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Effects in composite volume Bragg gratings (VBGs) are studied theoretically and experimentally. The math-
ematics of reflection is formulated with a unified account of Fresnel reflections by the boundaries and of VBG
reflection. We introduce the strength S of reflection by an arbitrary lossless element such that the intensity of
reflection is R=tanh2 S. We show that the ultimate maximum/minimum of reflection by a composite lossless
system corresponds to addition/subtraction of relevant strengths of the sequential elements. We present a new
physical interpretation of standard Fresnel reflection: Strength for TE or for TM reflection is given by addition
or by subtraction of two contributions. One of them is an angle-independent contribution of the impedance
step, while the other is an angle-dependent contribution of the step of propagation speed. We study an assem-
bly of two VBG mirrors with a thin immersion layer between them that constitutes a Fabry–Perot spectral
filter. The transmission wavelength of the assembly depends on the phase shift between the two VBGs. Spec-
tral resolution ���FWHM�=25 pm at �=1063.4 nm is achieved with the device of small total physical thickness
2L=5.52 mm. © 2008 Optical Society of America

OCIS codes: 090.7330, 260.2110.
. INTRODUCTION Equation (1.1) also takes into account possible deviation
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ropagation of light in layered media is one of the funda-
ental problems in general electrodynamics and in optics

n particular. Almost any textbook devotes considerable
pace to this problem, where, by definition of the term
layered,” all the media properties depend on one coordi-
ate only (for definiteness, on z); see, e.g. [1–3]. Special-

zed texts devoted to layered media are abundant as well;
ee, e.g. [4,5]. At the same time, diffractive transforma-
ions of light beams by volume Bragg gratings (VBGs) has
een considered in numerous publications; see, e.g. [6–8].
One of the purposes of the present paper is to consider

he interference between three processes of reflection. The
rst and third ones are the Fresnel reflections by the
oundaries of a parallel glass plate. The second is the pro-
ess of holographic reflection by a VBG located inside that
lass plate; see Fig. 1.

There is a certain technical difficulty in the simulta-
eous consideration of all three processes. Fresnel reflec-
ions require “stitching” full electromagnetic fields via
oundary conditions, and the step in the refractive index
ay be arbitrarily large there. On the other hand, reflec-

ion by a VBG is correctly considered in the slowly vary-
ng envelope approximation (SVEA), since the modulation
1 of the refractive index profile n�z�,

�z� = n0 + n2�z� + n1��z�cos�Qz + ��z�� + in1��z�cos�Qz + ��z��,

�1.1�

s assumed to be small: �n1 � �n0. Indeed, for the VBGs
f our interest typically �n � �3�10−4n ; see [9,10].
1 0

1084-7529/08/030751-14/$15.00 © 2
2�z�=n2�+ in2� of a smooth refractive index profile from its
onstant real value n0. The imaginary part of n2�z� takes
nto account background absorption. The grating in Eq.
1.1) in most of this paper is assumed to be purely refrac-
ive, n1�z��Re�n1�z��, but the basic equations will allow
or in1��z� as well.

To overcome these differences in description of discrete
oundary reflection and VBG reflection, we reformulate
he approach to the solutions of Maxwell’s equations.
amely, we produce an exact system of first-order coupled

quations for the counterpropagating waves. That system
llows us to account, in a unified manner, for both SVEA
nd reflection by sharp steps. It is worth noting that the
ame task could, in principle, be performed by existing
atrix methods. The approach closest to ours is adopted

n the text [5]; nevertheless, there are some particular im-
ortant differences.
An important role in our approach is assigned to the

arameter S, strength of reflection by a lossless element: S
s defined in such a way that the intensity reflection coef-
cient may be written as

R = �r�2 = tanh2S. �1.2�

n extra advantage of introduction of the strength pa-
ameter S is that even if S→�, reflection intensity �r�2 ap-
roaches 1 only asymptotically for media without loss or
ain.

Our consideration of the general electrodynamic prob-
em takes into account two distinctly different mecha-
008 Optical Society of America
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isms of reflection: by the gradients of propagation speed
, and by the gradients of impedance Z. Here � and 	 are
he local values of dielectric permittivity and magnetic
ermeability, respectively, while �vac and 	vac are the re-
pective values in vacuum, where the speed of light c
1/��vac	vac=3�108 m/s, n is local refractive index, and

v =
c

n
, Z =�	

�
, n =� �	

�vac	vac
. �1.3�

We were able to show that the strength S of the reflec-
ion from a single sharp boundary is a linear sum (for TE
olarization) or a linear difference (for TM polarization) of
wo contributions. One of these contributions does not de-
end on polarization and on impedance, but is governed
y the change of propagation direction: a kinematic effect
epending only on the step in the refractive index (i.e., of
ropagation speed). The other contribution also does not
epend on polarization; neither does it depend on the in-
idence angle. This contribution is provided only by the
tep in the impedance Z. In this sense in the present pa-
er we claim new understanding of old phenomena:
resnel reflection and the Brewster effect.
We use a particular kind of matrix approach to the

aves in layered media (compare also with the approach
rom [5]). While the incident and reflected waves are
ropagating in �+z� and �−z� directions, respectively, our
pproach requires the solution of the system of coupled
rdinary differential equations (ODE) in one direction
nly (e.g., +z). In this way we reduce the original two-
oundary (z=0 and z=L) problem to the Cauchy problem
f an ODE system, i.e., to the one with initial conditions
t z=0 only. That allows use of various analytical and/or
umerical methods of solving these ODE.
The results of our consideration of the mutual influence

f VBG reflections and Fresnel reflections depend explic-
tly on their relative phases. An important general conclu-
ion is that the argument S of reflection function R
tanh2S by a lossless element lies within the limits

ig. 1. Notations for the incident a�z� and reflected b�z� waves i
eflections from both boundaries, z=0 and z=L, as well as of the
SVBG − ��S1� + �S2�� � S � SVBG + ��S1� + �S2��, �1.4�

here SVBG, S1, and S2 are the strength parameters for
BG and for the two boundaries, respectively.
We consider a combined VBG that has a shift between

he phases of two gratings. Actually, in recent years,
hase-shifted fiber Bragg gratings have drawn great in-
erest by researchers [11,12]. Under introduction of a 

hase shift into a fiber Bragg grating during its fabrica-
ion, the spectral transmission acquires a narrow band-
ass appearing within the middle of the central lobe of
he fiber Bragg grating. In [9,10], the authors established
ow to record high efficiency and low loss VBG in photo-
hermorefractive (PTR) glass. In using this material a
elative diffraction efficiency as high as 99.9% has been
chieved, and the level of losses has been kept below
0−2 cm−1. Such material therefore represents an ideal
ne for the fabrication of a combined VBG filter. In Sec-
ion 8 we present analytical and numerical calculations of
uch a cavity, and compare them with the solutions of
imilar problems for distributed feedback and related sys-
ems [13–16]. Finally we present an experimental demon-
tration of this filter in air.

. TRANSFORMATIONS OF MAXWELL
QUATIONS

t is instructive to write the Maxwell equations for the
eneral case, when both dielectric permittivity ��z�
farad/m] and magnetic permeability 	�z� [henry/m] are
unctions of z. Later we will limit ourselves to the optical
ase, where 	=	vac, ��z�=�vacn2�z�. We take the Maxwell
quations for electric field vector E�r , t� [volt/m] and mag-
etic vector H�r , t� [ampere/m] as

��r�
�E

�t
= � � H, 	�r�

�H

�t
= − � � E. �2.1�

axwell’s equations (2.1) may be written in a form that
xplicitly shows certain symmetry between E and H:

pproximation of infinitely wide plane beams with account of the
tion by a VBG.
n the a
reflec
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H�r,t� = h�r,t�
1

�Z�r�
, E�r,t� = e�r,t��Z�r�,

g = − 1
2 � ln Z�r�, �2.2�

n

c

�h

�t
= − � � e + g � e,

n

c

�e

�t
= � � h + g � h,

�2.3�

elow we will use the monochromatic amplitudes of the
ype

Areal�r,t� = 1
2 �A�r�exp�− i�t� + A*�r�exp�i�t��, �2.4�

here �=2
c /�vac, and c is speed of light in vacuum. Ad-
antages of the complex amplitudes e and h are as fol-
ows: (1) For a plane wave propagating through the me-
ium with constant real refractive index n and constant
eal impedance Z in direction m=k / �k�, one has �e � = �h�,
=−�m�h�, h= �m�e�; (2) the time-averaged Poynting
ector S �watt/m2� in a region of the medium where the
oss is absent may be expressed via e and h as S= �ereal

hreal	t= �e�h*+e*�h� /4.
We consider the incidence plane to be the �x ,z� plane

or a wave of �vac incident on a layer 0�z�L of the me-
ium, with the properties being z dependent only. By �air
e denote the incidence angle of the wave in air, so that

kair = x̂kx + ẑkair,z, kx =
�

c
nair sin �air,

kair,z =
�

c
nair cos �air. �2.5�

n most cases the approximation nair
1 works quite well.
evertheless, we keep it for the case of large �air, when
igh angular selectivity of the VBG may require a more
ccurate value of nair. The incidence of light on a holo-
ram’s surface from some other medium than air may
lso be covered by Eq. (2.5), by assigning an appropriate
alue to nair. Incidence angle �air means x-dependence of
he wave amplitudes proportional to exp�ikxx�, and kx is
he same at all z. The waves in a layered medium are
aturally separated into transverse electric (TE) and
ransverse magnetic (TM) parts, with components ux, uy,
z for the electric vector of both TE and TM waves and wx,
y, wz for the magnetic vector of these waves:

TE: e�r� = − ŷuy�z�exp�ikxx�,

h�r� = �x̂wx�z� + ẑwz�z��exp�ikxx�; �2.6�

TM: e�r� = �x̂ux�z� + ẑuz�z��exp�ikxx�,

h�r� = ŷwy�z�exp�ikxx�. �2.7�

ere and below we use the quantities k�z�, p�z�, g�z�, f�z�
efined by
k�z� =
�

c
n�z�, p�z� = �k2�z� − kx

2,

g�z� = −
1

2

d

dz
ln Z�z�, f�z� =

1

2

d

dz
ln

p�z�

k�z�
. �2.8�

axwell’s equations in the form (2.3) for the monochro-
atic amplitudes uy, wx, wz in case of TE polarization are

ikuy = �zwx − ikxwz + gwx, − ikwx = − �zuy + guy,

− ikwz = ikxuy. �2.9�

he system of Eqs. (2.9) may be rewritten for the two
unctions uy�z� and wx�z� only:

�zuy = guy + ikwx, �zwx = ip2/kuy − gwx. �2.10�

t is convenient to express the functions uy�z� and wx�z�
ia newly introduced amplitudes a�z� and b�z� for TE po-
arization:

aTE�z� =
1

�8
��p

k
uy�z� +�k

p
wx�z��e−ikair,zz,

bTE�z� =
1

�8
��p

k
uy�z� −�k

p
wx�z��eikair,zz.

�2.11�

he physical sense of the amplitudes aTE�z� and bTE�z� is
specially clear when the propagation direction of the in-
ident wave is close to the z axis. Then

aTE�z� 
 −
Ey

�8Z
+�Z

8
Hx, bTE�z� 
 −

Ey

�8Z
−�Z

8
Hx.

�2.12�

he Poynting vector’s z component (for any incidence
ngle in a lossless part of the medium) according to Eqs.
2.6) and (2.11) is

Sz = �aTE�2 − �bTE�2. �2.13�

f the medium exhibits weak loss, then Eq. (2.13) is still
alid with good accuracy. In the regions where the imped-
nce Z�z�=const1, and the refractive index has real value
�z�=const2, the moduli of our amplitudes �aTE� and �bTE�
tay constant. The amplitudes and phases of aTE and bTE
tay constant under propagation in “air.” The exact Max-
ell Eqs. (2.10) for TE polarization are reduced to the

imple coupled pair

d

dz�aTE�z�

bTE�z�� = V̂TE�aTE�z�

bTE�z�� ,

ˆ
TE = � i�p�z� − kair,z� �g�z� + f�z��e−2ikair,zz

�g�z� + f�z��e2ikair,zz − i�p�z� − kair,z�
� . �2.14�

imilar transformations may be made for the field compo-
ents (2.7) of the TM polarization:
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− ikux = − �zwy − gwy, − ikuz = ikxwy,− ikwy = ikxuz − �zux + gux ⇔

⇔ �zux = gux + ip2/k, �zwy = ikux − gwy,
�2.15�
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ith the same parameters k�z�, g�z�, p�z�.
We now introduce the amplitudes of coupled �+z� and

−z� propagating waves for TM polarization by

aTM�z� =
1

�8
��p

k
wy�z� +�k

p
ux�z��e−ikair,zz,

bTM�z� =
1

�8
�−�p

k
wy�z� +�k

p
ux�z��eikair,zz.

�2.16�

inally, the exact Maxwell equations for TM polarization
re

d

dz�aTM�z�

bTM�z�� = V̂TM�aTM�z�

bTM�z�� ,

V̂TM = � i�p�z� − kair,z� �g�z� − f�z��e−2ikair,zz

�g�z� − f�z��e2ikair,zz − i�p�z� − kair,z�
� .

�2.17�

he expression for the z component of the Poynting vector
s perfectly analogous to Eq. (2.13).

. MATRIX APPROACH
ithout coupling of the waves in a homogeneous medium

ur amplitudes a and b (be they of TE or TM polarization)
ould propagate according to the law

�a�z2�

b�z2�� = K̂��p − kair,z��z2 − z1���a�z1�

b�z1�� . �3.1�

ere we have introduced the notation for the matrix K̂�
�:

K̂�
� = �ei
 0

0 e−i
� . �3.2�

Reflection of the wave a by a specimen of arbitrary lay-
red medium z1�z�z2 is described by two separate
oundary conditions: a�z1�=1 at z=z1 and b�z2�=0 at z
z2. The quantities sought are r=b�z1�, t=a�z2�, the am-
litude reflection and transmission coefficients, respec-
ively. Here �r�2 and �t�2 are reflection and transmission co-
fficients, respectively, for the intensities.

The numerical solution of the problem for ODE with
onditions at two separate boundaries may present seri-
us difficulties, including possible divergence of iterative
rocedures. To get around these difficulties, we will use
he linearity of our system of ODE, which allows us to
rite the relationships
�a�z2�

b�z2�� = M̂�z2,z1��a�z1�

b�z1��, M̂�z2,z1� = �Maa Mab

Mba Mbb
� .

�3.3�

ere the matrix M̂�z2 ,z1� satisfies the following equation
nd the initial condition, respectively:

dM̂�z,z1�

dz
= V̂�z�M̂�z,z1�, M̂�z1,z1� = 1̂, �3.4�

here the particular expressions for evolution matrix
ˆ �z� for TE and TM polarizations are given by Eqs. (2.14)
nd (2.17). The fact that the trace of the evolution matrix

ˆ is zero for both TE and TM polarizations leads to an im-
ortant property of matrix M̂�z2 ,z1�:

det M̂ = 1. �3.5�

hen application of the boundary conditions a�z1�=1 and
�z2�=0 allows finding r and t as

r�b ← a� = b�z1� = −
Mba�z2,z1�

Mbb�z2,z1�
,

t�a ← a� = a�z2� =
det M̂�z2,z1�

Mbb�z2,z1�
=

1

Mbb�z2,z1�
, �3.6�

nd we used Eq. (3.5). Similarly, applying boundary con-
itions a�z1�=0 and b�z2�=1, one gets transmission and
eflection coefficients for the case when the incident wave
s b�z�, i.e., comes from z= +�:

r�a ← b� = a�z2� = +
Mab�z2,z1�

Mbb�z2,z1�
,

t�b ← b� � t�a ← a� = b�z1� =
1

Mbb�z2,z1�
. �3.7�

The advantage of using the M̂ matrix is the possibility
f solving the standard Cauchy problem for our ODE, i.e.,
he problem with “initial” conditions for a and b. Another
spect of the usefulness of the M̂ matrix is that one can
alculate such matrices for each of the constituent ele-
ents of the device, and then just multiply them in order

f increasing coordinate z. In some cases we will write
atrix M̂�z� depending on one argument that will corre-

pond to the initial coordinate z1=0.
With the assumption of no loss or gain our system pre-

erves the Poynting vector, �Sz /�z=0. In that case our
ystem of equations satisfies the conservation law:

�a�2 − �b�2 = const �no-loss assumption�. �3.8�

To explain the consequences of this important conser-
ation law, let us discuss for a moment the case of trans-
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ormation between waves a and b in a transmission VBG.
plus sign (instead of the minus sign just above) would

e valid for transmission holograms: �a�2+ �b�2=const (no
oss, transmission). We know that matrices of z evolution
ould satisfy the unitary condition, Û*T�z�Û�z�=1 for

ransmission lossless holograms. Our minus sign means
hat the M̂�z� matrix for reflection by a lossless medium
atisfies the condition

M̂*T�̂M̂ = �̂,

�̂ = �1 0

0 − 1�, ⇒ �Maa�2 − �Mba�2 = 1 = �Mbb�2 − �Mab�2;

Mab
* Maa − Mbb

* Mba = 0. �3.9�

quation (3.9) and the unity determinant condition mean
hat matrix M̂ belongs to the SU(1,1) group, i.e., it is a
omplex analog of Lorentz group SL(1,1). Indeed, (1) the
nit matrix belongs to our set; (2) if a matrix belongs to
ur set, then the inverse matrix exists and belongs to that
et as well; (3) the product of two matrices is associative
nd also belongs to our set. The most general form of such
atrix M̂ depends on three real parameters: strength S

nd phases � and �:

M̂ = �ei� 0

0 e−i���̂�S��e−i� 0

0 ei�� � K̂����̂�S�K̂�− ��

� � ei��−��cosh S ei��+��sinh S

e−i��+��sinh S ei��−��cosh S � ,

�̂�S� = �cosh S sinh S

sinh S cosh S� . �3.10�

hus �̂�S�, which may be called “matrix of hyperbolic ro-
ation” (compare with the terminology of Lorentz trans-
ormations), is another basic building block for the prob-
em of lossless reflection, along with K̂���. As a result the
cattering matrix Û is

�a�+ � �

b�− � �� = Û�a�− � �

b�+ � ��, Û = �t�a ← a� r�a ← b�

r�b ← a� t�b ← b�� .

�3.11�

t�a ← a� = ei��−��
1

cosh S
, r�a ← b� = e2i� tanh S,

r�b ← a� = − e−2i� tanh S, t�b ← b� = t�a ← a�.

�3.12�

he scattering matrix Û of such reflection hologram is
nitary for media without absorption or gain. Thus one
an express the strength parameter S via reflection or
ransmission as
S = arctanh�R, T = 1 − R �no-loss assumption�.

�3.13�

To be able to understand better the physical meaning of
ndividual matrix factors in Eq. (3.10), consider a problem
f integration when the refection is lossless and is local-
zed at z=z1�z2; then it is described by

M̂ = �̂�S� = �cosh S sinh S

sinh S cosh S�, t =
1

cosh S
,

�r� = �tanh S�, �t�2 + �r�2 = 1. �3.14�

quations (3.10)–(3.12) mean that the reflection by the
ost general composite lossless element may be pre-

ented as if it consisted of a phase plate element K̂���,
ure reflector (3.14), and one more phase element K̂���.
The matrix M̂ is useful even if absorption is present,

ut in this case it does not satisfy Eqs. (3.8)–(3.10), and
he notion of reflection strength S is no longer useful.
owever, matrix M̂ still has unit determinant, even in the

ase of loss present, and Eqs. (3.6) and (3.7) still hold. In
hat case our matrix must satisfy the inequalities

dSz

dz
� 0 → 1 − �Maa�2 + �Mba�2 � 0, �Mbb�2 − �Mab�2 − 1 � 0,

Mab
* Maa − Mbb

* Mba�

� ��1 − �Maa�2 + �Mba�2���Mbb�2 − �Mab�2 − 1�,

all at z � 0. �3.15�

he matrices satisfying relations (3.15) constitute a
athematical object “semigroup with identity element.”
amely, the unit matrix is a member of the set. The prod-
ct of two matrices with zero or positive loss is associative
nd also belongs to the set. Moreover, an inverse matrix
xists (since det M̂=1), but it does not always describe an
lement with loss, and thus sometimes it may belong to
he set and sometimes not.

For better understanding of the possible structure of a
atrix M̂ satisfying relations (3.15), let us consider one
ore particular case of solutions of Eqs. (2.14) and (2.17).
amely, consider the propagation of waves in a medium
ith a presence of loss and with the power attenuation co-
fficient of the material �loss�1/m�=2�n2� /c. One should
lso take the factor 1/cos �in to account for the path �L
�z / cos �in of the ray in the material. In such a case, and

gnoring the interaction between the counterpropagating
aves, one gets
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V̂ = 
i�p� − kair,z� −
�loss

2 cos �
0

0
�loss

2 cos �
− i�p� − kair,z�� ,

dM̂

dz
= V̂M̂, M̂�z� = K̂��p� − kair,z�z�L̂�Y�, �3.16�

L̂�Y� = �e−Y 0

0 eY�, Y =
�lossz

2 cos �
. �3.17�

n other words, the matrix L̂�Y� describes a pure attenu-
tor by the amplitude factor exp�−Y� with no energy ex-
hange between counterpropagating waves and with no
hase shift. Still, we were not able to find the most gen-
ral expression of the matrix satisfying the conditions
3.15) of no gain and of possible loss.

The most dramatic new property that loss may intro-
uce is that now the power reflection coefficients R+
�r�a←b��2 and R−= �r�b←a��2 may be not equal to each
ther. This is especially evident in the case when a
trongly reflecting mirror, R0
1, is attached to one side
f a strongly absorbing piece of glass, T0
exp�−2Y��1.
n that case one of the reflection coefficients is large, e.g.,
+
1, while the other is very small, R−
exp�−4Y��1.
eciprocity relationship T+=T− is valid even in the case of

oss or gain presence. In some cases R+ and R− may still
e equal, even in the presence of loss or gain. Appendix A
o this paper contains some further examples.

Our matrix approach is quite close to the approach
sed in the monograph [5] by Yeh. Our designations of co-
rdinates x and z are interchanged in comparison with
hose of [5]. A more important difference is that our vari-
nt of Maxwell’s equations (2.2) and (2.3) allows us to ac-
ount for variations both of dielectric permittivity � and of
agnetic permeability 	, while the approach in [5] ac-

ounts for the optical case only, where 	�	vac=const. Fi-
ally, there is a quite important difference in our normal-

zation of amplitudes a and b in such a manner that the
xpression for the z component of the Poynting vector in a
ransparent region of the medium is Eq. (2.13), i.e., just
he difference �a�2− �b�2 of square moduli of amplitudes a
nd b. In the approach by Yeh in [5] one should multiply
hese square moduli by the local value of �cn cos �� /2. By
tself this simple factor does not make particular calcula-
ions from [5] any more difficult than ours. However, the
ossibility of writing the conservation law (3.8) and its
onsequence (3.9), as well as the most general expressions
3.8)–(3.10) for lossless media, including the notion of re-
ection strength S introduced in this paper, constitutes
n important (in our humble opinion) advantage of our
pproach. This advantage is even more prominent with
espect to inequalities (3.15), which any matrix M̂ must
atisfy in the presence of loss.

. SHARP STEP OF REFRACTIVE INDEX
ND OF IMPEDANCE: UNDERSTANDING
RESNEL REFLECTION FORMULAS
resnel reflection coefficients for the sharp boundary at
=0 between two transparent media with the parameters
Z1, n1, �1) and (Z2, n2, �2) are well known (our choice of
he sign of the TM reflection amplitude is opposite to that
dopted by the “Nebraska convention”; see [17]):

rTE � r�Ey ← Ey� =
cos �1/Z1 − cos �2/Z2

cos �1/Z1 + cos �2 Z2
,

rTM � r�Ex ← Ex� = −
Z1 cos �1 − Z2 cos �2

Z1 cos �1 + Z2 cos �2
. �4.1�

hey must be accompanied by the Snell law

n1 sin �1 = n2 sin �2. �4.2�

Consider the following formulas for two exceptional
ases. The first case corresponds to the media 1 and 2
aving exactly the same impedances Z1=Z2 but different
ropagation speeds, i.e., different refractive indices n1
n2. In that case both reflection coefficients are equal to

ach other (up to the sign):

rTE � r�Ey ← Ey� = − rTM � − r�Ex ← Ex� =
cos �1 − cos �2

cos �1 + cos �2

� − tanh S�n, S�n =
1

2
ln� cos �2

cos �1
� . �4.3�

he angular position of the Brewster effect moves to �1
�2=0 for the case Z1=Z2: no reflection at normal inci-
ence to the boundary between a pair of impedance-
atched media.
The second case corresponds to media 1 and 2 having

xactly the same propagation speeds n1=n2, but different
mpedances Z1�Z2. In that (very unusual) case one gets
1=�2, i.e., the propagation direction does not change un-
er transition from one medium to the other. As a result,
E and TM amplitude reflection coefficients for this sec-
nd case (1) are equal to each other, including the sign,
nd (2) are completely independent of the incidence angle:

rTE � r�Ey ← Ey� = rTM � r�Ex ← Ex� =
Z2 − Z1

Z2 + Z1

� − tanh S�Z, S�Z =
1

2
ln�Z1

Z2
� . �4.4�

t is instructive to see these simple results from our ma-
rix approach, since we will use that approach below to
ccount for mutual influence of Fresnel and VBG reflec-
ions. Sharpness of the boundary placed at z=z0 allows us
o consider the phase factors to be constant. By the choice
f z origin one can make the phase become zero. Then our
ystems of Eqs. (2.14) or (2.17) are reduced to

da

dz
= �g�z� ± f�z��b,

db

dz
= �g�z� ± f�z��a, �+ �TE, �− �TM.

�4.5�

irect substitution allows us to verify that the following
unctions constitute exact solutions of Eqs. (4.5):
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a�z�

b�z�� = �cosh S�z� sinh S�z�

sinh S�z� cosh S�z���a�0 − ��

b�0 − ��� � �̂�S�z��

��a�0 − ��

b�0 − ���, S�z� =�
0−�

z

�g�z�� ± f�z���dz�. �4.6�

f the boundary is sharp, then

g�z� = S�Z��z�, S�Z = ln �Z1/Z2, f�z� = S�n��z�,

S�n = ln �cos �2/cos �1, �4.7�
o that n
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�a�+ 0�

b�+ 0�
� = �̂�S��a�− 0�

b�− 0�� ,

STE = S�Z + S�n, STM = S�Z − S�n. �4.8�

rom Eqs. (2.2), (2.6), and (2.7) and (2.11) and (2.16) for
ach polarization the corresponding electric field compo-

ent is expressed through amplitudes a�z� and b�z� as
TE: Ey�z� = − �2Z�z�k�z�/p�z��aTE�z�eikair,zz + bTE�z�e−ikair,zz�,

TM: Ex�z� = �2Z�z�p�z�/k�z��aTM�z�eikair,zz + bTM�z�e−ikair,zz�,
�4.9�
nd reflection coefficient r�b←a��r�1←1� at z=0 be-
omes

rTE � r�Ey → Ey� = − tanh STE,

rTM � r�Ex → Ex� = − tanh STM. �4.10�

It is easy to check that formulas (4.10) are identical to
he well-known formulas (4.1).

Thus we come to a better understanding of Fresnel re-
ection. It was already agreed that we characterize the

ossless reflection process by the notion of real reflection
trength S, such that the reflectance is R= �r�2=tanh2 S.
ur claim here is that the strength parameter for Fresnel

eflection is linear sum, STE=S�Z+S�n for TE polariza-
ion, or linear difference, STE=S�Z−S�n for TM polariza-
ion, of two separate contributions. The first one S�Z is
ue to the step of impedance; see Eq. (4.4). The second one
�n is due to the step of propagation speed (of refractive

ndex, or of propagation direction); see Eq. (4.3). The
rewster phenomenon takes place when these two contri-

ig. 2. Various graphs describing Fresnel reflection at the air–
ext.
utions to the reflection strength S cancel each other pre-
isely. In the case of the boundary between two dielectrics
his Brewster cancellation takes place for TM polariza-
ion.

Consider the incidence close to normal, �1�1, for the
ight coming from air to glass, n1=1, n2=1.5. In this case
alues S�Z, S�n, and STE,TM are rather small, and one can
ubstitute for the hyperbolic tangent function tanh�x� its
rgument x. Then one can speak of adding or subtracting
he contributions directly to the reflection amplitudes in-
tead of contributions to reflection strengths S. The above
ormulas are illustrated below by the graphs on Figs.
(a)–2(c).
Figure 2(a) depicts the graphs for standard Fresnel for-
ulas for the reflection from a glass surface �n=1.5� back

nto air. Here RTE���= �rTE����2 and RTE���= �rTE����2, de-
ived either according to the formulas (4.1), or as tanh2 S
f two reflection strengths STE=S�Z+S�n���, STE=S�Z
S�n���, with S�Z and S�n��� being the contributions due,
espectively, to the step of impedance and to the step of

oundary versus incidence angle �=�air; see explanations in the
glass b
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ropagation speed. The two pairs of curves are absolutely
dentical, which supports our new physical understanding
f the process of Fresnel reflection.

Figure 2(b) depicts, via the dashed–dotted horizontal
traight line, the angle-independent 4% reflection coeffi-
ient R�Z calculated as a contribution of impedance Z step
nly. It also depicts, via dotted curve, the assumption of
qual propagation speeds in two adjacent media, and the
eflection coefficient R�n��� calculated as a contribution of
he propagation speed c /n step only under the assump-
ion of equal impedances in the two media. The other two
urves are presented for the transmission coefficients, T
1−R, to make the graph more readable. Namely, we
resent the exact graph for depolarized incident light, 1
RD���, where RD���= �RTE���+RTE���� /2. The curve 1
Rapr��� deals with Rapr���=R�Z+R�n���, i.e., the approxi-
ation in which we completely ignore any mutual influ-

nce of Z and n mechanisms of reflection. We see that
ven this approximation yields very small error: it is ac-
ually less than 3.5% in the whole angular range from 0 to
0°. That allows one to say that the description of reflec-
ion for the “depolarized world” may be done with fairly
ood accuracy only as a sum of reflection intensities due
o the above two processes: the step of impedance (angle-
ndependent) and the step of propagation speed (angle-
ependent).
Figure 2(c) depicts the comparison of the true RTE���

nd RTM��� reflection coefficients with even more approxi-
ation in their description: addition RAM��� curve and

ubtraction RAE��� curve, not of reflection strengths S�Z
S�n��� and S�Z−S�n���, but of reflection amplitudes r�Z
nd r�n��� themselves. At larger angles the transmission
−RAM��� may become greater than one due to break-
own of this approximation. However, even this very
rude approximation yields a fairly good description of
hese polarized components of reflection, at least in the
ange between 0° and 65°.

. REFLECTION BY A VBG: EQUATIONS IN
VEA
onsider now a nonmagnetic (i.e., optical) medium with
BG of refractive index n�z� for which

�z� = n0 + n2�z� + n1��z�cos�Qz + ��z�� + in1��z�cos�Qz + ��z��,

Z�z� =
Zvac

n�z�



Zvac

n0
2 �n0 − n2�z� − n1��z�cos�Qz + ��z��

− in1��z�cos�Qz + ��z���. �5.1�

ere real n1��z� and ��z� are slowly varying zero-to-top
mplitude and phase of the “refractive” component of
BG, respectively; �in1��z�� and ��z� are the same charac-

eristics of the “absorptive” part of VBG; and n2�z� is a
mall local correction to the constant real refractive index
0. That correction n2�z� includes possible loss i Im�n2�z��,
o that the spatially averaged power attenuation coeffi-
ient of the material is �loss�1/m�=2�n2� /c.

We can calculate our coupling functions f�z� and g�z� ac-
ording to Eq. (2.8) by an approximate differentiation of
ast oscillating terms of n�z� only
f�z� =

1

2
nair

2 sin �air
2

n2�z� − nair
2 sin �air

2

d ln n�z�

dz
, g�z� =

1

2

d ln n�z�

dz
,

d ln n�z�

dz

 − Q

n1��z�sin�Qz + ��z�� + in1��z�sin�Qz + ��z��

n0
.

�5.2�

ffective interaction between waves a and b occurs at the
ragg condition, when

Q 
 2
�

c
n0 cos �in, cos �in = �1 − nair

2 sin �air
2 /n0

2.

�5.3�

ere �in is the angle between the z axis and the propaga-
ion direction of light inside the VBG. Thus Eq. (5.2) with
ts accounting for the Bragg condition leads to coupling
unctions for TE and TM polarizations

g�z� + f�z� 
 −
�

c

n1��z�sin�Qz + ��z�� + in1��z�sin�Qz + ��z��

cos �in
,

g�z� − f�z� 
 �g�z� + f�z��cos 2�in. �5.4�

e see a natural result: the coupling coefficient [which in
ptics is due to modulation of ��z� only] is smaller by a
actor �= �pa ·pb�=cos 2�in for TM polarization in compari-
on with the coupling for TE polarization, where that fac-
or equals one. Here pa and pb are unit polarization vec-
ors of the electric field for waves a and b. The function
in�Qz+��z�� is written as

sin�Qz + ��z�� =
1

2i
�eiQz+i��z� − e−iQz−i��z��, �5.5�

ith a similar expression for the sin�Qz+��z��. The SVE
pproximation, which we will use later, corresponds to
eeping only one of two exponential terms from Eq. (5.5)
n the coupling terms from Eqs. (2.14) and (2.17), namely,
he terms that will perform z-accumulated coupling. As a
esult, we get the equation for matrix M̂�z� expressing
alues a�z� and b�z� through a�0� and b�0�:

d

dz
M̂�z� = V̂TE,TM�z�M̂�z�,

V̂�z� = � i�p�z� − kair,z� i�+�z�eiQz−2ikair,zz

− i�−�z�e−iQz+2ikair,zz − i�p�z� − kair,z�
� ,

�5.6�

TE: �+�z� =
�

c

n1��z�ei��z� + in1��z�ei��z�

2 cos �in
,

�−�z� =
�

c

n1��z�e−i��z� + in1��z�e−i��z�

2 cos �in
. �5.7�

nteraction coefficients �+ and �− have indices �+� or �−�,
enoting the ±z direction in which the result of corre-
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ponding scattering propagates. These coefficients for TM
olarization are smaller by the polarizational factor �
cos 2�in. As written in Eq. (5.6), the interaction matrix
till contains fast-oscillating phase factors. However, by
hoosing the “central” value of the real parameter

0=Q/2, one can present the matrix M̂�z� in the form

M̂�z� = K̂��Q/2 − kair,z�z�P̂�z�, �5.8�

o that the equation for the P̂ matrix becomes “slowly
arying” indeed:

dP̂�z�

dz
= Ŵ�z�P̂�z�,

Ŵ�z� = �i�p�z� − Q/2� i�+�z�

− i�−�z� − i�p�z� − Q/2�� . �5.9�

he Bragg condition is satisfied when p�z�=Q /2.
As we have already discussed, the numerical (or ana-

ytic) solution of the Cauchy problem for this system
laced between z1=0 and z2=L yields the matrix P̂�L�,
nd thus M̂�L�. If our glass plate with the VBG is placed
t an arbitrary z1 then according to the definition of am-
litudes a�z� and b�z� the matrix M̂�z2 ,z1� will be

M̂�z2 = z1 + L,z1� = K̂�− kair,zz1�M̂�L�K̂�kair,zz1�.

�5.10�

he value of the matrix M̂�z2 ,z1� at z2=z1+L, i.e., at the
nd of the VBG, allows one to find reflection and trans-
ission coefficients.

. HOMOGENEOUS VBG: KOGELNIK’S
NALYTICAL SOLUTION
onsider a VBG medium placed between z1 and z2=z1
L with the above refractive index profile n�z–z1� with
omogeneous (constant) parameters n1�, in1�, �, �, n2�, in2�,
nd with �loss�1/m�=2�n2� /c being the spatially averaged
ttenuation coefficient for power. For definiteness we con-
ider here the TE polarization. Function p�z� from Eq.
2.8) in this case will be assumed constant with small
ositive imaginary part:

p =
�

c
��n0 + n2�2 − nair

2 sin �air
2 


�

c �n0 cos �in +
n2

cos �in
�

= p� + ip�, p� =
�loss

2 cos �in
. �6.1�

fter that, the Ŵ matrix from Eqs. (5.9) becomes
-independent, and Eqs. (5.9) get the explicit solution de-
cribed in Appendix B:

dP̂�z�

dz
= ŴP̂�z�, Ŵ = � i� i�+

− i�− − i��⇒

P̂�L� = eŴL = 1̂ cosh G + ŴL
sinh G

G
, �6.2�
� = p� + ip� − Q/2, G = �S+S− − X2,

S± = �±L = �±�L + i�±�L, X = �L = X� + iX�. �6.3�

he dimension of � is [1/m]. In this manner, the matrix
ˆ �L� becomes

P̂�L� = 
cosh G + iX
sinh G

G
iS+

sinh G

G

− iS−

sinh G

G
cosh G − iX

sinh G

G
� .

�6.4�

oing back to Eqs. (5.10) and (5.8), we obtain the expres-
ion for the matrix M̂�z2 ,z1�:

M̂VBG�z2,z1� = K̂�− kair,zz1 − �kair,z −
Q

2 �L�P̂�L�K̂�kair,zz1�.

�6.5�

s a result, the reflection coefficient by a VBG becomes

r�b ← a� = r− = −
Mba

Mbb
= − e2ikair,zz1

Pba

Pbb

= e2ikair,zz1
iS−sinh G/G

cosh G − iX sinh G/G
. �6.6�

ormulas (6.1)–(6.6) allow one to find the reflection coef-
cient even in the presence of loss or gain. Equivalent re-
ults in different notations were first derived in the fun-
amental work by H. Kogelnik [6]. We have rederived
hem in our notations, which facilitate the subsequent ac-
ount of Fresnel reflections.

Imaginary detuning may be expressed via intensity at-
enuation coefficient �loss (3.16):

X� � Y =
�lossL

2 cos �in
. �6.7�

he relatively difficult part is to express the dimension-
ess quantity Re�X� via observables; this parameter signi-
es the detuning from the Bragg condition (Bc). Suppose
hat Bc is satisfied exactly at certain values of incident
ngle �air,0 at the wavelength �vac,0 for definite values of Q
nd n2. Then in the case of relatively small (but homoge-
eous) deviations from Bc one gets

� Re�X� =
− 2
n0L cos �in

�vac,0
� ��vac

�vac
+

�Q

2Q

+
1

cos2 �in
�nair

2

2n0
2�sin2 �air − sin2 �air,0� −

�n2

n0
�� .

�6.8�

hile the look of the expressions (6.1)–(6.8) is rather
eavy, their calculation by any computer is quite straight-
orward. Moreover, the accuracy of modern computers al-
ows one to use a procedure that is morally reprehensible,
ut numerically admissible: Calculate p�detuned�–p�Bc�
s the small difference of two large quantities. Such pro-
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edure reduces the risk of making a typographical error in
q. (6.8).
In the absence of loss or gain and with modulation of

eal Re�n1�� one gets S+= �S−�*=S0ei�, Im�X�=0, so one can
se the notion of reflection strength S, and then the re-
ection coefficient RVBG=R+=R−=R becomes

R = �r�b ← a��2 = tanh2 S =
sinh2 G

cosh2 G − X2/S0
2 ;

S = arcsinh�S0

sinh G

G �, S0 = �S+S− = �S+�,

G = �S0
2 − X2. �6.9�

inally, at exact Bc, X=0, and without loss, the reflection
trength S is

S = S0 =

n1L

�vac cos �in
, �6.10�

hich constitutes the most important and simplest for-
ula of Kogelnik’s VBG theory.

. INFLUENCE OF FRESNEL REFLECTIONS
or a sharp boundary positioned at zb, the process of
resnel reflection of the waves with TE and TM polariza-
ions is described, according to Eqs. (4.1)–(4.9) and (5.10),
y the matrix M̂:

M̂�zb + 0,zb − 0� = K̂�− kair,zzb��̂�S�K̂�kair,zzb�, �7.1�

�̂�S� = �cosh S sinh S

sinh S cosh S� ,

STE,TM = ln�Z1

Z2
± ln�cos �2

cos �1
� ln�n2

n1
± ln�cos �2

cos �1
.

�7.2�

t incidence normal to the boundary between two optical
edia with n1 and n2, the reflection strength is the same

or both polarizations: S=1/2 ln�n2 /n1�, since Z=Zvac/n.
or the particular case n2 /n1=1.5 one gets S=0.2027.
Now consider the case of a VBG positioned between z1

nd z2=z1+L with background refractive index n0; this
BG is surrounded by air, and nair=1. For a VBG with
oundaries, the transformation matrix M̂ given by Eq.
6.5) will be surrounded by two boundary matrices of the
ype of Eq. (7.1):

M̂�z2 + 0,z1 − 0� = K̂�− kair,zz2��̂�S2�K̂�kair,zz2�M̂VBG�z2,z1�

�K̂�− kair,zz1��̂�S1�K̂�kair,zz1�. �7.3�

ere S1 and S2 are the strengths of reflections at the cor-
esponding boundaries, and the matrix M̂VBG�z2 ,z1� is
iven by Eq. (6.5). While analytical expressions look quite
eavy, one has to multiply the matrices given by explicit
xpressions only; such a procedure is very simple for a
omputer.

In the case of a perfectly lossless VBG one has to take
nto account the phase relationships between contribu-
ions of the first boundary, the VBG, and the second
oundary. After summation of arguments in correspond-
ng K̂ matrices the total matrix of VBG with boundaries
7.3) will be

M̂ = K̂�− kair,zz2��̂�S2�K̂��� + QL�/2�

�P̂S0,XK̂�− �/2��̂�S1�K̂�kair,zz1�, �7.4�

P̂S0,X = 
cosh G + iX
sinh G

G
iS0

sinh G

G

− iS0

sinh G

G
cosh G − iX

sinh G

G
� ,

G = �S0
2 − X2, �7.5�

ith S0 and X defined in Eqs. (6.3) and (6.9). We see that
he character of the curve of reflectance versus detuning
epends on two phases, � and QL, both related to the
roperties of the specimen that contains the grating.
heir values fluctuate from one specimen to another as a
esult of manufacturing of the VBG. Quite often the speci-
ens are coated with antireflection layers.
Far from the resonance when X�S0 the matrix P̂S0,X

ill transform into diagonal phase matrix K̂�X�. Then af-
er summation of phases between boundaries we simplify
he matrix (7.4) to

M̂ = K̂�− kair,zz2��̂�S2�K̂�
��̂�S1�K̂�kair,zz1�,


 = pL =
�

c
n0L cos �in, �7.6�

hich describes ordinary glass plate with interferometric
roperties defined by phase difference pL. When this rela-
ive boundary phase is equal to a (typically large) integer
umber m of 
, then matrix K̂�
� is proportional to a unit
atrix, and the total reflection strength is S=S1+S2=0.
his corresponds to perfect resonant transmission of a
abry–Perot interferometer based on reflections by two
oundaries. If at some particular frequency/angle point
ur VBG has zero strength, e.g., if G= im
, with m being
n integer nonzero number, then P̂S0,X is proportional to a
nit matrix and again boundary strength matrices �̂ are
eparated by a phase matrix so total reflectance will be
efined only by boundaries.
Let us go back to the VBG without background loss or

ain, and with boundaries of different reflectances R1 and
2 in the general case, so their reflection strengths are

S1,2 � =arctanh�R1,2, respectively. Multiplication of the
orresponding matrices of the first boundary, of the VBG,
nd of the second boundary yielded the resulting matrix
7.4). Maximum and minimum values of the total result-
nt strength are realized when boundary terms are added
r subtracted from the VBG term; that is,
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R = tanh2 S, Smax = SVBG + �S1� + �S2�,

Smin = SVBG − ��S1� + �S2��, �7.7�

ue to appropriate intermediate phases. We consider for-
ulas (7.7) one of the important results of the present
ork.
Figure 3 was obtained by honest multiplication of rel-

vant matrices, and then by depicting all possible values
f �Rtotal�2 at various combinations of phases. We see that
n the region of perfect Bc, X=0, reflectivity is not affected
trongly by the boundaries. Even if one has to deal with
resnel reflections, R1=R2=0.04 (for n0=1.5), the modi-
ed reflection at exact Bc is within the limits 0.9779
Rtotal�0.9956 for RVBG=0.99 �S=2.993�. On the other

and, in the spectral points of exactly zero RVBG—where,
n Eq. (6.9), X2=S0

2+m2
2 with integer nonzero m—the
esidual reflection varies within the interval

tanh2�S1 − S2� � R � tanh2�S1 + S2�, Si = arctanh�Ri.

�7.8�

n particular, if R1=R2=0.04 then 0�R�0.1479. Another
xample is R1=R2=0.003; then 0�R�0.0119.

. EXPERIMENTAL DEMONSTRATION OF
HASE-SHIFTED VBG AND FABRY–PEROT
FFECTS
onsider a VBG made of two equally strong parts, each of

hem having the same values SVBG. Then the reflection
ction of the compound VBG depends on the mutual
hases of these two gratings. If there is no phase shift ��
etween cosinusoidal modulations of refractive index in-
ide these two gratings, then the combined VBG merely
cquires double strength Stot=2SVBG. However, any inter-
ediate shift, 0����2
, yields a narrow spectral trans-
ission peak (or reflection dip) to T=1 �R=0�. The physi-

al sense of this 100% transmission peak is similar to the

ig. 3. Reflectivity R of a VBG with account of interference of
eflection by the VBG proper with two extra contributions: from
he two boundaries of the specimen, for all possible phase combi-
ations. Values of R are between the dashed curves for Fresnel
% reflections from bare boundaries, and are between the dotted
urves for antireflection coatings (ARC) at 0.3% each.
00% transmission peak of a Fabry–Perot resonator with
at mirrors, when the resonant condition is satisfied.
In order to describe such a configuration of two VBGs,

e consequently have to multiply matrices of elements
ith corresponding phases. We actually performed the ex-
erimental study of two uncoated identical reflective
BGs placed very close to each other with small gap l be-

ween them filled by immersion liquid with the same
ackground refractive index n0. The coordinates of the
rst grating boundaries were z0=0 and z1=L, and the sec-
nd grating was positioned between z2=L+ l and z3=2L
l. Spectral parameters X and strengths S0 were the
ame for both gratings, but initial phases �1 and �2 were
ifferent. Boundary reflection strength from air to glass
as Sb and that from glass to air was −Sb. The transfor-
ation matrix determining waves a and b after this com-

ound system, z�z3, through values of a and bbefore it,
�0, is a product of matrices of two types—Eqs. (7.1) and
6.5)—with P̂�L�=K̂�� /2�P̂S0,XK̂�−� /2�; see also Eq. (7.5).
fter simplification of phase arguments it becomes

�a�z3 + 0�

b�z3 + 0�
� = M̂�a�− 0�

b�− 0�� ,

M̂ = K̂��3��̂�− Sb�K̂��2�P̂S0,XK̂���

2 �P̂S0,XK̂��1��̂�Sb�,

�1 = −
�1

2
, �2 =

�2 + QL

2
, �3 = − kair,zz3,

�� = QL + �1 − �2 + 2pl. �8.1�

or small size l of the gap phase, pl (or kl at normal inci-
ence) is approximately the same for all wavelengths in
uestion. We see that the reflection characteristics of this
ompound system depend on three intermediate phases:
hase shift �� between two cosinusoidal modulations in
BGs contacted via immersion layer and two outside
oundary phases �1 and �2.
We present the experimental demonstration of the co-

erent combination of two 
-shifted VBGs in air. The
BGs used for this demonstration were recorded inside
TR glass [9,10]. They have central wavelength at
063.4 nm, thickness of 2.76 mm, and refractive index
odulation of 154 ppm (middle-to-top). They were re-

orded inside PTR glass without slant, and diffraction ef-
ciency was equal to 72%, so S0=1.25. The two VBGs
ere fixed on mirror holders, and one holder was motor-

zed with a piezoelectric transducer that allowed fine
ranslation and fine angle tuning. The setup for the mea-
urement of the spectral response used a tunable laser
aving a 1 pm resolution; see Fig. 4.
The laser radiation was spatially filtered by a single-
ode fiber and coupled to a collimator. The 1 mm diam-

ter output beam was sent through the VBG assembly,
nd the transmitted signal was measured using a silicon-
mplified photodiode associated with a data acquisition
ard. To adjust the parallelism of the two VBGs, a fiber
oupler was used between the laser and the collimator.
nother silicon-amplified photodiode was used to mea-
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ure the power reflected from the combined VBGs and re-
oupled inside the collimator.

It is important to stress that the laser used for the mea-
urement was combined with a circulator that blocked all

ig. 4. Experimental setup for the coherent combination of two
BGs in PTR glass.

Fig. 5. Experimental transmission of two 
-shifted VBGs.

ig. 6. Spectral shift of resonant transmission due to phase
hift �� between two grating modulations; see the text for
etails.
eflected signal that otherwise would have been re-
njected inside the laser cavity and would lock it to the
avelength of the filter. Using this coupler, the two VBGs

ould thus be aligned by autocollimation.
Typical spectral dependence of the transmission of the

lter is shown in Fig. 5. Oscillations in transmission out-
ide the resonance are due to the phase interplay between
ncovered Fresnel reflections and secondary evanescent

obes of the gratings. This filter presents a transmission
igher than 90%. Bandwidth was 
25 pm (FWHM) and
ejection width was 200 pm. Rejection outside the reso-
ance was better than 10 dB and could be improved by
ombining it with an additional VBG or using VBGs with
igher diffraction efficiencies [18].
To illustrate the principle of phase matching between

he two VBG, we changed the distance between them and
ecorded the transmission for each distance; see Figs.
(a)–6(c). One can see that according to the distance be-
ween the two VBG, the resonance moved inside the main
obe of the diffraction efficiency of the VBG. When the dis-
ance was optimized and phase shift �� was equal to 
,
he resonance was centered in the middle of this lobe.

hen this phase was different from 
, resonance was
hifted to the edge of the lobe.

The solid curves at Figs. 6(a)–6(c) correspond to experi-
ental data, while the dashed curves are theoretical fits
ith optimized �� for these actual gratings. We see rea-

onable agreement of theory with experiment.

. CONCLUSION
n this paper we reworked the matrix approach to the cal-
ulation of reflection and transmission of electromagnetic
aves by a layered medium. Two principal results of our

heory should be mentioned. First, we were able to eluci-
ate separate contributions of the gradient of impedance
= �	 /��1/2, and of the gradient of propagation speed v
1/ �	��1/2. Second, for lossless media we introduced the
otion of reflection strength S such that the reflection co-
fficient R= �tanh S�2. We established the law of composi-
ion of sequential reflection elements, which depends on
he phase difference between their contributions. At zero
hase difference one has simply to add individual
trengths, while at phase difference 
 one subtracts these
trengths.

Our findings constitute a new understanding of long-
stablished Fresnel formulas for reflection by a sharp
oundary between two media. Namely, the strengths
TE��� and STM��� are shown to be a sum, STE���
G+F���, and a difference, STM���=G−F���, of two contri-
utions. One of them is an angle-independent contribu-
ion of the impedance step, while the other is an angle-
ependent contribution of the step of propagation speed.
We demonstrated experimentally a Fabry–Perot-type

pectral filter with bandwidth of transmission peak
��FWHM�
25 pm in the range �max–�min
200 pm.

PPENDIX A: PECULIAR PROPERTIES OF
BG MADE WITH USE OF ABSORBING
ATERIALS

onsider the diffraction of light by a VBG made of non-
agnetic medium, where 	=	 , and where both the
vac
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rating and the background dielectric permittivity con-
ain real (refractive) and imaginary (absorptive) parts.
ctually, even in the absence of physical absorption in the
TR glass, scattering by microcrystals may produce effec-
ive Im��n�z��.

The first mathematical statement to be made is that it
s impossible to have a spatial Fourier component of the
bsorptive grating without background absorption. Con-
ider a Fourier representation of a periodic profile of the
maginary part of the refractive index assuming
Im��n� � �n0:

n��z� = �n�	 + �
l=+1

+�

�cle
ilQz + cl

*e−ilQz�. �A1�

hen the requirement of n��z� being nonnegative every-
here (absence of gain) limits the modulus �cl� of the am-
litude of the Fourier component with l=1:

�c1� � �n�	. �A2�

he inequality becomes equality when the spatial profile
f n��z� is a periodic series of infinitely thin positive delta
unctions:

n��z� = �n�	D �
m=−�

+�

��z − mD� = �
l=−�

+�

�n�	eilQz, D =
2


Q
.

�A3�

For combined complex refractive index with real cosi-
usoidal modulation and thin-layer-type dependence of
he imaginary part,

n�z� = n0 + n1� cos�Qz + �� + in��z�, �A4�

he coupling coefficients analogous to Eq. (5.7) for coun-
erpropagating waves a and b will be

�±,TE =
�

c cos �in
�1

2
n1�e

±i� + i�n�	� ,

�±,TM = �±,TE�, � = cos�2�in�. �A5�

The most surprising phenomenon takes place for the
BG made out of thin, periodic, purely absorbing layers
nly. Then Eqs. (6.2) at the Bc with residual imaginary
etuning �= ip� for TE polarization become

dP̂�z�

dz
= ŴP̂�z�, Ŵ = � i� i�+

− i�− − i��
= p��− 1 − 1

1 1 �, p� =
�n�	�

c cos �in
=

�loss

2 cos �in
,

P̂�L� = exp�ŴL� = 1̂ + ŴL = �1 − Y − Y

Y 1 + Y� ,

Y = p�L =
�lossL

2 cos �in
, �A6�

ee Appendix B. The resultant reflection coefficients R+
R�a←b� and R =R�b←a� are the same and are equal to
−
R+ = R− = R = � Y

1 + Y�
2

, T =
1

�1 + Y�2 ,

1 − R − T =
2Y

�1 + Y�2 . �A7�

n a curious way, the reflection increases asymptotically
o 100% as Y→�, i.e., when the total thickness of such a
urely absorptive VBG goes to infinity (albeit it increases
ather slowly). This phenomenon is similar to the Bor-
ann effect of anomalously high transmission of X rays in
c in crystals for TE polarization. This phenomenon was
uggested as a candidate for making artificial X-ray mir-
ors in [19].

Another interesting example is when such a concen-
rated modulation of absorption is accompanied by the
odulation of refraction. One can adjust the phase � and

mplitude of Re�n1� in such a manner that n1�e
i�=2i�n�	

nd the interaction matrix Ŵ becomes

Ŵ =
�loss

2 cos �in
�− 1 − 2

0 1 � . �A8�

n other words, 90°-phase-shifted gratings of Re�n� and of
m�n� enhance each other for the b→a scattering, but
ompletely compensate each other’s influence for a→b. In
hat case for TE polarization

xp�ŴL� = 1̂ cosh Y + ŴL
sinh Y

Y
= �e−Y − 2 sinh Y

0 eY � ,

Y =
�lossL

2 cos �in
, �A9�

R+ = 0, R− = �1 − e−2Y�2, T = e−2Y,

1 − T − R+ = 1 − e−2Y, 1 − T − R− = e−2Y�1 − e−2Y�.

�A10�

n this case maximum R�b←a� reflection may reach
00%. Maximum absorption under illumination by the b
ave is 100%; it is reached at Y�1. Maximum absorption
nder illumination by the a wave is 25%; it is reached at
=0.5 ln 2=0.347. However, in a remarkable way, the re-
ection R�a←b�=R+ is identically zero: quite a surprise!

PPENDIX B: LAGRANGE FORMULA FOR A
UNCTION OF A MATRIX
ere are the heuristic considerations justifying the so-

alled “Lagrange interpolation formula” for the function
f a matrix. It should be emphasized that it is an exact
ormula, in spite of traditional use of the adjective “inter-
olation.” One can find detailed proofs in almost any text-
ook on matrices; see, e.g., [20].
Consider a function F�z� of one (generally complex)

ariable z. Suppose one wants to interpolate this function
y a polynomial of nth power:
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F�z� 
 Pn�z� = cnzn + cn−1zn−1 + ¯ + c0. �B1�

o do this, one can use n+1 values of the function F�zj� at
ifferent points of the argument zj, where j=1,2, . . . ,
+1. The most compact expression for such polynomial
n�z�, which is based on the above data, constitutes the

Lagrange interpolation formula.” For brevity we write it
or the cases n=1 and n=2 only:

F�z� 
 P1�z� = F�z1�
z − z2

z1 − z2
+ F�z2�

z − z1

z2 − z1
,

F�z� 
 P2�z� = F�z1�
�z − z2��z − z3�

�z1 − z2��z1 − z3�
+ F�z2�

�z − z1��z − z3�

�z2 − z1��z2 − z3�

+ F�z3�
�z − z1��z − z2�

�z3 − z1��z3 − z2�
. �B2�

ndeed, the design of the “fractions” in relations (B2) is
uch that their values at appropriate points zj are either 0
r 1.

Going to the functions of matrices, one can use the re-
arkable Cayley–Hamilton theorem, which states that

ny power of n-by-n matrix Ẑ may be expressed as a lin-
ar combination of unit matrix 1̂��Ẑ�0, matrix �Ẑ�1 , . . .,
nd up to �Ẑ�n−1 inclusive. That is the motivation to as-
ume the formula of the type (B1) with �n−1�-st power of
he polynomial exact.

Following is the explicit expression for the function of a
-by-2 matrix Ẑ; let �1 and �2 be the eigenvalues of our
atrix Ẑ, i.e., the roots of the characteristic equation

det�Ẑ − �1̂� = �2 − �Z11 + Z22�� + Z11Z22 − Z12Z21 = 0; ⇒

⇒ �1,2 =
1

2
�Z11 + Z22� ±�1

4
�Z11 − Z22�2 + Z12Z21.

�B3�

hen

F�Ẑ� = F��1�
Ẑ − �21̂

�1 − �2
+ F��2�

Ẑ − �11̂

�2 − �1

��F��2��1 − F��1��2

�1 − �2
�1̂ + �F��1� − F��2�

�1 − �2
�Ẑ.

�B4�

e are most interested in the exponential function of a
-by-2 zero-trace-matrix Ẑ. In that case

Z22 = − Z11, �1 = − �2 = � = �� + i�� = ��Z11�2 + Z12Z21,

�B5�

exp�Ẑt� = 1̂ cosh��t� + Ẑ
sinh��t�

. �B6�

�

Three points are worth special mention. First, both
osh��t� and sinh��t� /� are even functions of �, and there-
ore the particular choice of the branch of the root in Eqs.
B5) and (B6) is not important; it only must be the same
n both numerator and denominator of sinh��t� /�. Second,
t is nice that one does not have to calculate eigenvectors
f the matrix Ẑ. Third, if the eigenvalue � is close to zero
r just zero, one has to use l’Hôspital’s rule:

exp�Ẑt� → 1̂ + Ẑt, if � → 0, arbitrary t. �B7�
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