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Large nonlinear refraction in InSb at 10 �m and
the effects of Auger recombination
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Narrow bandgap semiconductors exhibit very large optical nonlinearities in the infrared owing to large two-
photon absorption that scales as the inverse cube of the bandgap energy and the large losses and refraction
from two-photon generated free carriers. Except for extremely short pulses, the free-carrier effects dominate
the nonlinear losses and nonlinear refraction. Here we develop a method for the calculation of the free-electron
refraction cross section in InSb. We also calculate the Auger recombination coefficient in InSb and find it to be
in good agreement with existing experimental data. In all the calculations we rely on Fermi–Dirac statistics
and use a four-band k·p theory for band structure calculations. Experiments on the transmission of submicro-
second CO2 laser pulses through InSb produce results consistent with the calculated parameters. © 2008 Op-
tical Society of America

OCIS codes: 190.0190, 020.4180, 190.5970.
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. INTRODUCTION
he large optical nonlinearities of semiconductors make
hem attractive materials for optical switching, optical bi-
tability, and other applications in nonlinear optics [1].
pecifically, the narrow bandgap semiconductor InSb is
onsidered in this work due to its possible use for clamp-
ng the transmitted energy below a certain level in the in-
rared. In order to successfully utilize the nonlinear opti-
al (NLO) properties of InSb without having considerable
inear absorption, one needs to work in a region of photon
nergies below the direct bandgap energy, Eg, and above
he cut-off energy for the allowed two-photon transitions,
g /2 [2]. This corresponds to a wavelength range between
bout �7 and 14 �m at room temperature.
The main interband transition mechanism for the

avelength of interest is two-photon absorption (2PA).
arrow bandgap semiconductors are very interesting

rom the point of view of 2PA, since their 2PA coefficient is
3 orders of magnitude larger than that of large-gap

emiconductors and dielectrics. This happens due to an
nverse cubic dependence of the 2PA coefficient, �2, on the
andgap energy, Eg [3,4]. When this scaling rule is ap-
lied to InSb at 300 K �Eg=0.18 eV�, it predicts �2
7 cm/MW, which is reasonably close to the experimen-

ally observed value of �2 cm/MW [5–7].
Although large, 2PA alone is usually not the dominant

ontributor to nonlinear absorption for CO2 laser pulses
f nanosecond or longer durations. However, 2PA plays a
ritical role in reducing the transmittance by generating
ree carriers, which in turn cause strong free-carrier ab-
orption and refraction. Absorption of a photon by a free
lectron in the conduction band requires simultaneous ab-
orption or emission of a phonon (Fig. 1). Both acoustic
nd optical phonons can participate in this process. The
0740-3224/08/020223-13/$15.00 © 2
ree-electron absorption cross section is �e�2.3
10−17 cm2 [8]. Unlike the free-electron process, free-hole

bsorption is dominated by direct interband transitions
rom the heavy-hole to the light-hole band, resulting in a
arge free-hole absorption cross section of �h�8.6

10−16 cm2 [8]. Free-carrier transitions as well as other
mportant effects in InSb are shown in Fig. 1. According
o the Drude–Lorentz classical model, free-carrier absorp-
ion is accompanied by free-carrier refraction, which plays
he dominant role in nonlinear beam propagation through
nSb. The nonlinear refraction from the free carriers is al-
ays negative, i.e., self-defocusing, and is very strong [1].

t is so strong that light often misses the detector placed
ehind the sample in the experiments. This has probably
aused some of the significant errors in measurements of
2 due to this added “loss” causing overestimation of �2

7].
The effects reducing the overall nonlinear response in-

lude 2PA blocking [9] and Auger recombination [9]. As
he number of electrons in the conduction band increases,
he available states in the band fill up, resulting in the
locking of the 2PA. However, the main mechanism that
imits the buildup of the excited carrier population in
nSb for nanosecond and longer pulses is Auger recombi-
ation. Therefore, the precise knowledge of Auger rates is
xtremely important when analyzing the performance of
NLO device based on narrow bandgap semiconductors.

n this respect, the well-known discrepancy [10] between
alculated and measured values of Auger rates in InSb
resents a major challenge for analysis. Section 2 of this
aper addresses this problem. Nonlinear refraction due to
he 2PA generated photoexcited carriers as the main non-
inear mechanism reducing the transmitted fluence in
nSb is analyzed in Section 3. The experimental setup for
008 Optical Society of America
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nalysis of nonlinear transmission of CO2 pulses through
nSb is described in Section 4. The discussion of the re-
ults is presented in Section 5.

. AUGER RECOMBINATION
he Auger process is the main mechanism for carrier re-
ombination in narrow bandgap semiconductors at high
arrier densities [11]. In the following discussion we ig-
ore other recombination processes such as trap, radia-
ive, and surface recombination. Band-to-band Auger
ransitions in InSb are shown in Fig. 1. The electron–
lectron process (CCHC), depicted in Fig. 1, is the domi-
ant process at room temperature, while the light-hole–
eavy-hole process (CHLH) is also important [11,12]. The
otation here is C for conduction band, H for heavy-hole
and, S for split-off band, and L for light-hole band. Tran-
itions involving the split-off band (CHSH) do not contrib-
te significantly in InSb since the split-off energy is much

arger than the bandgap energy in this material. In the
ase where the carrier excitation occurs through 2PA, the
ollowing relation can be used to describe carrier dynam-
cs in InSb:

d��n�

dt
=

�2I2

2��
− CAuger�n�n0 + �n��2n0 + �n�, �1�

here �n is the excess carrier density, n0 is the equilib-
ium (intrinsic/undoped) free-carrier density, �2 is the
PA coefficient, I is the irradiance, and CAuger is the Auger
oefficient. Strictly speaking, the second term on the right
and side of Eq. (1) represents a valid expression for Au-
er recombination only when Boltzmann (nondegenerate)
tatistics adequately describe equilibrium carrier densi-
ies in the bands. The cubic dependence of the Auger rate
n excess carrier density no longer applies at room tem-
erature when Boltzmann statistics fail, and the use of
ermi–Dirac (degenerate) statistics is necessary. Material
roperties (band structure) influence the actual func-

Fig. 1. Band structure and transitions in InSb.
ional dependence of Auger recombination on the carrier
ensity when degenerate statistics apply [12]. Numerical
nalysis has to be performed for each material separately
o determine the effect of degeneracy on the Auger pro-
ess. We describe this in more detail at the end of this sec-
ion.

Landsberg and Beattie [13] established the foundation
or the theoretical analysis of Auger recombination in
emiconductors. We follow their approach in this work
nd note some problematic areas in the literature.
Auger recombination can be considered as an electron–

lectron scattering process mediated by a screened Cou-
omb interaction. The presence of multiple mobile carriers
round a certain electron results in a faster decrease of
he potential of this electron with distance. This is usually
eferred to as screening of the Coulomb potential. It pre-
ents the simplest way to account for many-body effects
n electron dynamics in solids and plasmas. Treating the
creened Coulomb potential as a perturbation to the
artree–Fock Hamiltonian and ignoring Umklapp-type

ransitions [14], Landsberg and Beattie arrived at the fol-
owing expression for the matrix element of Auger transi-
ions [11,12]:

M1234 =
e2

��0V�
si,sf

�F14�s1i,s1f�F23�s2i,s2f�

	2 + �k1 − k4�2

−
F24�s1i,s1f�F13�s2i,s2f�

	2 + �k2 − k4�2 �
k1+k2,k3+k4
, �2�

here overlap integrals (i.e., for states 1 and 3) are de-
ned as follows:

F13�si,sf� = Vcell
−1 � u1

*�r,si�u3�r,sf�dr, �3�

nd the states are specified by wave vector k. Spin vari-
ble s, unk�r ,s� is the cell-periodic part of the Bloch wave
unction normalized in the volume of a unit cell Vcell, and

is the linear screening constant determined from

	2 =
e2

��0
� dn

d�c
−

dph

d�h
−

dpl

d�l
� , �4�

here the derivatives determine the rates of carrier con-
entration in the respective bands with the change of
uasi-Fermi energy in those bands (c—conduction band,
—heavy-hole band, and l—light-hole band).
Equation (2) was first directly employed by Beattie [12]

or the calculation of the matrix element for Auger tran-
itions. In most earlier works a somewhat simpler expres-
ion was used [11,15], which allowed for the decoupling of
pin and coordinate dependent parts of the wavefunc-
ions. Strictly speaking, such an approximation is not ap-
licable when the spin–orbit interaction is taken into ac-
ount [12].

Fermi’s golden rule gives the rate of the CCHC transi-
ion as follows:
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r =
2�

�

1

V�
k1

�
k2

�
k3

�
k4

	M1234	2PE
�E1 + E2 − E3 − E4�,

�5�

here V is the crystal volume, PE accounts for the occu-
ation factors and includes the influence of the inverse
rocess (impact ionization):

PE = fc�E1�fc�E2�fh�E3��1 − fc�E4��

− �1 − fc�E1���1 − fc�E2���1 − fh�E3��fc�E4�, �6�

here fc�E� and fh�E� are Fermi–Dirac factors for elec-
rons and holes, respectively, and

fc�E� = 1
�1 + exp�E − �c

kbT �� , �7�

fh�E� = 1
�1 + exp�−
E − �h

kbT �� , �8�

here �c and �h are electron and hole quasi-Fermi ener-
ies.

We can write the expression for the probability of Auger
ecombination, Eq. (5), in a more convenient form by go-
ng from summation to integration:

r =
2�

�V� V

8�3�3� 	M1234	2PE
�E�
�k1 + k2 − k3 − k4�

�d3k1d3k2d3k3d3k4, �9�

here E=E4+E3−E2−E1. The factor V /8�3 represents
he density of wave vectors and appears when we change
corresponding sum to an integral. This equation can be

een to have the correct dimensions, whereas the analo-
ous equation in [16] included an extra density factor and
s dimensionally incorrect. It is important to note that the
ubic functional dependence of the Auger rate on the car-
ier density in Eq. (1) follows from Eq. (9) if Boltzmann
tatistics are used instead of Fermi–Dirac relations in
qs. (7) and (8) [11,12]. In the degenerate case no such
nalytical simplification is possible.
The main difficulty in estimating the matrix element in

q. (9) arises due to the overlap integrals of Eq. (3). The
rst attempts to relate the overlap integrals to known pa-
ameters were made using the effective mass sum rule
11]. The values for the matrix element obtained in this
ay were not accurate and resulted in a significant over-
stimation of the Auger recombination rate [17]. Simi-
arly, an expression suggested by Takeshima [18] that re-
ates the overlap integrals to the experimentally

easurable momentum matrix element parameter P
rom the Kane theory [19] suffers from the same draw-
ack. An excellent discussion on the applicability of vari-
us approximations in estimating the overlap integrals is
iven by Burt and co-workers [17]. Burt suggests using
he 15-band full zone k·p theory [20] or the empirical non-
ocal pseudopotential theory [21] as the only methods ca-
able of producing correct wave functions to be used for
he calculation of the overlap integrals in Eq. (3). Unfor-
unately the complexity of the problem formulated in this
ay renders all calculations of Auger recombination rates
mpractical. Scharoch and Abram [22] suggested using
he standard four-band k·p method [19] with the effect of
igher bands taken into account by the Lowdin procedure
23]. The applicability of this method was verified by com-
aring the overlap integrals with those obtained from the
seudopotential calculations. Beattie et al. [24] later de-
eloped this method further, obtaining the parameters for
he k·p method by fitting the band structure from the
seudopotential method and using them in Auger rate
alculations. In this way the anisotropy of the band struc-
ure was taken into account in the calculation of the over-
ap integrals. A further attempt to simplify the calcula-
ions was made by Beattie and White [25]. They
ntroduced a simplified band structure with a nonpara-
olic isotropic conduction band and a flat valence band to
btain an analytical approximation for CCHC Auger
ates. Unfortunately, this approximation does not yield
he absolute value of the Auger rate, which has to be ob-
ained by comparison with the full band result. Methods
hat differ in certain aspects from that used by Beattie
nd co-workers were suggested by other groups
16,26,27]. These methods differ in the way the integra-
ion in k space is performed and include certain approxi-
ations of realistic band structures, wave functions, and

lectron statistics.
It has to be noted that although the analysis of Auger

ecombination in semiconductors has dramatically
volved since the inception of the field by Landsberg and
eattie in 1959, the agreement between numerical calcu-

ations and experimental results in narrow band semicon-
uctors is rarely observed. In fact, a 1 order of magnitude
isagreement in the Auger rate is quoted by some authors
s “common” [26] and is attributed to the inaccuracy of
he models used for numerical calculations. However, as
as discussed above, the numerical methods developed

ecently attained a degree of complication that includes
he realistic band structures and, thus, should be ex-
ected to describe the Auger recombination more accu-
ately. In this paper we find that the experimentally mea-
ured recombination rates agree well with the numerical
alculations of InSb. We show that the previously known
isagreement is largely due to the approximations made
n the interpretation of the numerical results by experi-

ental groups working in the field. Another important re-
ult of our work is that we find that it is not necessary to
evert to pseudopotential [24,25] methods for band struc-
ure calculations, and that the simple four-band k·p
heory [19] is sufficient to obtain accurate Auger recombi-
ation rates. Indeed, the need to include the influence of
he higher bands on the band structure of InSb around
he � point was emphasized based on a comparison of the
ngular dependence of the overlap integrals resulting
rom the exact band structure and from the four-band ap-
roximation. However, the comparison shows significant
ifferences only for large wave numbers [22], from which
he contribution to the total Auger rate is minimized due
o the low occupation probability of large wave number
tates. Beattie also acknowledges [24] that the exact an-
ular dependence of the overlap integrals has little effect
n the lifetimes.

In order to obtain the overlap integrals in Eq. (3) we
se the Kane wave functions [19], which have to be prop-
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rly transformed to account for the direction of the wave
ectors with respect to the crystallographic axes. In fact,
he expressions for the overlap integrals that we obtain in
his fashion differ from those shown by Beattie in Appen-
ix 1 of [12]. Consequently our calculations of the Auger
ecombination rate differ from [12]. However, we find our
esults to be consistent with those presented by Beattie
nd co-authors in a later paper [25]. For practical pur-
oses we find the presentation of the lengthy derivation of
verlap integrals to be unnecessary as it provides little in-
ight. We use numerical matrix multiplication for coordi-
ate transformations.
We utilize the method of k-space integration suggested

y Beattie [12]. The rate of recombination is obtained
rom Eq. (9) as follows:

r =
4�e4

256�8��2�0
2�

k4th



k4
2dk4� ��

si,sf

�F14�s1i,s1f�F23�s2i,s2f�

	2 + �k1 − k4�2

−
F24�s1i,s1f�F13�s2i,s2f�

	2 + �k2 − k4�2 ��2

PE
�E�d3k1d3k2, �10�

here we used the properties of the delta function to
arry out the integration over k3 and used the spherical
ymmetry of the Kane band structure to integrate over
he directions of k4. The first integral is over the magni-
ude of k4, and the second integral sign stands for the in-
egration over a six-dimensional (6D) space of all possible
ave vectors of initial states 1 and 2. The lower limit in

he first integral corresponds to the smallest magnitude
f k4, for which the CCHC transition is possible. This
alue is referred to as the threshold wave number k4th,
nd the corresponding energy of the final state 4 is known
s the threshold energy E4th [11]. Equivalently, E4th is the
owest energy required for an electron to induce impact
onization.

Threshold energies for the CCHC and the CHLH tran-
itions are given in the Appendix, where the computation
f the integral in Eq. (10) is explained in considerable de-
ail. The step by step explanation closely follows the dis-
ussion by Beattie [12]. The emphasis, however, is not on
nvolved algebraic transformations, but rather on physi-
al interpretations of intermediate results. This discus-
ion in the Appendix uncovers the main reason for dis-
greements between theoretical and experimental groups
ith respect to Auger recombination in InSb.
In the literature on Auger recombination, considerable

ttention is devoted to finding the threshold energy E4th
r threshold momentum k4th of a particular Auger pro-
ess. Although the threshold energy is important when
he impact ionization is considered, the same does not al-
ays hold for the Auger recombination. In fact, we find

hat in InSb at room temperature (and especially for
CHC transitions) it is not crucial to know the threshold
recisely in order to obtain accurate values of the Auger
ecombination rates. As shown in the Appendix, transi-
ions that occur well above the threshold constitute the
ain contribution to the Auger rate in InSb. Therefore,

he analysis based on the assumption that Auger transi-
ions predominantly take place at the threshold (domi-
ant channel approximation) is incorrect [10]. Although
hazapis and co-authors use Beattie’s treatment [12] as
heir starting point, the employment of the dominant
hannel approximation renders their estimations of the
uger rate invalid. Thus, it is not surprising that this
nalysis fails to predict the experimental results accu-
ately. Unfortunately, some authors [26] attributed this
isagreement not to the dominant channel approximation
10], but to the inaccuracy of Beattie’s approach to overlap
ntegral calculations.

In Fig. 2 we compare the results of our calculations
ith the experiments of Chazapis and co-authors [10]

unconnected data points at intermediate carrier densi-
ies), and Almazov and co-workers [28] (a point at high
arrier density). Contrary to previous claims in the litera-
ure [10,26] we find good agreement between the numeri-
al calculations and the experimental data at carrier den-
ities above 3�1017 cm−3. The agreement at higher
arrier concentrations is important since it is known that
uger recombination is the dominant relaxation process
nder these conditions. We attribute the disagreement
ith the results of Chazapis [10] at low excess carrier
ensities to the possible significant contribution of surface
ecombination in the sample of 3.4 �m thickness used in
he experiment [10]. Surface recombination could domi-
ate the Auger processes at low excitation levels. Addi-
ional experiments with a thicker sample and/or detailed
odeling of surface carrier dynamics in InSb is required

n order to confirm this assumption.
As we mentioned above, our treatment of the band

tructure of InSb is not the most complete theoretical con-
ideration attempted to date in Auger rate calculations
24,25]. However, a four-band Kane k·p model employed
n this work turns out to be sufficient as shown below. We
ompare our calculations (squares in Fig. 3) with those of
24,25], which include the effects of higher bands and an-
sotropy of the heavy-hole band (solid curve in Fig. 3). The
esults of the total Auger recombination rate calculations
y both models as well as the experimental data are
hown in Fig. 3.

Although Beattie and co-authors [24,25] include the de-
ailed band structure model in their calculations of the

ig. 2. Experimental and theoretical recombination rates ver-
us excess carrier density. Experimental data is from [10] (plus
igns) and [28] (closed triangle). Theoretical rates are calculated
ased on Eq. (10) for the CCHC Auger process (open squares) and
or the CHLH process (open triangles).
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uger rate (solid curve), at the same time they neglect the
creening of the Coulomb potential. Our calculations that
ere based on a simple Kane model of the band structure
nd neglected the screening produced identical results
open squares), which confirms our assumption that a
ore detailed analysis of the band structure is not neces-

ary for obtaining accurate recombination rates. Indeed,
he question of whether screening needs to be included
urns out to be more important. The calculations includ-
ng screening (closed squares) appear to agree better with
he experimental results of Almazov and co-workers at
igh carrier density [28] (closed triangle). The discussion
n the validity of the static screening approximation em-
loyed here is given in [29]. Some authors suggest [17,29]
hat a dynamic rather than static screening model should
e used to describe the free-carrier screening of the inter-
ction in the Auger process. However, this issue still re-
ains unresolved and requires additional experimental

vidence in support of one or the other model.
The calculation of recombination rates in InSb at

igher carrier concentrations may indeed require a more
etailed analysis of the band structure. However, the in-
lusion of the higher and lower bands in the k·p formal-
sm by perturbation theory proves not to be accurate
nough at that point, since other effects such as alterna-
ion of the band shapes due to the electrostatic interaction
f free carriers become important [17].

The most striking result of our calculations is that the
imple classical theory of Eq. (1) based on Boltzmann sta-
istics still works well for the excess carrier densities un-
er consideration. The best fit of Eq. (1) to numerical re-
ults (dashed curve in Fig. 3) yields an Auger coefficient
=1.8�10−26 cm6/s, which is roughly a factor of 1.7

maller than obtained by Beattie [12] within the same
ramework. Although the source of this difference is not
lear, we find that our results agree better with those us-
ng detailed band structure calculations [25]. The best fit
ith the classical expression Eq. (1) based on simple ki-

ig. 3. Comparison of various models for calculation of the Au-
er recombination rate and experimental data. Detailed band
tructure calculations from [25] (solid curve), present work cal-
ulations with the simplified Kane band structure Eq. (10) with-
ut screening (open squares) and with static screening (closed
quares), best fit to classical Auger process Eq. (1) (dashed
urve), experimental data from [10] (plus signs) and [28] (closed
riangle).
etics considerations agrees remarkably well with in-
olved computations taking into account a detailed analy-
is of the band structure [24,25]. The agreement is better
ith calculations that neglect screening, producing a
alid fit for excess carrier densities from 8�1015 to 3
1018 cm−3. The same fit is appropriate for calculations

ncluding screening in the range of excess carrier densi-
ies from 5�1015 to 4�1017 cm−3. The validity of the
lassical model of Eq. (1) in this range of carrier densities
llows us to use it for the numerical modeling of our ex-
erimental results presented in Section 3.
It is important to emphasize that in all our calculations

f Auger processes we used Fermi–Dirac (degenerate) sta-
istics. There is no prima facie justification for assuming
hat using Boltzmann (nondegenerate) statistics from the
utset in Eq. (6) could result in a meaningful estimation
f an Auger coefficient [11–13]. However, if we use Eq. (1)
ased on Boltzmann statistics to fit experimental data
nd theoretical curves, we find it provides a reasonably
ood fit. Although unexpected, this establishes the appli-
ability of using Eq. (1) in beam propagation modeling
here more involved calculations would not be practical.
There appears to be no simple answer as to why the

unctional dependence of Auger recombination on excess
arriers is still reasonably well described by the simple
ubic law for InSb at room temperature. Unfortunately, it
s impossible to analytically obtain a closed form solution
f this dependence when using Fermi–Dirac statistics. Al-
hough numerical modeling is a means to extract the de-
endence, it does not provide as much insight as an ana-
ytical solution does. Thus, we can only hypothesize on
he nature of this cubic dependence. Further studies are
equired to give a definitive answer.

An argument for a quadratic dependence based on
imple kinetics goes as follows [11]. It is argued that the
umber of nondegenerate particles participating in an in-
eraction determines the functional dependence of a pro-
ess on carrier density. Since the Auger CHLH is a three-
ody process involving two holes (one light and one heavy)
rom a nondegenerate distribution and an electron from a
egenerate distribution (it is always available), the pro-
ess should be described by a quadratic dependence on
arrier density. Similarly, the CCHC process is deemed to
ollow a linear dependence on carrier density. We find that
hese simplifying arguments are not valid where realistic
egenerate distributions in InSb at room temperature are
oncerned. First, the Fermi–Dirac distribution is no
onger a step function at room temperature. Second, we
nd that most Auger processes occur away from the bot-
om of the conduction band where electrons indeed fill up
ll available energies (see Figs. 13 and 14 of the Appen-
ix). Thus, these processes are likely to involve electrons
n the thermal tails of the Fermi–Dirac distributions. The
ature of the distribution in the tails is more Boltzmann-
ype than step-like. It is reasonable to assume that the
umber of electrons available in the tails is proportional
o the total excess carrier concentration. Hence the fact
hat detailed numerical calculations presented in this sec-
ion yield a cubic dependence of the Auger rate on carrier
ensity is not that surprising.
When considering the optical properties of InSb we can

till use the classical model even at low carrier densities
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here this model disagrees with the more detailed calcu-
ations of the Auger process. This is because at low excess
arrier densities �n�n0, linear absorption dominates and
onlinear effects are not important.

. NONLINEAR REFRACTION
ree-electron contributions to nonlinear refraction domi-
ate bound-electronic effects in InSb for the pulsewidths
nd irradiances used in our and most other experiments
e have found in the literature. Our calculations indicate

hat the only way to have the bound electronic refraction
omparable with the carrier refraction is to use extremely
hort pulses, picoseconds to femtoseconds, where the irra-
iance is high with low energy so that few carriers are
roduced [30,31]. According to the Drude–Lorentz classi-
al model, the free-electron refraction cross section is
iven by

�ref = −
e2	

4��0mcn0c2 , �11�

here e is the electron charge, c is speed of light in
acuum, 	 is the wavelength, �0 is the permittivity of
acuum, mc is the effective mass of conduction band elec-
rons, and no is the linear refractive index. Due to nonpa-
abolicity of the conduction band in InSb [19], electrons in
ifferent states are characterized by different values of ef-
ective mass according to

mc = mc
*�1 +

2E

Eg
� , �12�

here mc
* stands for the effective mass at the bottom of

he conduction band. In order to account properly for the
ependence of the effective mass on energy in optical elec-
ron transport, we need to use the average value of mc in
q. (11) [32]:

�mc =

�
0



mc�E�N�E�f�E�dE

�
0



N�E�f�E�dE

, �13�

here N�E� is the density of states function

N�E� =
1

2�2�2mc
*

�2 �3/2�E�1 +
E

Eg
��1 +

2E

Eg
� �14�

nd f�E� is the Fermi–Dirac distribution of Eq. (7). We
nd that the values of effective mass obtained from
/ �mc and �1/mc calculations are almost identical.
One of the important consequences of taking the aver-

ge effective mass for mc in Eq. (11) is that the resulting
ross section of free-electron refraction is significantly
ower than obtained for the band edge value of mc

*. Since
he average effective mass grows with the increase of the
lectron concentration, the refractive cross section is re-
uced. The dependence of the free-electron refraction
ross section on electron density at 10.6 �m is shown in
ig. 4 (solid curve). We should note that we neglect the

ree-hole contribution to nonlinear refraction. This ap-
roximation is based on the fact that the large mass of
ree holes (0.45 m0 as opposed to 0.015 m0 for free elec-
rons) reduces the effect.

Another important effect that we take into account is
he refractive index changes resulting from absorption
locking. The creation of free electrons in the conduction
and and their rapid thermalization to the bottom of the
and results in the blocking of linear absorption slightly
bove the band minimum. This absorption saturation is
nown as the Burnstein–Moss effect [33]. Through
ramers–Kronig relations, the change in absorption

auses a change of the refractive index. The model of non-
inear refraction due to absorption blocking was first sug-
ested by Miller et al. [1], developed further by Wherrett
nd co-authors [34], and used for the calculation of the in-
ex change due to the blocking of the linear transitions by
wo-photon excited electrons by Said and co-authors [35].
n all three papers the parabolic conduction band and
oltzmann statistics were assumed. As we pointed out
arlier, these assumptions are not valid for InSb. There-
ore, we proceed with Miller and co-authors’ model [1] in a
ore general case taking into account the nonparabolicity

f the conduction band and Fermi–Dirac statistics. We
odify Miller and co-authors’ expression for the direct in-

erband absorption coefficient using the density of states
xpression for a nonparabolic band, Eq. (14). We obtain

����� =
�2me2

3��2cn0�0
�mc

*

m �3/22mP2

�2 ���� − Eg�

Eg��
�2��

Eg
− 1�

��1 −
1

1 + exp���� − Eg − ��/kT�� , �15�

here P is the momentum matrix element given, �� is
he photon energy, m is the rest mass of electron, and � is
he Fermi energy. The following assumptions, consistent
ith the material properties of InSb, have been used in
btaining Eq. (15): we neglected the relatively weak ab-
orption from the light-hole band, and since mh�mc

*, we
ssumed a flat heavy-hole band. As a consequence of the

ig. 4. Refraction cross section versus photoexcited carrier den-
ity. Absorption blocking contribution (dot-and-dash curve), free
lectron refraction contribution (solid curve), total refraction
ross section (long dash curve), and 80% of total refraction cross
ection (short dash curve) producing the best fit to the time re-
olved measurements shown in Fig 11.
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econd assumption, we neglected the filling of the states
n the heavy-hole band. We also took the conduction band
nergy for the direct transition Ec=h�−Eg, thus neglect-
ng 1/mh compared to 1/mc

* in the expression for the re-
uced effective mass [1]. The validity of Eq. (15) has been
erified by the comparison of the calculations with the ex-
erimental data available in the literature [36]. In order
o obtain good agreement with the data, the dependence
f the momentum matrix element on the transition en-
rgy has to be taken into account [37].

Absorption and refraction are related through
ramers–Kronig expressions. The change in the refrac-

ive index at photon energy �� is given by

�n���� =
�c

�
�

0

 �������d�����

�����2 − ����2 , �16�

he method of the refractive index change calculations
ased on Kramers–Kronig relations is very flexible as it
llows finding the contribution to the nonlinear refraction
f a certain absorption change with no relation to the spe-
ific physical process that produced this change in absorp-
ion. In such a way we are able to find the negative refrac-
ion contribution (at 10.6 �m) of linear absorption
locking induced by two-photon carrier excitation at
0.6 �m. Using the same formula, Eq. (16), we can esti-
ate the positive change of the refractive index brought

n by the appearance of new linear transitions due to the
t
T
1
a
c
c
c
m
c
m
n
s
(
t
v
s
i
A
p
w

p
T
t

andgap shrinkage with temperature when local optical
eating of the material takes place. In a similar fashion,
e can calculate the Kerr index (contribution of bound
lectrons) knowing the dependence of the nondegenerate
oefficient on frequency. As verified by our calculations,
ontributions of bound electrons and thermal effects are
uch less significant than the absorption blocking at the
avelength of interest.
In order to identify how the change of refraction de-

ends on carrier density we need to know the change of
he absorption coefficient due to the creation of additional
arriers. We introduce the notation: x=���−Eg /kT, a
��−Eg /kT, b=Eg /kT, g0=� /kT, and g�n�=��n� /kT,
here ��n� is the electron Fermi energy depending on

ree-electron concentration, and � is the Fermi energy at
quilibrium at 300 K (no optical excitation of carriers).
hen, using Eq. (15) we obtain

���x� =
�2me2kT

3��2cn0�0Eg
3/2�mc

*

m �3/22mP2

�2

�
�x�2x + b��exp�x − g�n�� − exp�x − g0��

�x + b�1 + exp�x − g0���1 + exp�x − g�n���
.

�17�

ubstituting Eq. (17) into the Kramers–Kronig relation,
q. (16), we obtain
�n�a� =
�2me2

3�2�cn0�0Eg
3/2�mc

*

m �3/22mP2

�2 �
0

 �x�2x + b��exp�x − g�n�� − exp�x − g0��dx

�x + b�x − a��x + a + 2b��1 + exp�x − g0���1 + exp�x − g�n���
, �18�
here the integration is performed for photon energies
bove the bandgap. The expression under the integral de-
ends on the free-carrier density in such a way that car-
ier density cannot be taken out of the integral as in the
ase of Boltzmann statistics [34]. Therefore, we expect the
efractive cross section to depend on electron density in a
ontrivial way. The integral in Eq. (18) has to be evalu-
ted numerically since no analytical simplification simi-
ar to that in [1,34,35] appears possible. The resulting re-
ractive cross section is plotted in Fig. 4 as a function of
arrier density (dot-and-dash curve) together with previ-
usly obtained results for free-electron refraction, (solid
urve) as well as the total refraction cross section (long
ash curve). The calculations include the correction for
he variation of the momentum matrix element with en-
rgy. Figure 4 also shows the cross section (short dash
urve) that produces the best fit to time resolved pulse
ransmission measurements described in Section 4.

. EXPERIMENTAL PROCEDURE
Laser Science Incorported PRF-150 grating-tuned

ransverse excitation atmospheric pressure (TEA) CO2 la-
er was used to determine the effect of nonlinear refrac-
ion on the propagation of the laser pulse through InSb.
he gas mixture, containing �20% of CO2 (active media),
5% of N2 (to increase the excitation efficiency of CO2),
nd 65% of He (ballast gas) is supplied to the main gas
hamber at atmospheric pressure. Since the excitation oc-
urs at atmospheric pressure, the laser line is signifi-
antly broadened. This results in multiple longitudinal
odes present in the output laser pulse. Mode beating

ould significantly distort the response of the nonlinear
aterial under investigation. To ensure single longitudi-
al mode operation, an additional intracavity low pres-
ure pulsed gas cell is used, which narrows the linewidth
essentially serving as a narrow band seed pulse). Addi-
ionally, the cavity length is fine-tuned by adjusting the
oltage applied to a piezoelectric aligner/translator (PZT)
ystem on the output coupler. The absence of mode beat-
ng is verified by monitoring the laser output with a fast
u-doped Ge detector (see Fig. 5). The long tail of the
ulse appears due to re-excitation of CO2 molecules
ithin the N2–CO2 gas system.
The laser cavity is formed by a coated Ge output cou-

ler (80% reflectivity) and a 135 line/mm blazed grating.
he Au coated grating on a copper substrate is used for

uning between different CO lines. An aperture is placed
2
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ithin the laser cavity in order to ensure the excitation of
he fundamental spatial mode and suppress higher order
ransverse modes.

The experimental setup shown in Fig. 6 included a
5 cm focal length lens used to focus the beam. The beam
rofile data were collected via transverse pinhole scans.
igure 7 shows the measured beam profile at the focus.
eam width measurements are shown in Fig. 8 along
ith a Gaussian propagation fitting:

w = w0�1 +
	2z2

�2w0
4 , �19�

here the width of the Gaussian beam w is defined as the
alf-width at 1/e2 of the maximum �HW1/e2M� of fluence.
beam spot radius at focus of w0=120 �m with M2=1.0

roduced the best fit to the measured profiles.
We found it critical to make sure that the beam profile

s close to Gaussian, as even a small asymmetry in the in-
ut beam was observed to become highly pronounced af-
er propagation through a nonlinear material at high in-
ut energies. Experimental evidence of this is shown in
ig. 9, where a slight asymmetry in the input beam is
hown to be magnified after propagation through the an-
ireflective (AR) coated InSb sample of 1 mm thickness
laced at the focus. Although great care has been taken to
nsure that the input beam is cylindrically symmetric,
he transmitted beam is always found to be somewhat

ig. 5. Laser pulse temporal profile measured with a fast Au-
oped Ge detector.

ig. 6. Experimental setup. Squares indicate detectors (D1 ref-
rence, D2 sample transmittance), and arrows show distances
rom the lens to the sample and from the sample to an aperture
laced in front of the transmission detector.
symmetric, especially at high energy. We attribute this
ffect to a strong nonlinear refraction that magnifies any
mall imperfections in the input beam profile. A slight
edge in the sample could also lead to a similar result.
owever, that was not the case here as evidenced by no

hange in the profile after sample rotation. Small depar-
ures from a perfectly Gaussian input beam profile result
n relatively small changes in the carrier density distribu-
ion, index change, and nonlinear phase. The change in
he nonlinear phase shift accumulated upon propagation
n the sample results in aberrations of the output beam
avefront that affect the propagation of the beam to the
etector plane. Even though we tried to put the detector
s close as possible to the sample, the effect of nonlinear
berrations was considerable, as evidenced in Fig. 9. It is
orth noting that different parts of the laser pulse (see

Fig. 7. Spatial beam profile at focus.

ig. 8. Beam width measurements (closed triangles) and Gauss-
an fitting (solid curve) along the propagation path of the focused
eam.

ig. 9. Beam image obtained at the detector plane D2 with (a)
o sample and (b) 1 mm thick InSb sample at the focus.
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ig. 5) experience different nonlinear phase shifts and
istortions, thus affecting the temporal content of the
ulse at any given spatial position differently after the
ample. Since the collection of all angular components of
he output beam by a fast detector is difficult to accom-
lish [37], partial aperturing of the output beam occurs.
his often leads to observation of pulse-shaping [37].
imilar effects of strong nonlinear refraction have been
bserved in liquid crystals [38]. For a more detailed dis-
ussion of how nonlinear refraction can affect beam pro-
le and rearrange temporal content of the laser pulse we
efer the reader to [37].

. RESULTS AND DISCUSSION
omparison between the experimental data and the nu-
erical analysis of CO2 laser pulse propagation through

nSb is complicated by nonlinear distortions of the output
eam profile and temporal pulse content. Thus, we might
xpect the modeling based on our cylindrically symmetric
onlinear beam propagation method [39] to not perfectly
t the time-resolved measurements and experimental
patial beam profiles. However, the calculations of the in-
egrated characteristics, such as the energy collected by
n apertured detector, produce reasonable agreement
ith the experiment.
Here we use theoretically calculated values for the Au-

er recombination coefficient and the nonlinear refraction
s well as the value of the 2PA coefficient obtained in pi-
osecond experiments [6,9] for the numerical simulation
f CO2 laser beam propagation through InSb. The linear
bsorption cross section of the sample used in our numeri-
al modeling was obtained by measuring the transmit-
ance of the sample at low input energy ��h=4.8
10−16 cm�.
The results of the experiments are compared with the

umerical modeling in Fig. 10 for a system with a 5 mm
ircular aperture (6.5 times the linear beam size) placed
3 mm after the AR coated InSb sample and before a py-
oelectric detector used for the measurement of the trans-
itted energy (Fig. 6). Calculations show good agreement

or the total energy transmitted through the sample, but
nderestimate the energy transmitted through the aper-
ure. Still the agreement is quite reasonable considering
he fact that the output beam is distorted, which could
ead to the collection of angular components blocked by
he aperture in our cylindrically symmetric analysis. A
ery good fit of the transmittance of the system with an
perture is obtained when the nonlinear refraction is re-
uced by 30% from the theoretically obtained values. In-
erestingly, the best fit of time resolved measurements is
lso obtained for lower nonlinear refraction. A 20% reduc-
ion of the calculated total refraction cross section (shown
s a short dash curve in Fig. 4) produces the best fit of the
ulse profiles collected by a 5 mm aperture, fast Au doped
e detector placed 13 mm after the sample. The pulse
rofiles and the best obtained fits are shown in Fig. 11,
here �ref is the fitting parameter (using the values from
ig. 4 by changing the percentage of the maximum value).
All energy was collected by the detector at low energies,

herefore, the contribution of the nonlinear refraction was
nsignificant, and the low energy data is not shown here
o make the graph more readable. Pulse profiles at low
nergies (9 �J and 25 �J) were used to obtain the value
or the absorption cross section of �h=4.8�10−16 cm2,
hich is within the range of values 3.8–8.6�10−16 cm2

ound in the literature [5,8,9]. The change of the output
ulse shape at high input is a primary indicator of the
onlinear refraction effect. At the maximum of the pulse,
here refraction is the strongest, the beam overfills the
etector aperture, and only the central part of the beam is
etected. This results in the temporal modulation of the
utput pulse.

ig. 10. Experimental and numerical results for output versus
nput energy. Open aperture Z-scan experimental results are
hown as open squares and numerical simulation of beam propa-
ation as a long dash curve. For closed aperture Z-scan data the
etector is placed on axis 13 mm after the sample. The 5 mm ap-
rture is 6.5 times larger than the beam FW1/e2 M at this posi-
ion in the linear regime. The closed aperture experimental re-
ults are shown as closed squares and the numerical simulation
f the beam propagation as a short dash curve. Dot-and-dash
urve shows numerical simulation results with 70% of the pre-
icted theoretical refraction for comparison.

ig. 11. Time-resolved measurements and the best fit with the
umerical beam propagation. The refraction cross section �ref
as the only fitting parameter used. The best fit is obtained by
sing 80% of the predicted theoretical refraction (Fig. 4). Input
ulse energy: 58 �J (experimental—triangles, numerical—solid
urve), 125 �J (experimental—squares, numerical—dashed
urve), 200 �J (experimental—circles, numerical—dot-and-dash
urve).
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The calculated parameters were also used for compari-
on of the numerical modeling with an experiment for a
ystem with a 300 �m diameter aperture (15% linear
ransmittance) 13 mm after the sample (Fig. 12).

Although we obtained good agreement of the experi-
ental transmittance measurements for submicrosecond
O2 laser pulses, the accurate determination of the non-

inear material parameters from such an experiment is a
aunting task, as the number of parameters simulta-
eously affecting the pulse propagation is very large. The
se of picosecond pulses is preferable for this purpose.

. CONCLUSIONS
reviously, an order of magnitude disagreement between
alculated and measured Auger recombination rates had
een noted [10]. The inadequacy of the four-band Kane
odel of band structure had been widely thought to be

he reason for this disagreement [17,26]. Our calculation
f the Auger rate in a four-band model using Fermi–Dirac
arrier statistics yielded good agreement with the experi-
ental results available in the literature, proving it un-

ecessary to resort to more detailed band structure calcu-
ations. We attribute the previous inconsistency in the
iterature to unfortunate miscommunication between the-
retical and experimental groups. Specifically, the neglect
f surface recombination in the thin films used in [10]
long with the incorrect application of the dominant
hannel approximation could have led to the incorrect
onclusion of inconsistency of the theoretical calculations
ith the experiments. Although our calculated results
gree well with the experiments at intermediate and high
xcess carrier densities, the low excitation experiments in
hin samples yield higher relaxation rates. The impor-
ance of carrier diffusion and surface recombination is
dentified as a possible reason for this disagreement.

We analyzed the nonlinear refraction in InSb based on
ramers–Kronig relations. We refined the method ini-

ially described in [1] by taking into account Kane’s band
tructure [19] and Fermi–Dirac carrier statistics.

ig. 12. Output versus input energy 13 mm after the sample
ith a 0.3 mm aperture on axis (open triangles) or at the maxi-
um of transmittance (closed triangles if maximum is not on

xis). Numerical simulation of beam propagation results are
hown as a solid curve. Dashed curve shows numerical simula-
ion results with 70% of the predicted theoretical refraction for
omparison.
We presented an accurate numerical simulation of the
ropagation of pulsed midinfrared radiation through
nSb. Small deviations of numerical results from the ex-
eriment and distortions of the pulse-shape are attrib-
ted to slight beam asymmetry.
Our experiments confirmed the applicability of InSb for

he purpose of clamping the transmitted energy of CO2 la-
er pulses. One of the drawbacks of such a device is the
amage of the InSb crystal itself at input pulse energies
xceeding �1 mJ, corresponding to a fluence of
.44 J/cm2. It might be possible to avoid this damage
hen using another material placed prior to the InSb

ample and providing nonlinear defocusing at high inputs
40]. We suggest using CS2, which exhibits thermal non-
inear defocusing at 10 �m initiated by its �0.3 cm−1 lin-
ar absorption coefficient at this wavelength [41]. Use of
edge-shaped samples is also suggested to avoid hot-spot

ormation at the detector plane [42].

PPENDIX A
n this Appendix we present a step by step explanation of
ow the integral in Eq. (10) is calculated. We also estab-

ish which electron states are responsible for the majority
f the Auger transitions in InSb.

The lower limit of the first integral in Eq. (10) is the
hreshold wavenumber k4th, and the corresponding en-
rgy of the final state 4 is known as the threshold energy
4th. At the threshold there is only one combination of ini-

ial and final states for which energy and momentum are
onserved simultaneously in an Auger process. The ener-
ies and the momenta of the states 1–3 that correspond to
his threshold transition are denoted as E1th, E2th, E3th,
nd k1th, k2th, k3th respectively. These energies and mo-
enta should not be confused with the minimum energies

nd momenta possible for states 1–3. In order to avoid
onfusion, we find it important to emphasize that E1th,
2th, and E3th just stand for the energies of the carriers

hat combine to produce the lowest value of E4. It is easy
o show that E1th=E2th, and k1th=k2th for a CCHC tran-
ition [11]. We find that the threshold energy, E4th, for a
CHC transition is determined as follows:

E4th = Eg�1 +
2mc

mh
� , �A1�

hich corresponds to k4th given by

k4th =
2�mcEg

�
�1 +

3mc

2mh
� . �A2�

or each value of k4 above k4th the surface of allowed
ransitions in a 6D space k1 � k2 (direct product of wave
ector spaces) is defined by the conservation of energy
the conservation of momentum is already ensured in Eq.
10) by taking k3=k1+k2-k4). Thus, the second integral in
q. (10) presents the integration over this surface. Beat-

ie has introduced a coordinate transformation in a com-
ined wavevector space, which significantly simplifies the
opology of the problem:
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k1 = R +
mc

th

�mh�mh + 2mc
th�

S +
mc

th

mh + 2mc
thk4,

k2 = −
mh + mc

th

�mh�mh + 2mc
th�

S +
mc

th

mh + 2mc
thk4, �A3�

here mc
th is defined by

mc
th =

�2k1th
2

2E1th
, �A4�

nd Cartesian coordinates of three-dimensional (3D) vec-
ors R and S are expressed in a 6D generalized spherical
oordinate system as follows:

R = s�cos �1,sin �1 cos �2,sin �1 sin �2 cos �3�,

S = s sin �1 sin �2 sin �3�cos �4,sin �4 cos �5,sin �4 sin �5�,

�A5�

here s2=R2+S2, 0��i�� �i=1,2,3,4�, and 0��5�2�.
The Jacobean of the transformation into the coordinate

ystem s, �i is given by

�s,�i� = � mh + mc
th

�mh�mh + 2mc
th��

3

s5 sin4 �1 sin3 �2 sin2 �3 sin �4.

�A6�

he origin of the new coordinate system corresponds to
he threshold transition. For the values of k4�k4th all al-
owed transitions lie on a closed surface around the ori-
in. For parabolic bands, the surface enclosing the origin
s conveniently reduced to a sphere (in 6D). For a nonpa-
abolic conduction band, the surface of integration is
iven by an equation s=s��i�, where s in each direction (in
D) is obtained from the energy conservation consider-
tions:

s2 =
2mc

thmh

�2�mh + mc
th�

�Z�k4� + W�k4,R,S��, �A7�

here for a nonparabolic conduction band [19] and a
arabolic and isotropic heavy-hole band (with a negative
ffective mass −mh) the following expressions hold:

Z�k4� = −
3Eg

2
+�Eg

2

4
+

�2k4
2Eg

2mc
−

�2k4
2

2�mh + 2mc
th�

,

�A8�

�k4,R,S� = Eg −�Eg
2

4
+

�2k1
2Eg

2mc
−�Eg

2

4
+

�2k2
2Eg

2mc

+
�2k1

2

2mc
th +

�2k2
2

2mc
th , �A9�

here expressions Eq. (A3) relate k1 and k2 to R and S.
The resulting expression for the CCHC transition rate

er unit volume is given by
rCCHC =
1

2�2�
k4th



k4
2dk4�CCHC�k4�, �A10�

here �CCHC�k4� is the rate of the CCHC Auger transition
ith a particular final state 4:

�CCHC =
e4

32�5�3�2�0
2

mc
th�mh + mc

th�2

�mh�mh + 2mc
th�3

�� 	M	2Ps4 sin4 �1 sin3 �2 sin2 �3 sin �4

�1 −
mc

thmh

�2�mh + mc
th�

1

s

�W

�s �
�d�1d�2d�3d�4d�5. �A11�

similar expression in [12] contains a misprint in the
owers of the effective mass factor, which can be readily
dentified by dimensional analysis.

The numerical calculation of the recombination rate in
q. (A11) proceeds as follows. First, quasi-Fermi energies

or electrons Ef and holes Eh as well as the screening pa-
ameter 	 are determined for a given excited carrier den-
ity. Then, a discrete set of values of k4�k4th is chosen
ith a sufficient number of points for numerical one-
imensional (1D) integration in Eq. (A11). �CCHC�k4� is
omputed using a Monte Carlo method in 6D. The
VEGAS” algorithm [43] is used; however, the adaptive
esh generation available in this algorithm has not been

mployed. Sufficient accuracy of the Monte Carlo proce-
ure ��0.1% � is ensured by taking 106 different sets of
eneralized direction parameters �i �i=1,2,3,4,5�. The
valuation of the integrand is complicated by the need to
olve a transcendental equation for �i dependent param-
ters in Eq. (A7) each time a new set of �i is used. This is
chieved by the Newtonian iteration method, which is
ound to converge for all k4�k4th. The accuracy of solving
q. (A7) is chosen to accommodate the required accuracy
f the Monte Carlo procedure. The overlap integrals in
qs. (2) and (3) are calculated based on Kane wavefunc-

ions [19], which have been suitably transformed to allow
or arbitrary directions of wavevectors k1, k2, and k3
19,20]. The scalar product of the wavefunctions resulting
n the overlap integrals of Eq. (3) has been carried out nu-

erically.
A similar procedure applies for the CHLH process. The

hreshold energy for the CHLH transition is given by

E4th = − Eg�2 +
mc

mh
� . �A12�

The origin of the energy scale is still at the bottom of
he conduction band. Therefore, the threshold is Eg�1
mc /mh� below the top of the valence band, which corre-
ponds to k4th given by

k4th =
2�mcEg

�
�1 +

3mc

4mh
� . �A13�

The coordinate transformation needed to place the
HLH threshold transition in the origin of the wavevec-

or space is modified as follows:
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k1 = R +
mh

�mc
th�2mh + mc

th�
S +

mh

2mh + mc
thk4

k2 = −
mh + mc

th

�mc
th�2mh + mc

th�
S +

mh

2mh + mc
thk4, �A14�

here mc
th, Z, and W are defined by

mc
th =

�2k3th
2

2E3th
, �A15�

Z�k4� = −
3Eg

2
+�Eg

2

4
+

�2k4
2Eg

2ml
−

�2k4
2

2�2mh + mc
th�

,

�A16�

W�k4,R,S� =
Eg

2
−�Eg

2

4
+

�2k3
2Eg

2mc
+

�2k3
2

2mc
th . �A17�

he resulting expression for the CHLH transition rate
er unit volume is given by

rCHLH =
1

2�2�
k4th



k4
2dk4�CHLH�k4�, �A18�

here ��k4� is the rate of the CHLH Auger transition
ith a particular final state 4:

�CHLH =
e4

32�5�3�2�0
2

mh�mh + mc
th�2

�mc
th�2mh + mc

th�3

�� 	M	2Ps4 sin4 �1 sin3 �2 sin2 �3 sin �4

�1 −
mc

thmh

�2�mh + mc
th�

1

s

�W

�s �
�d�1d�2d�3d�4d�5. �A19�

�CCHC and �CHLH are plotted as functions of the energy
f the final state 4 in Figs. 13 and 14 for two different ex-

ig. 13. Auger transition rate � versus the energy of the final
tate four for the excess carrier density n=2.47�1016 cm−3. The
CHC process results from Eq. (A11) (squares), and the CHLH
rocess results from Eq. (A19) (triangles).
ess carrier densities. To make the comparison easier, the
orizontal axis values correspond to E4 for the CCHC
ransition and to Eg−E4 for the CHLH transition. It is
lear that for both carrier densities considered in Figs. 13
nd 14, the CCHC transition dominates [one should keep
n mind that integration in Eqs. (A10) and (A18) includes

geometrical factor k4
2, therefore, the states with larger

4 contribute more to the total recombination rate]. An-
ther important observation one can make is that most
ransitions occur away from the threshold for the CCHC
rocess. Near threshold transitions dominate only for the
HLH process at small excess carrier densities.
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