
possibility of writing the conservation law (3.8) and its
consequence (3.9), as well as the most general expressions
(3.8)—(3.10) for lossless media, including the notion of re-
flection strength S introduced in this paper, constitutes
an important (in our humble opinion) advantage of our
approach. This advantage is even more prominent with

respect to inequalities (3.15), which any matrix M must
satisfy in the presence of loss.

4. SHARP STEP OF REFRACTIVE INDEX
AND OF IMPEDANCE: UNDERSTANDING
FRESNEL REFLECTION FORMULAS

Fresnel reflection coefficients for the sharp boundary at
z=0 between two transparent media with the parameters
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(Z4, ny, 61) and (Zy, no, 6,) are well known (our choice of
the sign of the TM reflection amplitude is opposite to that
adopted by the “Nebraska convention”; see [17]):

cos 61/Z1 — cos 6y/Z4

& EI‘E E = ,
s =1r(Ey —E,) cos 01/Z1 + cos by Zg

Z1 cos 6y —Zy cos by

rom=rE,—E,)=- 4.1
= (B, —E.) Z cos 6+ Zy cos b, “.1)

They must be accompanied by the Snell law
ny sin 6; = ny sin 6,. (4.2)

Consider the following formulas for two exceptional
cases. The first case corresponds to the media 1 and 2
having exactly the same impedances Z;=Z, but different
propagation speeds, i.e., different refractive indices n;
#no. In that case both reflection coefficients are equal to
each other (up to the sign):

cos ) — cos by
rig=rE,—E)=-rqq=-rE,«— E,)=———
s =1r(Ey —E,) ™ ( ) cos 0; + cos by

( cos 02)
In . (4.3)

= —tanh SAn’ SAn = cos 0
1

1
2
The angular position of the Brewster effect moves to 6;
=6,=0 for the case Z;=Z,: no reflection at normal inci-
dence to the boundary between a pair of impedance-
matched media.

The second case corresponds to media 1 and 2 having
exactly the same propagation speeds n;=ny, but different
impedances Z; # Z,. In that (very unusual) case one gets
6,=0,, i.e., the propagation direction does not change un-
der transition from one medium to the other. As a result,
TE and TM amplitude reflection coefficients for this sec-
ond case (1) are equal to each other, including the sign,
and (2) are completely independent of the incidence angle:

Zy~2Zy
= E <_E = = E (—E =
rig=r(E, ) =roy=r(E, ) Zy+ 7,
=—tanhS,;, Sixz=—In{— . 4.4
anh S,z 2= H<Z2) (4.4)

It is instructive to see these simple results from our ma-
trix approach, since we will use that approach below to
account for mutual influence of Fresnel and VBG reflec-
tions. Sharpness of the boundary placed at z=z, allows us
to consider the phase factors to be constant. By the choice
of z origin one can make the phase become zero. Then our
systems of Egs. (2.14) or (2.17) are reduced to

db

da
i [g(2) £f(2)]b, i g(2) £f(2)]a, (+)TE, (-)TM.

(4.5)

Direct substitution allows us to verify that the following
functions constitute exact solutions of Eqs. (4.5):
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a(z) cosh S(z)
b(z) |~ | sinh S(z)

a(0-¢g) Z , , ,
X b0-5) | S(z)=f0_s[g(z)if(z Vdz'. (4.6)

smhsgq[wo-a

cosh S(z) bw—@}zz@&”

If the boundary is sharp, then
8(2)=8xz02), Siz=In\Zi/Zy, [(z)=2S5,,32),
San =1In \cos y/cos 6, (4.7)

so that
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a(+0) i(S)[a(_ 0)}
b(+0) | b(-0) ]’
Stg=8xz+San Stm=Saz~San- (4.8)

From Eqgs. (2.2), (2.6), and (2.7) and (2.11) and (2.16) for
each polarization the corresponding electric field compo-
nent is expressed through amplitudes a(z) and b(z) as

TE: E,(2) = - \2Z(2)k(2)/p(2)[arg(2)eairs + brg(z)e *airs?],

TM: E,(2) = \2Z(2)p(2)/k(2)[ary(2)e™sirs* + bry(2)e*air],

and reflection coefficient r(b«+a)=r(1<1) at z=0 be-
comes

I'rg = r(Ey — Ey) =—tanh STE7

rTMEr(Ex_) x):—tanhSTM. (4.10)

It is easy to check that formulas (4.10) are identical to
the well-known formulas (4.1).

Thus we come to a better understanding of Fresnel re-
flection. It was already agreed that we characterize the
lossless reflection process by the notion of real reflection
strength S, such that the reflectance is R=|r|>=tanh?S.
Our claim here is that the strength parameter for Fresnel
reflection is linear sum, Stg=S,z+S\, for TE polariza-
tion, or linear difference, Stg=Sz-Sa, for TM polariza-
tion, of two separate contributions. The first one S, is
due to the step of impedance; see Eq. (4.4). The second one
S, 1s due to the step of propagation speed (of refractive
index, or of propagation direction); see Eq. (4.3). The
Brewster phenomenon takes place when these two contri-

1.0 1.0

(4.9)

[
butions to the reflection strength S cancel each other pre-
cisely. In the case of the boundary between two dielectrics
this Brewster cancellation takes place for TM polariza-
tion.

Consider the incidence close to normal, 6; <1, for the
light coming from air to glass, n;=1, ny=1.5. In this case
values Syz, Sy, and Stg my are rather small, and one can
substitute for the hyperbolic tangent function tanh(x) its
argument x. Then one can speak of adding or subtracting
the contributions directly to the reflection amplitudes in-
stead of contributions to reflection strengths S. The above
formulas are illustrated below by the graphs on Figs.
2(a)-2(c).

Figure 2(a) depicts the graphs for standard Fresnel for-
mulas for the reflection from a glass surface (n=1.5) back
into air. Here RTE(0)=‘7‘TE(0)|2 and RTE(0)=|T‘TE(0)|2, de-
rived either according to the formulas (4.1), or as tanh?S
of two reflection strengths Stp=Sarz+S4,(0), STr=Saz
—San(0), with S,z and S,,(6) being the contributions due,
respectively, to the step of impedance and to the step of

0.9+
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0.6+
0.5
0.4
0.3
0.2
0.1

0.9+
0.8+
0.7+
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e7

(c) 0,°

Fig. 2. Various graphs describing Fresnel reflection at the air—glass boundary versus incidence angle 6=6,;,; see explanations in the

text.
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propagation speed. The two pairs of curves are absolutely
identical, which supports our new physical understanding
of the process of Fresnel reflection.

Figure 2(b) depicts, via the dashed—dotted horizontal
straight line, the angle-independent 4% reflection coeffi-
cient R,y calculated as a contribution of impedance Z step
only. It also depicts, via dotted curve, the assumption of
equal propagation speeds in two adjacent media, and the
reflection coefficient R, (6) calculated as a contribution of
the propagation speed c¢/n step only under the assump-
tion of equal impedances in the two media. The other two
curves are presented for the transmission coefficients, T'
=1-R, to make the graph more readable. Namely, we
present the exact graph for depolarized incident light, 1
—RD(G), where RD(9)=[RTE(0)+RTE(0)]/2 The curve 1
~Ryp(0) deals with R, (0) =Rz +Ry,(0), i.e., the approxi-
mation in which we completely ignore any mutual influ-
ence of Z and n mechanisms of reflection. We see that
even this approximation yields very small error: it is ac-
tually less than 3.5% in the whole angular range from 0 to
90°. That allows one to say that the description of reflec-
tion for the “depolarized world” may be done with fairly
good accuracy only as a sum of reflection intensities due
to the above two processes: the step of impedance (angle-
independent) and the step of propagation speed (angle-
dependent).

Figure 2(c) depicts the comparison of the true Rrg(6)
and Rry(6) reflection coefficients with even more approxi-
mation in their description: addition Rpp(6) curve and
subtraction Rp(6) curve, not of reflection strengths S,
+8S,(0) and Syz—Sa,(0), but of reflection amplitudes r,z
and ry,(6) themselves. At larger angles the transmission
1-Rav(0) may become greater than one due to break-
down of this approximation. However, even this very
crude approximation yields a fairly good description of
these polarized components of reflection, at least in the
range between 0° and 65°.

5. REFLECTION BY A VBG: EQUATIONS IN
SVEA

Consider now a nonmagnetic (i.e., optical) medium with
VBG of refractive index n(z) for which

n(z) =ng+ny(2) + ni(z)cos[Qz + y(2)] + inj(z)cos[Qz + &(2)],

vac

Z(z) = — = —(ng - ny(z) - n}(z)cos[@z + ¥()]

n(z)  ng
—inj(z)cos[Qz + &z)]). (5.1)

Here real nj(z) and y(z) are slowly varying zero-to-top
amplitude and phase of the “refractive” component of
VBG, respectively; |in](z)| and 8(z) are the same charac-
teristics of the “absorptive” part of VBG; and ny(z) is a
small local correction to the constant real refractive index
no. That correction ny(z) includes possible loss i Im[ny(2)],
so that the spatially averaged power attenuation coeffi-
cient of the material is ajo[1/m]=2wny/c.

We can calculate our coupling functions f(z) and g(z) ac-
cording to Eq. (2.8) by an approximate differentiation of
fast oscillating terms of n(z) only
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1
_ngir sin agir
2 dlnn(z) 1dInn(z)
fle) = n?(z) -n% sin %, dz £6)= 2 dz
dlnn(z) n1(z)sin[Qz + ¥(2)] + in(z)sin[Qz + &(z)]
A no '

(5.2)

Effective interaction between waves a and b occurs at the
Bragg condition, when

w

1 -,2 sin 6 /n2

Q ~2—ngcos by, cos by = \1—nZ sin 65/n5.
c

(5.3)

Here 6,, is the angle between the z axis and the propaga-
tion direction of light inside the VBG. Thus Eq. (5.2) with
its accounting for the Bragg condition leads to coupling
functions for TE and TM polarizations

wni(2)sin[Qz + y(z)] +inf(z)sin[Qz + 8(z)]

8(@) +flz) ~-— ,
c cos 6,

8(2) - flz) =~ [g(2) + f(z) Jcos 26;,. (5.4)

We see a natural result: the coupling coefficient [which in
optics is due to modulation of £(z) only] is smaller by a
factor p=(p,-pp)=cos 26;, for TM polarization in compari-
son with the coupling for TE polarization, where that fac-
tor equals one. Here p, and p, are unit polarization vec-
tors of the electric field for waves a and b. The function
sin[@z + y(z)] is written as

1
Sin[Q@z + ¥(2)] = [0 - e, (5.5)

with a similar expression for the sin[@z+ 8(z)]. The SVE
approximation, which we will use later, corresponds to
keeping only one of two exponential terms from Eq. (5.5)
in the coupling terms from Egs. (2.14) and (2.17), namely,
the terms that will perform z-accumulated coupling. As a

result, we get the equation for matrix M(z) expressing
values a(z) and b(z) through a(0) and 5(0):

d . .
EM(Z) = VTE,TM(Z)M(Z),

f/ l[p(z) - kair,z] iK+(Z)ein_2ikair'zz
@)= s @@ it i) kg, |7
(5.6)
® ni(z)e”’(z) +inj(2)e!?®
TE: K+(Z) =— 5
c 2 cos 6;,
%) ni(z)e‘i”(z) + in{(z)e'i‘s(z)
K_(Z) =— . (57)

c 2 cos 6;,

Interaction coefficients «, and «_ have indices (+) or (-),
denoting the xz direction in which the result of corre-
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sponding scattering propagates. These coefficients for TM
polarization are smaller by the polarizational factor p
=cos 26;,. As written in Eq. (5.6), the interaction matrix
still contains fast-oscillating phase factors. However, by
choosing the “central” value of the real parameter

Po=@Q/2, one can present the matrix M (2) in the form
M(z) = K(Q/2 - ke )2)P(2), (5.8)

so that the equation for the P matrix becomes “slowly
varying” indeed:

dPiz) .
?=W(Z)P(2),

. i[p(z) - Q/2] ix,(2)
W(z) = . . . (5.9
—ik_(2) -i[p(z) - Q/2]
The Bragg condition is satisfied when p(z)=Q/2.
As we have already discussed, the numerical (or ana-
Iytic) solution of the Cauchy problem for this system

placed between z;=0 and zo=L yields the matrix ﬁ(L),

and thus M (L). If our glass plate with the VBG is placed
at an arbitrary z; then according to the definition of am-

plitudes a(z) and b(z) the matrix M (z9,271) will be

M(zy=21 +L,21) = K(= kyir.2) M(L)K (b g3y 21) -
(5.10)

The value of the matrix M(zz,zl) at zg=z,+L, i.e., at the
end of the VBG, allows one to find reflection and trans-
mission coefficients.

6. HOMOGENEOUS VBG: KOGELNIK’S
ANALYTICAL SOLUTION

Consider a VBG medium placed between z; and z5=2;
+L with the above refractive index profile n(z—z;) with
homogeneous (constant) parameters ny, inj, v, 6, ny, ing,
and with ajo[1/m]=2wnj/c being the spatially averaged
attenuation coefficient for power. For definiteness we con-
sider here the TE polarization. Function p(z) from Eq.
(2.8) in this case will be assumed constant with small
positive imaginary part:

w r 5 5 - w Uz
p=—(ng+ny)" —ny, sin 02, ~ —| ng cos 6, +
c c cos b;,
! by " aloss
=p'+ip", p'= . (6.1)
2 cos 6,

After that, the W matrix from Egs. (5.9) becomes
z-independent, and Egs. (5.9) get the explicit solution de-
scribed in Appendix B:

dP(z) W . iA iK,

& SR, W=l L P

. . N . sinh G
P(L)=e"F=1coshG+ WL G (6.2)
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A=p'+ip"-Q/2, G=S,S_-X?

S.=w L=k L+ik'L, X=AL=X'+iX". (6.3)

The dimension of A is [1/m]. In this manner, the matrix
P(L) becomes

sinh G sinh G
cosh G +iX iS, G
Py = sinh G sinh G |
-iS_ cosh G -iX

(6.4)

Going back to Egs. (5.10) and (5.8), we obtain the expres-
sion for the matrix M (z9,21):

. . Q A
Mypg(z9,21) = K(‘ kair 21— <kair,z Y L |P(L)K(k 4, ,21) .

(6.5)
As a result, the reflection coefficient by a VBG becomes
M, P
rb—a)=r_=- e e2ikair21 -
My, Py,
) 1S_sinh G/G
= eZlkair,zzl (6_6)

cosh G - iX sinh G/G”

Formulas (6.1)—(6.6) allow one to find the reflection coef-
ficient even in the presence of loss or gain. Equivalent re-
sults in different notations were first derived in the fun-
damental work by H. Kogelnik [6]. We have rederived
them in our notations, which facilitate the subsequent ac-
count of Fresnel reflections.

Imaginary detuning may be expressed via intensity at-
tenuation coefficient «jy (3.16):

alossL
X'=Y=

. 6.7
2 cos 6, 6.7)

The relatively difficult part is to express the dimension-
less quantity Re(X) via observables; this parameter signi-
fies the detuning from the Bragg condition (Bc). Suppose
that Bc is satisfied exactly at certain values of incident
angle 6, ¢ at the wavelength A, o for definite values of @
and ny. Then in the case of relatively small (but homoge-
neous) deviations from Bc one gets

—2mmnoL cos iy | ON\ype OQ

SRe(X) = +—
)\vac,O hvac 2Q

2

1 Ngir . ) ong

+ ——5—| ——5(8in® Ouy — in? Oy 0) - —
cos” Oy, | 2ny ny

(6.8)

While the look of the expressions (6.1)—(6.8) is rather
heavy, their calculation by any computer is quite straight-
forward. Moreover, the accuracy of modern computers al-
lows one to use a procedure that is morally reprehensible,
but numerically admissible: Calculate p(detuned)—p(Bc)
as the small difference of two large quantities. Such pro-
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cedure reduces the risk of making a typographical error in
Eq. (6.8).

In the absence of loss or gain and with modulation of
real Re(n]) one gets S,=(S_)*=Sye’?, Im(X)=0, so one can
use the notion of reflection strength S, and then the re-
flection coefficient Rygg=R,=R_=R becomes

sinh? G

R=|r(b —a)P=tanh®S= —
Ir(b —a)f = tanh™ S = e XsE

sinh G

S= arcsinh(SO ), So=+S.S_=|S,],

G=S;-X°. (6.9)

Finally, at exact Be, X=0, and without loss, the reflection
strength S is

’7Tn1L

S=8,= (6.10)

)
Nyac COS O

which constitutes the most important and simplest for-
mula of Kogelnik’s VBG theory.

7. INFLUENCE OF FRESNEL REFLECTIONS

For a sharp boundary positioned at z,, the process of
Fresnel reflection of the waves with TE and TM polariza-
tions is described, according to Eqs. (4.1)—(4.9) and (5.10),

by the matrix M:

Mzy + 0,21, 0) = K(= kiy .20)S(S)K (ki 21),  (7.1)

45 cosh S sinh S

8= sinhS  coshS |’

s : Z, ) cos Oy | Ny ) cos Oy
TE,TM = 1 \/Z_2i " \ cos 6, n \/n_li " V cos 6;

(7.2)

At incidence normal to the boundary between two optical
media with n; and n,, the reflection strength is the same
for both polarizations: S=1/21In(ng/n,), since Z=Z,./n.
For the particular case ny/n;=1.5 one gets S=0.2027.
Now consider the case of a VBG positioned between z;
and zy=z1+L with background refractive index ng; this
VBG is surrounded by air, and n,,=1. For a VBG with

boundaries, the transformation matrix M given by Eq.
(6.5) will be surrounded by two boundary matrices of the
type of Eq. (7.1):

M(z5+ 0,21 - 0) = K(= kg ,25)3(So)K (R ir 29) Myp(29,21)
XK(= koir 221)3(S1) K (Bir 221) (7.3)

Here S| and S, are the strengths of reflections at the cor-
responding boundaries, and the matrix MVBG(zz,zl) is
given by Eq. (6.5). While analytical expressions look quite
heavy, one has to multiply the matrices given by explicit
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expressions only; such a procedure is very simple for a
computer.

In the case of a perfectly lossless VBG one has to take
into account the phase relationships between contribu-
tions of the first boundary, the VBG, and the second
boundary. After summation of arguments in correspond-

ing K matrices the total matrix of VBG with boundaries
(7.3) will be

M = K(= ki ,25)3(S9)K((y + QL)/2)

XPg xK(= Y12)2(S DK (kyir 21), (7.4)
sinh G sinh G
cosh G +iX Sy
R G G
Ps,x= sinh G sinh G |’
-5y cosh G -iX
G G
G=S:i-X2, (7.5)

with S and X defined in Egs. (6.3) and (6.9). We see that
the character of the curve of reflectance versus detuning
depends on two phases, y and QL, both related to the
properties of the specimen that contains the grating.
Their values fluctuate from one specimen to another as a
result of manufacturing of the VBG. Quite often the speci-
mens are coated with antireflection layers.

Far from the resonance when X>> S the matrix f’so X

will transform into diagonal phase matrix K(X). Then af-
ter summation of phases between boundaries we simplify
the matrix (7.4) to

M = K(= ki .29)3(S)K(0)3.(S DK (B iy .21) s

w
¢=pL =—nyL cos 6,,, (7.6)
c

which describes ordinary glass plate with interferometric
properties defined by phase difference pL. When this rela-
tive boundary phase is equal to a (typically large) integer

number m of 7, then matrix k(qo) is proportional to a unit
matrix, and the total reflection strength is S=S;+S,=0.
This corresponds to perfect resonant transmission of a
Fabry—Perot interferometer based on reflections by two
boundaries. If at some particular frequency/angle point
our VBG has zero strength, e.g., if G=imm, with m being

an integer nonzero number, then Pg x is proportional to a

unit matrix and again boundary strength matrices S are
separated by a phase matrix so total reflectance will be
defined only by boundaries.

Let us go back to the VBG without background loss or
gain, and with boundaries of different reflectances R; and
R, in the general case, so their reflection strengths are
IS1 2] =arctanhV’Fm, respectively. Multiplication of the
corresponding matrices of the first boundary, of the VBG,
and of the second boundary yielded the resulting matrix
(7.4). Maximum and minimum values of the total result-
ant strength are realized when boundary terms are added
or subtracted from the VBG term; that is,
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R=tanh®S, Sp.=Svsg+|S1]+|Sal,

Simin =Svea — (IS1| +1S2]), (7.7)

due to appropriate intermediate phases. We consider for-
mulas (7.7) one of the important results of the present
work.

Figure 3 was obtained by honest multiplication of rel-
evant matrices, and then by depicting all possible values
of |Rytall® at various combinations of phases. We see that
in the region of perfect Be, X=0, reflectivity is not affected
strongly by the boundaries. Even if one has to deal with
Fresnel reflections, R{=R3=0.04 (for ny=1.5), the modi-
fied reflection at exact Be is within the limits 0.9779
=R,1a1=0.9956 for Rypz=0.99 (S=2.993). On the other
hand, in the spectral points of exactly zero Rygg—where,
in Eq. (6.9), X2=S2+m?=n? with integer nonzero m—the
residual reflection varies within the interval

tanh?(S; - Sy) =R = tanh(S; + S,), S, =arctanhR,;.
(7.8)

In particular, if R1=R5=0.04 then 0 =R =0.1479. Another
example is R1=R,=0.003; then 0=R=0.0119.

8. EXPERIMENTAL DEMONSTRATION OF
PHASE-SHIFTED VBG AND FABRY-PEROT
EFFECTS

Consider a VBG made of two equally strong parts, each of
them having the same values Sypg. Then the reflection
action of the compound VBG depends on the mutual
phases of these two gratings. If there is no phase shift Ay
between cosinusoidal modulations of refractive index in-
side these two gratings, then the combined VBG merely
acquires double strength S;,;=2Svpg. However, any inter-
mediate shift, 0 <Ay<2, yields a narrow spectral trans-
mission peak (or reflection dip) to 7'=1 (R=0). The physi-
cal sense of this 100% transmission peak is similar to the

1.0

perfect ARC
0.3% ARC
without ARC

0.9
0.8
0.7 4
0.6
R
0.5
0.4

0.3 1

Fig. 3. Reflectivity R of a VBG with account of interference of
reflection by the VBG proper with two extra contributions: from
the two boundaries of the specimen, for all possible phase combi-
nations. Values of R are between the dashed curves for Fresnel
4% reflections from bare boundaries, and are between the dotted
curves for antireflection coatings (ARC) at 0.3% each.
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100% transmission peak of a Fabry—Perot resonator with
flat mirrors, when the resonant condition is satisfied.

In order to describe such a configuration of two VBGs,
we consequently have to multiply matrices of elements
with corresponding phases. We actually performed the ex-
perimental study of two uncoated identical reflective
VBGs placed very close to each other with small gap [ be-
tween them filled by immersion liquid with the same
background refractive index n,. The coordinates of the
first grating boundaries were zo=0 and z,;=L, and the sec-
ond grating was positioned between zo=L+[ and z3=2L
+1. Spectral parameters X and strengths S, were the
same for both gratings, but initial phases y; and y, were
different. Boundary reflection strength from air to glass
was Sy, and that from glass to air was —S},. The transfor-
mation matrix determining waves a and b after this com-
pound system, z >z3, through values of a and bbefore it,
2<0, is a product of matrices of two types—Eqs. (7.1) and
(6.5)—with P(L)=K(y/2)Ps xK(-v/2); see also Eq. (7.5).
After simplification of phase arguments it becomes

a(zz+0) M[a(—O)}
blzs+0) |  [6(=0)]

N . . A~ A [AY\,. . .
M = K(B3)2(- Sp)K(B2)Ps, xK ( ?)PSO,XK(IBI)E(Sb),

7 Y2+ QL
Bl == E’ 2 = 92 ) BS = _kair,zz3’
Ay=QL + y; — vo + 2pl. (8.1)

For small size [ of the gap phase, pl (or k! at normal inci-
dence) is approximately the same for all wavelengths in
question. We see that the reflection characteristics of this
compound system depend on three intermediate phases:
phase shift Ay between two cosinusoidal modulations in
VBGs contacted via immersion layer and two outside
boundary phases B; and Bs.

We present the experimental demonstration of the co-
herent combination of two m-shifted VBGs in air. The
VBGs used for this demonstration were recorded inside
PTR glass [9,10]. They have central wavelength at
1063.4 nm, thickness of 2.76 mm, and refractive index
modulation of 154 ppm (middle-to-top). They were re-
corded inside PTR glass without slant, and diffraction ef-
ficiency was equal to 72%, so Sy=1.25. The two VBGs
were fixed on mirror holders, and one holder was motor-
ized with a piezoelectric transducer that allowed fine
translation and fine angle tuning. The setup for the mea-
surement of the spectral response used a tunable laser
having a 1 pm resolution; see Fig. 4.

The laser radiation was spatially filtered by a single-
mode fiber and coupled to a collimator. The 1 mm diam-
eter output beam was sent through the VBG assembly,
and the transmitted signal was measured using a silicon-
amplified photodiode associated with a data acquisition
card. To adjust the parallelism of the two VBGs, a fiber
coupler was used between the laser and the collimator.
Another silicon-amplified photodiode was used to mea-
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Tunable
Laser

1050-1070nm

Fig. 4. Experimental setup for the coherent combination of two
VBGs in PTR glass.
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Fig. 5. Experimental transmission of two m-shifted VBGs.

sure the power reflected from the combined VBGs and re-
coupled inside the collimator.

It is important to stress that the laser used for the mea-
surement was combined with a circulator that blocked all

(@) N Ay=2.15

106335  1063.40
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Fig. 6. Spectral shift of resonant transmission due to phase
shift Ay between two grating modulations; see the text for
details.
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reflected signal that otherwise would have been re-
injected inside the laser cavity and would lock it to the
wavelength of the filter. Using this coupler, the two VBGs
could thus be aligned by autocollimation.

Typical spectral dependence of the transmission of the
filter is shown in Fig. 5. Oscillations in transmission out-
side the resonance are due to the phase interplay between
uncovered Fresnel reflections and secondary evanescent
lobes of the gratings. This filter presents a transmission
higher than 90%. Bandwidth was =25 pm (FWHM) and
rejection width was 200 pm. Rejection outside the reso-
nance was better than 10dB and could be improved by
combining it with an additional VBG or using VBGs with
higher diffraction efficiencies [18].

To illustrate the principle of phase matching between
the two VBG, we changed the distance between them and
recorded the transmission for each distance; see Figs.
6(a)-6(c). One can see that according to the distance be-
tween the two VBG, the resonance moved inside the main
lobe of the diffraction efficiency of the VBG. When the dis-
tance was optimized and phase shift Ay was equal to m,
the resonance was centered in the middle of this lobe.
When this phase was different from =, resonance was
shifted to the edge of the lobe.

The solid curves at Figs. 6(a)-6(c) correspond to experi-
mental data, while the dashed curves are theoretical fits
with optimized Ay for these actual gratings. We see rea-
sonable agreement of theory with experiment.

9. CONCLUSION

In this paper we reworked the matrix approach to the cal-
culation of reflection and transmission of electromagnetic
waves by a layered medium. Two principal results of our
theory should be mentioned. First, we were able to eluci-
date separate contributions of the gradient of impedance
Z=(u/e)V2, and of the gradient of propagation speed v
=1/(ue)2. Second, for lossless media we introduced the
notion of reflection strength S such that the reflection co-
efficient R=(tanh S)2. We established the law of composi-
tion of sequential reflection elements, which depends on
the phase difference between their contributions. At zero
phase difference one has simply to add individual
strengths, while at phase difference 7 one subtracts these
strengths.

Our findings constitute a new understanding of long-
established Fresnel formulas for reflection by a sharp
boundary between two media. Namely, the strengths
Str(#) and Stm(#) are shown to be a sum, Stg(6)
=G+F(0), and a difference, Sty(60)=G-F(6), of two contri-
butions. One of them is an angle-independent contribu-
tion of the impedance step, while the other is an angle-
dependent contribution of the step of propagation speed.

We demonstrated experimentally a Fabry—Perot-type
spectral filter with bandwidth of transmission peak
AN(FWHM) = 25 pm in the range A\ .c—Npin= 200 pm.

APPENDIX A: PECULIAR PROPERTIES OF
VBG MADE WITH USE OF ABSORBING
MATERIALS

Consider the diffraction of light by a VBG made of non-
magnetic medium, where u=pu,,, and where both the
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grating and the background dielectric permittivity con-
tain real (refractive) and imaginary (absorptive) parts.
Actually, even in the absence of physical absorption in the
PTR glass, scattering by microcrystals may produce effec-
tive Im[ én(z)].

The first mathematical statement to be made is that it
is impossible to have a spatial Fourier component of the
absorptive grating without background absorption. Con-
sider a Fourier representation of a periodic profile of the
imaginary part of the refractive index assuming
[Im(sn)| < ng:

+
n"(z)={n") + 121 (c;e'9 + c?e'ﬂQZ). (A1)
=+

Then the requirement of n”(z) being nonnegative every-
where (absence of gain) limits the modulus |c;| of the am-
plitude of the Fourier component with /=1:

leq] = (n”). (A2)

The inequality becomes equality when the spatial profile
of n”(z) is a periodic series of infinitely thin positive delta
functions:

+0 40 2
n"(z)=(n")D >, 8z-mD)= >, (n")e®, D= Eﬂ .
m=—o© [=—

(A3)

For combined complex refractive index with real cosi-
nusoidal modulation and thin-layer-type dependence of
the imaginary part,

n(z)=ny+njcos(Qz +vy) +in"(z), (A4)

the coupling coefficients analogous to Eq. (5.7) for coun-
terpropagating waves a and b will be

) 1
_ R e < rr>
K:TE = ne +iun ,
c cos G, \ 2

KeTM = KeTEP, P =€0S(20;,). (A5)

The most surprising phenomenon takes place for the
VBG made out of thin, periodic, purely absorbing layers
only. Then Egs. (6.2) at the Bc with residual imaginary
detuning A=ip” for TE polarization become

dPiz) . . A [m m]
=WP@), W=|_

IK_ —IA

, -1 -1 Y (n")w WXoss
=p , P =

1 1 " ccos b, ~ 2 cos 6.,
R N PO 1-Y -Y
Py =expWL)=1+WL=| = | |,
Y=p'L = alossL (AG)
P 2 cos 6,

see Appendix B. The resultant reflection coefficients R,
=R(a+b) and R_=R(b+«a) are the same and are equal to

Vol. 25, No. 3/March 2008/J. Opt. Soc. Am. A 763

Y \2 1
R.=R_=R=  T=—
1+Y 1+Y)?

2Y
T 1+

(A7)

In a curious way, the reflection increases asymptotically
to 100% as Y — o, i.e., when the total thickness of such a
purely absorptive VBG goes to infinity (albeit it increases
rather slowly). This phenomenon is similar to the Bor-
mann effect of anomalously high transmission of X rays in
Bc in crystals for TE polarization. This phenomenon was
suggested as a candidate for making artificial X-ray mir-
rors in [19].

Another interesting example is when such a concen-
trated modulation of absorption is accompanied by the
modulation of refraction. One can adjust the phase y and
amplitude of Re(n;) in such a manner that niei7=2i(n”)

and the interaction matrix W becomes

W Woss -1 -2 A
=— . 8
2cos 0, O 1 (48)

In other words, 90°-phase-shifted gratings of Re(n) and of
Im(n) enhance each other for the b —a scattering, but
completely compensate each other’s influence for ¢ —b. In
that case for TE polarization

. R . sinhY [e¥ —-2sinhY
exp(WL)=1coshY + WL Y =1 o R s
sl
- IOL, (A9)
2 cos 6;,
R,=0, R_.=(1-¢%)2 T=e?%,

1-T-R,=1-¢%, 1-T-R_=e2Y(1-¢%).

(A10)

In this case maximum R(b+<a) reflection may reach
100%. Maximum absorption under illumination by the &
wave is 100%; it is reached at Y>> 1. Maximum absorption
under illumination by the a wave is 25%; it is reached at
Y=0.51n2=0.347. However, in a remarkable way, the re-
flection R(a«b)=R, is identically zero: quite a surprise!

APPENDIX B: LAGRANGE FORMULA FOR A
FUNCTION OF A MATRIX

Here are the heuristic considerations justifying the so-
called “Lagrange interpolation formula” for the function
of a matrix. It should be emphasized that it is an exact
formula, in spite of traditional use of the adjective “inter-
polation.” One can find detailed proofs in almost any text-
book on matrices; see, e.g., [20].

Consider a function F(z) of one (generally complex)
variable z. Suppose one wants to interpolate this function
by a polynomial of nth power:
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F(z)=P,(z)=c,2" +c,12" 1+ -+ +co. (B1)

To do this, one can use n+1 values of the function F(z;) at
different points of the argument z; where j=1,2,...,
n+1. The most compact expression for such polynomial
P,(z), which is based on the above data, constitutes the
“Lagrange interpolation formula.” For brevity we write it
for the cases n=1 and n=2 only:

Z2—29 2—21
+F(22) ’
22—21

F(z) = Py(2) =F(z1)

21—22

(z-2z1)(z-23)

(22— 21)(z2 - 23)

(z-29)(z - 23)

F(z) = Py(2) = F(z1) Cr— 2 —20) +

22

(z-2z1)(z—29)

F _
ko v

(B2)
Indeed, the design of the “fractions” in relations (B2) is
such that their values at appropriate points z; are either 0
or 1.

Going to the functions of matrices, one can use the re-
markable Cayley—Hamilton theorem, which states that
any power of n-by-n matrix Z may be expressed as a lin-
ear combination of unit matrix iE(Z)O, matrix (Z)l,...,
and up to (Z)”‘1 inclusive. That is the motivation to as-
sume the formula of the type (B1) with (n—1)-st power of
the polynomial exact.

Following is the explicit expression for the function of a
2-by-2 matrix Z; let \; and \y be the eigenvalues of our
matrix Z, i.e., the roots of the characteristic equation

det(Z - )\i) = )\2 - (le + Zzz))\ + Z11Z22 - Z12Z21 = 0, =

1 1
= M= E(le +Zg) = \/2(Z11 ~Z99)* + Z19Z3;.

(B3)
Then
. Z — Nol Z-\1
F(Z)=F(\y) N +F(\y) V.
[F(M)M —F(M))\z} . {F(M) —F(M)} .
= 1 + Z
N = Ns N = Ng
(B4)

We are most interested in the exponential function of a
2-by-2 zero-trace-matrix Z. In that case
! *\ !/—
Zog==Z11, A=—Ng=N=N+i\"= \'(Z11)2 + 7219751,
(B5)

. sinh(\¢)

exp(Zt) = 1 cosh(\t) + Z— (B6)
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Three points are worth special mention. First, both
cosh(\¢) and sinh(\¢)/\ are even functions of \, and there-
fore the particular choice of the branch of the root in Egs.
(B5) and (B6) is not important; it only must be the same
in both numerator and denominator of sinh(\¢)/\. Second,
it is nice that one does not have to calculate eigenvectors

of the matrix Z. Third, if the eigenvalue \ is close to zero
or just zero, one has to use 'Hospital’s rule:

exp(Zt) -1 +Zt, if A — 0, arbitrary ¢. (B7)
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