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Narrow bandgap semiconductors exhibit very large optical nonlinearities in the infrared owing to large two-
photon absorption that scales as the inverse cube of the bandgap energy and the large losses and refraction
from two-photon generated free carriers. Except for extremely short pulses, the free-carrier effects dominate
the nonlinear losses and nonlinear refraction. Here we develop a method for the calculation of the free-electron
refraction cross section in InSh. We also calculate the Auger recombination coefficient in InSb and find it to be
in good agreement with existing experimental data. In all the calculations we rely on Fermi-Dirac statistics
and use a four-band k-p theory for band structure calculations. Experiments on the transmission of submicro-
second CO, laser pulses through InSb produce results consistent with the calculated parameters. © 2008 Op-

tical Society of America
OCIS codes: 190.0190, 020.4180, 190.5970.

1. INTRODUCTION

The large optical nonlinearities of semiconductors make
them attractive materials for optical switching, optical bi-
stability, and other applications in nonlinear optics [1].
Specifically, the narrow bandgap semiconductor InSb is
considered in this work due to its possible use for clamp-
ing the transmitted energy below a certain level in the in-
frared. In order to successfully utilize the nonlinear opti-
cal (NLO) properties of InSb without having considerable
linear absorption, one needs to work in a region of photon
energies below the direct bandgap energy, E,, and above
the cut-off energy for the allowed two-photon transitions,
E,/2 [2]. This corresponds to a wavelength range between
about ~7 and 14 um at room temperature.

The main interband transition mechanism for the
wavelength of interest is two-photon absorption (2PA).
Narrow bandgap semiconductors are very interesting
from the point of view of 2PA, since their 2PA coefficient is
~3 orders of magnitude larger than that of large-gap
semiconductors and dielectrics. This happens due to an
inverse cubic dependence of the 2PA coefficient, Bg, on the
bandgap energy, E, [3,4]. When this scaling rule is ap-
plied to InSb at 300 K (E,=0.18 eV), it predicts g,
~7 cm/MW, which is reasonably close to the experimen-
tally observed value of ~2 cm/MW [5-7].

Although large, 2PA alone is usually not the dominant
contributor to nonlinear absorption for CO4 laser pulses
of nanosecond or longer durations. However, 2PA plays a
critical role in reducing the transmittance by generating
free carriers, which in turn cause strong free-carrier ab-
sorption and refraction. Absorption of a photon by a free
electron in the conduction band requires simultaneous ab-
sorption or emission of a phonon (Fig. 1). Both acoustic
and optical phonons can participate in this process. The
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free-electron absorption cross section is 0,~2.3
% 10717 ¢cm? [8]. Unlike the free-electron process, free-hole
absorption is dominated by direct interband transitions
from the heavy-hole to the light-hole band, resulting in a
large free-hole absorption cross section of o,~8.6
X 10716 ¢cm? [8]. Free-carrier transitions as well as other
important effects in InSb are shown in Fig. 1. According
to the Drude-Lorentz classical model, free-carrier absorp-
tion is accompanied by free-carrier refraction, which plays
the dominant role in nonlinear beam propagation through
InSb. The nonlinear refraction from the free carriers is al-
ways negative, i.e., self-defocusing, and is very strong [1].
It is so strong that light often misses the detector placed
behind the sample in the experiments. This has probably
caused some of the significant errors in measurements of
By due to this added “loss” causing overestimation of By
[7].

The effects reducing the overall nonlinear response in-
clude 2PA blocking [9] and Auger recombination [9]. As
the number of electrons in the conduction band increases,
the available states in the band fill up, resulting in the
blocking of the 2PA. However, the main mechanism that
limits the buildup of the excited carrier population in
InSb for nanosecond and longer pulses is Auger recombi-
nation. Therefore, the precise knowledge of Auger rates is
extremely important when analyzing the performance of
a NLO device based on narrow bandgap semiconductors.
In this respect, the well-known discrepancy [10] between
calculated and measured values of Auger rates in InSb
presents a major challenge for analysis. Section 2 of this
paper addresses this problem. Nonlinear refraction due to
the 2PA generated photoexcited carriers as the main non-
linear mechanism reducing the transmitted fluence in
InSb is analyzed in Section 3. The experimental setup for
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Fig. 1. Band structure and transitions in InSb.

analysis of nonlinear transmission of CO4 pulses through
InSb is described in Section 4. The discussion of the re-
sults is presented in Section 5.

2. AUGER RECOMBINATION

The Auger process is the main mechanism for carrier re-
combination in narrow bandgap semiconductors at high
carrier densities [11]. In the following discussion we ig-
nore other recombination processes such as trap, radia-
tive, and surface recombination. Band-to-band Auger
transitions in InSb are shown in Fig. 1. The electron—
electron process (CCHC), depicted in Fig. 1, is the domi-
nant process at room temperature, while the light-hole—
heavy-hole process (CHLH) is also important [11,12]. The
notation here is C for conduction band, H for heavy-hole
band, S for split-off band, and L for light-hole band. Tran-
sitions involving the split-off band (CHSH) do not contrib-
ute significantly in InSb since the split-off energy is much
larger than the bandgap energy in this material. In the
case where the carrier excitation occurs through 2PA, the
following relation can be used to describe carrier dynam-
ics in InSh:

d(An) 3212
” = STy CaugerAn(ng + An)(2n + An), (1)

where An is the excess carrier density, ng is the equilib-
rium (intrinsic/undoped) free-carrier density, By is the
2PA coefficient, I is the irradiance, and C g, is the Auger
coefficient. Strictly speaking, the second term on the right
hand side of Eq. (1) represents a valid expression for Au-
ger recombination only when Boltzmann (nondegenerate)
statistics adequately describe equilibrium carrier densi-
ties in the bands. The cubic dependence of the Auger rate
on excess carrier density no longer applies at room tem-
perature when Boltzmann statistics fail, and the use of
Fermi—Dirac (degenerate) statistics is necessary. Material
properties (band structure) influence the actual func-
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tional dependence of Auger recombination on the carrier
density when degenerate statistics apply [12]. Numerical
analysis has to be performed for each material separately
to determine the effect of degeneracy on the Auger pro-
cess. We describe this in more detail at the end of this sec-
tion.

Landsberg and Beattie [13] established the foundation
for the theoretical analysis of Auger recombination in
semiconductors. We follow their approach in this work
and note some problematic areas in the literature.

Auger recombination can be considered as an electron—
electron scattering process mediated by a screened Cou-
lomb interaction. The presence of multiple mobile carriers
around a certain electron results in a faster decrease of
the potential of this electron with distance. This is usually
referred to as screening of the Coulomb potential. It pre-
sents the simplest way to account for many-body effects
on electron dynamics in solids and plasmas. Treating the
screened Coulomb potential as a perturbation to the
Hartree-Fock Hamiltonian and ignoring Umklapp-type
transitions [14], Landsberg and Beattie arrived at the fol-
lowing expression for the matrix element of Auger transi-
tions [11,12]:

M1234 =

e’ (F14(sli>slf)F23(32ia32f)

ESOVSL_,S/, )\2 + (kl - k4)2
Foy(s1i,519)F15(59;,82p)

A+ (ky - ky)?

) Oty kgrkeys  (2)

where overlap integrals (i.e., for states 1 and 3) are de-
fined as follows:

Fls(si,sf) = V(_:elllf ui(r’si)us(r,sf)dr, 3)

and the states are specified by wave vector k. Spin vari-
able s, u,(r,s) is the cell-periodic part of the Bloch wave
function normalized in the volume of a unit cell V, and
\ is the linear screening constant determined from

A= —
€&

e2 (dn dp, dp
, (4)
dupe  dw,  dw

where the derivatives determine the rates of carrier con-
centration in the respective bands with the change of
quasi-Fermi energy in those bands (c—conduction band,
h—heavy-hole band, and /—light-hole band).

Equation (2) was first directly employed by Beattie [12]
for the calculation of the matrix element for Auger tran-
sitions. In most earlier works a somewhat simpler expres-
sion was used [11,15], which allowed for the decoupling of
spin and coordinate dependent parts of the wavefunc-
tions. Strictly speaking, such an approximation is not ap-
plicable when the spin—orbit interaction is taken into ac-
count [12].

Fermi’s golden rule gives the rate of the CCHC transi-
tion as follows:
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(5)
where V is the crystal volume, Py accounts for the occu-

pation factors and includes the influence of the inverse
process (impact ionization):

Py =fc(E1)fc(E2)fh(E3)(1 —fc(E4))
- (1=f(ED)Q~f(E))1-[(Es)f(Ey,  (6)

where f.(E) and f,(E) are Fermi-Dirac factors for elec-
trons and holes, respectively, and

E—,ch
fE)=1 (1+eXp< T >>, (7
oot f (ool 52))
fn(E) = rexp{ == ) (8)

where u, and u; are electron and hole quasi-Fermi ener-
gies.

We can write the expression for the probability of Auger
recombination, Eq. (5), in a more convenient form by go-
ing from summation to integration:

"Taviss
x d%k,d°k,d’k;d%k,, 9)

2w V \3
f |M1934*PrOE) 8k, + kg — k3 — ky)

where E=E,+E5—-E;—E,. The factor V/8#° represents
the density of wave vectors and appears when we change
a corresponding sum to an integral. This equation can be
seen to have the correct dimensions, whereas the analo-
gous equation in [16] included an extra density factor and
is dimensionally incorrect. It is important to note that the
cubic functional dependence of the Auger rate on the car-
rier density in Eq. (1) follows from Eq. (9) if Boltzmann
statistics are used instead of Fermi-Dirac relations in
Egs. (7) and (8) [11,12]. In the degenerate case no such
analytical simplification is possible.

The main difficulty in estimating the matrix element in
Eq. (9) arises due to the overlap integrals of Eq. (3). The
first attempts to relate the overlap integrals to known pa-
rameters were made using the effective mass sum rule
[11]. The values for the matrix element obtained in this
way were not accurate and resulted in a significant over-
estimation of the Auger recombination rate [17]. Simi-
larly, an expression suggested by Takeshima [18] that re-
lates the overlap integrals to the experimentally
measurable momentum matrix element parameter P
from the Kane theory [19] suffers from the same draw-
back. An excellent discussion on the applicability of vari-
ous approximations in estimating the overlap integrals is
given by Burt and co-workers [17]. Burt suggests using
the 15-band full zone k-p theory [20] or the empirical non-
local pseudopotential theory [21] as the only methods ca-
pable of producing correct wave functions to be used for
the calculation of the overlap integrals in Eq. (3). Unfor-
tunately the complexity of the problem formulated in this
way renders all calculations of Auger recombination rates
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impractical. Scharoch and Abram [22] suggested using
the standard four-band k-p method [19] with the effect of
higher bands taken into account by the Lowdin procedure
[23]. The applicability of this method was verified by com-
paring the overlap integrals with those obtained from the
pseudopotential calculations. Beattie et al. [24] later de-
veloped this method further, obtaining the parameters for
the k-p method by fitting the band structure from the
pseudopotential method and using them in Auger rate
calculations. In this way the anisotropy of the band struc-
ture was taken into account in the calculation of the over-
lap integrals. A further attempt to simplify the calcula-
tions was made by Beattie and White [25]. They
introduced a simplified band structure with a nonpara-
bolic isotropic conduction band and a flat valence band to
obtain an analytical approximation for CCHC Auger
rates. Unfortunately, this approximation does not yield
the absolute value of the Auger rate, which has to be ob-
tained by comparison with the full band result. Methods
that differ in certain aspects from that used by Beattie
and co-workers were suggested by other groups
[16,26,27]. These methods differ in the way the integra-
tion in & space is performed and include certain approxi-
mations of realistic band structures, wave functions, and
electron statistics.

It has to be noted that although the analysis of Auger
recombination in semiconductors has dramatically
evolved since the inception of the field by Landsberg and
Beattie in 1959, the agreement between numerical calcu-
lations and experimental results in narrow band semicon-
ductors is rarely observed. In fact, a 1 order of magnitude
disagreement in the Auger rate is quoted by some authors
as “common” [26] and is attributed to the inaccuracy of
the models used for numerical calculations. However, as
was discussed above, the numerical methods developed
recently attained a degree of complication that includes
the realistic band structures and, thus, should be ex-
pected to describe the Auger recombination more accu-
rately. In this paper we find that the experimentally mea-
sured recombination rates agree well with the numerical
calculations of InSb. We show that the previously known
disagreement is largely due to the approximations made
in the interpretation of the numerical results by experi-
mental groups working in the field. Another important re-
sult of our work is that we find that it is not necessary to
revert to pseudopotential [24,25] methods for band struc-
ture calculations, and that the simple four-band k-p
theory [19] is sufficient to obtain accurate Auger recombi-
nation rates. Indeed, the need to include the influence of
the higher bands on the band structure of InSb around
the I' point was emphasized based on a comparison of the
angular dependence of the overlap integrals resulting
from the exact band structure and from the four-band ap-
proximation. However, the comparison shows significant
differences only for large wave numbers [22], from which
the contribution to the total Auger rate is minimized due
to the low occupation probability of large wave number
states. Beattie also acknowledges [24] that the exact an-
gular dependence of the overlap integrals has little effect
on the lifetimes.

In order to obtain the overlap integrals in Eq. (3) we
use the Kane wave functions [19], which have to be prop-
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erly transformed to account for the direction of the wave
vectors with respect to the crystallographic axes. In fact,
the expressions for the overlap integrals that we obtain in
this fashion differ from those shown by Beattie in Appen-
dix 1 of [12]. Consequently our calculations of the Auger
recombination rate differ from [12]. However, we find our
results to be consistent with those presented by Beattie
and co-authors in a later paper [25]. For practical pur-
poses we find the presentation of the lengthy derivation of
overlap integrals to be unnecessary as it provides little in-
sight. We use numerical matrix multiplication for coordi-
nate transformations.

We utilize the method of k2-space integration suggested
by Beattie [12]. The rate of recombination is obtained
from Eq. (9) as follows:

4 e * 5
r=———0n— | E2dk
256716 %2 T

kath
Fo4(815,81)F13(52i,5 )
)\2 + (k2 - k4)2

>

SisSf

F14(31i>31f)F23(52i’32f)
)\2 + (kl - k4)2
2
Py 5(E)d3k1d3k2, (10)

where we used the properties of the delta function to
carry out the integration over k3 and used the spherical
symmetry of the Kane band structure to integrate over
the directions of &4. The first integral is over the magni-
tude of k4, and the second integral sign stands for the in-
tegration over a six-dimensional (6D) space of all possible
wave vectors of initial states 1 and 2. The lower limit in
the first integral corresponds to the smallest magnitude
of k4, for which the CCHC transition is possible. This
value is referred to as the threshold wave number %4,
and the corresponding energy of the final state 4 is known
as the threshold energy E 4, [11]. Equivalently, E 4y, is the
lowest energy required for an electron to induce impact
ionization.

Threshold energies for the CCHC and the CHLH tran-
sitions are given in the Appendix, where the computation
of the integral in Eq. (10) is explained in considerable de-
tail. The step by step explanation closely follows the dis-
cussion by Beattie [12]. The emphasis, however, is not on
involved algebraic transformations, but rather on physi-
cal interpretations of intermediate results. This discus-
sion in the Appendix uncovers the main reason for dis-
agreements between theoretical and experimental groups
with respect to Auger recombination in InSb.

In the literature on Auger recombination, considerable
attention is devoted to finding the threshold energy E ),
or threshold momentum k4, of a particular Auger pro-
cess. Although the threshold energy is important when
the impact ionization is considered, the same does not al-
ways hold for the Auger recombination. In fact, we find
that in InSb at room temperature (and especially for
CCHC transitions) it is not crucial to know the threshold
precisely in order to obtain accurate values of the Auger
recombination rates. As shown in the Appendix, transi-
tions that occur well above the threshold constitute the
main contribution to the Auger rate in InSb. Therefore,
the analysis based on the assumption that Auger transi-
tions predominantly take place at the threshold (domi-
nant channel approximation) is incorrect [10]. Although
Chazapis and co-authors use Beattie’s treatment [12] as
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their starting point, the employment of the dominant
channel approximation renders their estimations of the
Auger rate invalid. Thus, it is not surprising that this
analysis fails to predict the experimental results accu-
rately. Unfortunately, some authors [26] attributed this
disagreement not to the dominant channel approximation
[10], but to the inaccuracy of Beattie’s approach to overlap
integral calculations.

In Fig. 2 we compare the results of our calculations
with the experiments of Chazapis and co-authors [10]
(unconnected data points at intermediate carrier densi-
ties), and Almazov and co-workers [28] (a point at high
carrier density). Contrary to previous claims in the litera-
ture [10,26] we find good agreement between the numeri-
cal calculations and the experimental data at carrier den-
sities above 3x107 cm™. The agreement at higher
carrier concentrations is important since it is known that
Auger recombination is the dominant relaxation process
under these conditions. We attribute the disagreement
with the results of Chazapis [10] at low excess carrier
densities to the possible significant contribution of surface
recombination in the sample of 3.4 um thickness used in
the experiment [10]. Surface recombination could domi-
nate the Auger processes at low excitation levels. Addi-
tional experiments with a thicker sample and/or detailed
modeling of surface carrier dynamics in InSb is required
in order to confirm this assumption.

As we mentioned above, our treatment of the band
structure of InSb is not the most complete theoretical con-
sideration attempted to date in Auger rate calculations
[24,25]. However, a four-band Kane k-p model employed
in this work turns out to be sufficient as shown below. We
compare our calculations (squares in Fig. 3) with those of
[24,25], which include the effects of higher bands and an-
isotropy of the heavy-hole band (solid curve in Fig. 3). The
results of the total Auger recombination rate calculations
by both models as well as the experimental data are
shown in Fig. 3.

Although Beattie and co-authors [24,25] include the de-
tailed band structure model in their calculations of the
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Fig. 2. Experimental and theoretical recombination rates ver-
sus excess carrier density. Experimental data is from [10] (plus
signs) and [28] (closed triangle). Theoretical rates are calculated
based on Eq. (10) for the CCHC Auger process (open squares) and
for the CHLH process (open triangles).
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Fig. 3. Comparison of various models for calculation of the Au-
ger recombination rate and experimental data. Detailed band
structure calculations from [25] (solid curve), present work cal-
culations with the simplified Kane band structure Eq. (10) with-
out screening (open squares) and with static screening (closed
squares), best fit to classical Auger process Eq. (1) (dashed
curve), experimental data from [10] (plus signs) and [28] (closed
triangle).

Auger rate (solid curve), at the same time they neglect the
screening of the Coulomb potential. Our calculations that
were based on a simple Kane model of the band structure
and neglected the screening produced identical results
(open squares), which confirms our assumption that a
more detailed analysis of the band structure is not neces-
sary for obtaining accurate recombination rates. Indeed,
the question of whether screening needs to be included
turns out to be more important. The calculations includ-
ing screening (closed squares) appear to agree better with
the experimental results of Almazov and co-workers at
high carrier density [28] (closed triangle). The discussion
on the validity of the static screening approximation em-
ployed here is given in [29]. Some authors suggest [17,29]
that a dynamic rather than static screening model should
be used to describe the free-carrier screening of the inter-
action in the Auger process. However, this issue still re-
mains unresolved and requires additional experimental
evidence in support of one or the other model.

The calculation of recombination rates in InSb at
higher carrier concentrations may indeed require a more
detailed analysis of the band structure. However, the in-
clusion of the higher and lower bands in the k-p formal-
ism by perturbation theory proves not to be accurate
enough at that point, since other effects such as alterna-
tion of the band shapes due to the electrostatic interaction
of free carriers become important [17].

The most striking result of our calculations is that the
simple classical theory of Eq. (1) based on Boltzmann sta-
tistics still works well for the excess carrier densities un-
der consideration. The best fit of Eq. (1) to numerical re-
sults (dashed curve in Fig. 3) yields an Auger coefficient
C=1.8x10"26 cm®/s, which is roughly a factor of 1.7
smaller than obtained by Beattie [12] within the same
framework. Although the source of this difference is not
clear, we find that our results agree better with those us-
ing detailed band structure calculations [25]. The best fit
with the classical expression Eq. (1) based on simple ki-
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netics considerations agrees remarkably well with in-
volved computations taking into account a detailed analy-
sis of the band structure [24,25]. The agreement is better
with calculations that neglect screening, producing a
valid fit for excess carrier densities from 8% 10 to 3
X 1018 cm~3. The same fit is appropriate for calculations
including screening in the range of excess carrier densi-
ties from 5% 1015 to 4 X107 cm=3. The validity of the
classical model of Eq. (1) in this range of carrier densities
allows us to use it for the numerical modeling of our ex-
perimental results presented in Section 3.

It is important to emphasize that in all our calculations
of Auger processes we used Fermi—Dirac (degenerate) sta-
tistics. There is no prima facie justification for assuming
that using Boltzmann (nondegenerate) statistics from the
outset in Eq. (6) could result in a meaningful estimation
of an Auger coefficient [11-13]. However, if we use Eq. (1)
based on Boltzmann statistics to fit experimental data
and theoretical curves, we find it provides a reasonably
good fit. Although unexpected, this establishes the appli-
cability of using Eq. (1) in beam propagation modeling
where more involved calculations would not be practical.

There appears to be no simple answer as to why the
functional dependence of Auger recombination on excess
carriers is still reasonably well described by the simple
cubic law for InSb at room temperature. Unfortunately, it
is impossible to analytically obtain a closed form solution
of this dependence when using Fermi-Dirac statistics. Al-
though numerical modeling is a means to extract the de-
pendence, it does not provide as much insight as an ana-
lytical solution does. Thus, we can only hypothesize on
the nature of this cubic dependence. Further studies are
required to give a definitive answer.

An argument for a quadratic dependence based on
simple kinetics goes as follows [11]. It is argued that the
number of nondegenerate particles participating in an in-
teraction determines the functional dependence of a pro-
cess on carrier density. Since the Auger CHLH is a three-
body process involving two holes (one light and one heavy)
from a nondegenerate distribution and an electron from a
degenerate distribution (it is always available), the pro-
cess should be described by a quadratic dependence on
carrier density. Similarly, the CCHC process is deemed to
follow a linear dependence on carrier density. We find that
these simplifying arguments are not valid where realistic
degenerate distributions in InSb at room temperature are
concerned. First, the Fermi-Dirac distribution is no
longer a step function at room temperature. Second, we
find that most Auger processes occur away from the bot-
tom of the conduction band where electrons indeed fill up
all available energies (see Figs. 13 and 14 of the Appen-
dix). Thus, these processes are likely to involve electrons
in the thermal tails of the Fermi-Dirac distributions. The
nature of the distribution in the tails is more Boltzmann-
type than step-like. It is reasonable to assume that the
number of electrons available in the tails is proportional
to the total excess carrier concentration. Hence the fact
that detailed numerical calculations presented in this sec-
tion yield a cubic dependence of the Auger rate on carrier
density is not that surprising.

When considering the optical properties of InSb we can
still use the classical model even at low carrier densities
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where this model disagrees with the more detailed calcu-
lations of the Auger process. This is because at low excess
carrier densities An <n, linear absorption dominates and
nonlinear effects are not important.

3. NONLINEAR REFRACTION

Free-electron contributions to nonlinear refraction domi-
nate bound-electronic effects in InSb for the pulsewidths
and irradiances used in our and most other experiments
we have found in the literature. Our calculations indicate
that the only way to have the bound electronic refraction
comparable with the carrier refraction is to use extremely
short pulses, picoseconds to femtoseconds, where the irra-
diance is high with low energy so that few carriers are
produced [30,31]. According to the Drude—Lorentz classi-
cal model, the free-electron refraction cross section is
given by
e\

(11)

ref = 4megmngc?’
where e is the electron charge, ¢ is speed of light in
vacuum, A is the wavelength, ¢, is the permittivity of
vacuum, m, is the effective mass of conduction band elec-
trons, and n, is the linear refractive index. Due to nonpa-
rabolicity of the conduction band in InSb [19], electrons in
different states are characterized by different values of ef-
fective mass according to

. 2E
m.=m, 1+E— s (12)

g

where mz stands for the effective mass at the bottom of
the conduction band. In order to account properly for the
dependence of the effective mass on energy in optical elec-
tron transport, we need to use the average value of m, in
Eq. (11) [32]:

0

m (E)N(E)f(E)dE

(mg)=—— , (13)

.f N(E)AE)AE
0

where N(E) is the density of states function

1 [2m!\* E 2F

8 8

and f(E) is the Fermi-Dirac distribution of Eq. (7). We
find that the values of effective mass obtained from
1/{m.) and (1/m,) calculations are almost identical.

One of the important consequences of taking the aver-
age effective mass for m, in Eq. (11) is that the resulting
cross section of free-electron refraction is significantly
lower than obtained for the band edge value of . Since
the average effective mass grows with the increase of the
electron concentration, the refractive cross section is re-
duced. The dependence of the free-electron refraction
cross section on electron density at 10.6 um is shown in
Fig. 4 (solid curve). We should note that we neglect the
free-hole contribution to nonlinear refraction. This ap-
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Fig. 4. Refraction cross section versus photoexcited carrier den-
sity. Absorption blocking contribution (dot-and-dash curve), free
electron refraction contribution (solid curve), total refraction
cross section (long dash curve), and 80% of total refraction cross
section (short dash curve) producing the best fit to the time re-
solved measurements shown in Fig 11.

proximation is based on the fact that the large mass of
free holes (0.45 mg as opposed to 0.015 m, for free elec-
trons) reduces the effect.

Another important effect that we take into account is
the refractive index changes resulting from absorption
blocking. The creation of free electrons in the conduction
band and their rapid thermalization to the bottom of the
band results in the blocking of linear absorption slightly
above the band minimum. This absorption saturation is
known as the Burnstein—-Moss effect [33]. Through
Kramers—Kronig relations, the change in absorption
causes a change of the refractive index. The model of non-
linear refraction due to absorption blocking was first sug-
gested by Miller et al. [1], developed further by Wherrett
and co-authors [34], and used for the calculation of the in-
dex change due to the blocking of the linear transitions by
two-photon excited electrons by Said and co-authors [35].
In all three papers the parabolic conduction band and
Boltzmann statistics were assumed. As we pointed out
earlier, these assumptions are not valid for InSb. There-
fore, we proceed with Miller and co-authors’ model [1] in a
more general case taking into account the nonparabolicity
of the conduction band and Fermi-Dirac statistics. We
modify Miller and co-authors’ expression for the direct in-
terband absorption coefficient using the density of states
expression for a nonparabolic band, Eq. (14). We obtain

V2me?  (m\¥?2mP?  [(ho-E,) (2o
— | = —1
3mhiengeg\ m h? Efio \ E,

1
X(l_ 1+eXp[(ﬁw—Eg—,u,)/kT])’ (15)

alhw) =

where P is the momentum matrix element given, fiw is
the photon energy, m is the rest mass of electron, and w is
the Fermi energy. The following assumptions, consistent
with the material properties of InSb, have been used in
obtaining Eq. (15): we neglected the relatively weak ab-
sorption from the light-hole band, and since mh>m:, we
assumed a flat heavy-hole band. As a consequence of the
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second assumption, we neglected the filling of the states
in the heavy-hole band. We also took the conduction band
energy for the direct transition E.=hw-E,, thus neglect-
ing 1/m;, compared to 1/m, in the expression for the re-
duced effective mass [1]. The validity of Eq. (15) has been
verified by the comparison of the calculations with the ex-
perimental data available in the literature [36]. In order
to obtain good agreement with the data, the dependence
of the momentum matrix element on the transition en-
ergy has to be taken into account [37].

Absorption and refraction are related through
Kramers—Kronig expressions. The change in the refrac-
tive index at photon energy fiw is given by

e [F Aa(ho')d(ho')

An(hw)=— m, (16)

™Jo

The method of the refractive index change calculations
based on Kramers—Kronig relations is very flexible as it
allows finding the contribution to the nonlinear refraction
of a certain absorption change with no relation to the spe-
cific physical process that produced this change in absorp-
tion. In such a way we are able to find the negative refrac-
tion contribution (at 10.6 um) of linear absorption
blocking induced by two-photon carrier excitation at
10.6 um. Using the same formula, Eq. (16), we can esti-
mate the positive change of the refractive index brought
on by the appearance of new linear transitions due to the
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bandgap shrinkage with temperature when local optical
heating of the material takes place. In a similar fashion,
we can calculate the Kerr index (contribution of bound
electrons) knowing the dependence of the nondegenerate
coefficient on frequency. As verified by our calculations,
contributions of bound electrons and thermal effects are
much less significant than the absorption blocking at the
wavelength of interest.

In order to identify how the change of refraction de-
pends on carrier density we need to know the change of
the absorption coefficient due to the creation of additional
carriers. We introduce the notation: x=fiw’'-E,/kT, a
=hw-E /kT, b=E kT, go=n/kT, and g(n)=u(n)/kT,
where w(n) is the electron Fermi energy depending on
free-electron concentration, and u is the Fermi energy at
equilibrium at 300 K (no optical excitation of carriers).
Then, using Eq. (15) we obtain

\,%esz ( m, )3/2 2mP?

Aaw)= ———=| — | —5—
@ 3mh%cngeoBs” 1

m

y \,Q(Zx +b)[exp(x — g(n)) — exp(x — g¢)]

\x +b[1 + exp(x - go)][1 + exp(x - g(n))]
17

Substituting Eq. (17) into the Kramers—Kronig relation,
Eq. (16), we obtain

\J’;(Zx +b)[exp(x — g(n)) — exp(x — go)]dx

An(a) =

where the integration is performed for photon energies
above the bandgap. The expression under the integral de-
pends on the free-carrier density in such a way that car-
rier density cannot be taken out of the integral as in the
case of Boltzmann statistics [34]. Therefore, we expect the
refractive cross section to depend on electron density in a
nontrivial way. The integral in Eq. (18) has to be evalu-
ated numerically since no analytical simplification simi-
lar to that in [1,34,35] appears possible. The resulting re-
fractive cross section is plotted in Fig. 4 as a function of
carrier density (dot-and-dash curve) together with previ-
ously obtained results for free-electron refraction, (solid
curve) as well as the total refraction cross section (long
dash curve). The calculations include the correction for
the variation of the momentum matrix element with en-
ergy. Figure 4 also shows the cross section (short dash
curve) that produces the best fit to time resolved pulse
transmission measurements described in Section 4.

4. EXPERIMENTAL PROCEDURE

A Laser Science Incorported PRF-150 grating-tuned
transverse excitation atmospheric pressure (TEA) CO, la-
ser was used to determine the effect of nonlinear refrac-

\s’%ez (m:)3/22mP2 fw
3mhengeoES \ m 72 )y Jx+b(x—a)x+a+2b)[1+explx—go)l[1+expx-g(n)]

(18)

[
tion on the propagation of the laser pulse through InSh.
The gas mixture, containing ~20% of CO, (active media),
15% of Ny (to increase the excitation efficiency of CO,),
and 65% of He (ballast gas) is supplied to the main gas
chamber at atmospheric pressure. Since the excitation oc-
curs at atmospheric pressure, the laser line is signifi-
cantly broadened. This results in multiple longitudinal
modes present in the output laser pulse. Mode beating
could significantly distort the response of the nonlinear
material under investigation. To ensure single longitudi-
nal mode operation, an additional intracavity low pres-
sure pulsed gas cell is used, which narrows the linewidth
(essentially serving as a narrow band seed pulse). Addi-
tionally, the cavity length is fine-tuned by adjusting the
voltage applied to a piezoelectric aligner/translator (PZT)
system on the output coupler. The absence of mode beat-
ing is verified by monitoring the laser output with a fast
Au-doped Ge detector (see Fig. 5). The long tail of the
pulse appears due to re-excitation of COy molecules
within the No—CO, gas system.

The laser cavity is formed by a coated Ge output cou-
pler (80% reflectivity) and a 135 line/mm blazed grating.
The Au coated grating on a copper substrate is used for
tuning between different COg4 lines. An aperture is placed
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Fig. 5. Laser pulse temporal profile measured with a fast Au-
doped Ge detector.

within the laser cavity in order to ensure the excitation of
the fundamental spatial mode and suppress higher order
transverse modes.

The experimental setup shown in Fig. 6 included a
15 c¢m focal length lens used to focus the beam. The beam
profile data were collected via transverse pinhole scans.
Figure 7 shows the measured beam profile at the focus.
Beam width measurements are shown in Fig. 8 along
with a Gaussian propagation fitting:

222

1+7727u)0’ (19)

w=wy

where the width of the Gaussian beam w is defined as the
half-width at 1/e? of the maximum (HW1/e2M) of fluence.
A beam spot radius at focus of wy=120 um with M2=1.0
produced the best fit to the measured profiles.

We found it critical to make sure that the beam profile
is close to Gaussian, as even a small asymmetry in the in-
put beam was observed to become highly pronounced af-
ter propagation through a nonlinear material at high in-
put energies. Experimental evidence of this is shown in
Fig. 9, where a slight asymmetry in the input beam is
shown to be magnified after propagation through the an-
tireflective (AR) coated InSb sample of 1 mm thickness
placed at the focus. Although great care has been taken to
ensure that the input beam is cylindrically symmetric,
the transmitted beam is always found to be somewhat

\
|

D2

\

D1

Fig. 6. Experimental setup. Squares indicate detectors (D1 ref-
erence, D2 sample transmittance), and arrows show distances
from the lens to the sample and from the sample to an aperture
placed in front of the transmission detector.
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Fig. 8. Beam width measurements (closed triangles) and Gauss-
ian fitting (solid curve) along the propagation path of the focused
beam.

asymmetric, especially at high energy. We attribute this
effect to a strong nonlinear refraction that magnifies any
small imperfections in the input beam profile. A slight
wedge in the sample could also lead to a similar result.
However, that was not the case here as evidenced by no
change in the profile after sample rotation. Small depar-
tures from a perfectly Gaussian input beam profile result
in relatively small changes in the carrier density distribu-
tion, index change, and nonlinear phase. The change in
the nonlinear phase shift accumulated upon propagation
in the sample results in aberrations of the output beam
wavefront that affect the propagation of the beam to the
detector plane. Even though we tried to put the detector
as close as possible to the sample, the effect of nonlinear
aberrations was considerable, as evidenced in Fig. 9. It is
worth noting that different parts of the laser pulse (see

Fig. 9. Beam image obtained at the detector plane D2 with (a)
no sample and (b) 1 mm thick InSb sample at the focus.
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Fig. 5) experience different nonlinear phase shifts and
distortions, thus affecting the temporal content of the
pulse at any given spatial position differently after the
sample. Since the collection of all angular components of
the output beam by a fast detector is difficult to accom-
plish [37], partial aperturing of the output beam occurs.
This often leads to observation of pulse-shaping [37].
Similar effects of strong nonlinear refraction have been
observed in liquid crystals [38]. For a more detailed dis-
cussion of how nonlinear refraction can affect beam pro-
file and rearrange temporal content of the laser pulse we
refer the reader to [37].

5. RESULTS AND DISCUSSION

Comparison between the experimental data and the nu-
merical analysis of CO, laser pulse propagation through
InSb is complicated by nonlinear distortions of the output
beam profile and temporal pulse content. Thus, we might
expect the modeling based on our cylindrically symmetric
nonlinear beam propagation method [39] to not perfectly
fit the time-resolved measurements and experimental
spatial beam profiles. However, the calculations of the in-
tegrated characteristics, such as the energy collected by
an apertured detector, produce reasonable agreement
with the experiment.

Here we use theoretically calculated values for the Au-
ger recombination coefficient and the nonlinear refraction
as well as the value of the 2PA coefficient obtained in pi-
cosecond experiments [6,9] for the numerical simulation
of COq laser beam propagation through InSb. The linear
absorption cross section of the sample used in our numeri-
cal modeling was obtained by measuring the transmit-
tance of the sample at low input energy (o,=4.8
x 10716 cm).

The results of the experiments are compared with the
numerical modeling in Fig. 10 for a system with a 5§ mm
circular aperture (6.5 times the linear beam size) placed
13 mm after the AR coated InSb sample and before a py-
roelectric detector used for the measurement of the trans-
mitted energy (Fig. 6). Calculations show good agreement
for the total energy transmitted through the sample, but
underestimate the energy transmitted through the aper-
ture. Still the agreement is quite reasonable considering
the fact that the output beam is distorted, which could
lead to the collection of angular components blocked by
the aperture in our cylindrically symmetric analysis. A
very good fit of the transmittance of the system with an
aperture is obtained when the nonlinear refraction is re-
duced by 30% from the theoretically obtained values. In-
terestingly, the best fit of time resolved measurements is
also obtained for lower nonlinear refraction. A 20% reduc-
tion of the calculated total refraction cross section (shown
as a short dash curve in Fig. 4) produces the best fit of the
pulse profiles collected by a 5 mm aperture, fast Au doped
Ge detector placed 13 mm after the sample. The pulse
profiles and the best obtained fits are shown in Fig. 11,
where o is the fitting parameter (using the values from
Fig. 4 by changing the percentage of the maximum value).

All energy was collected by the detector at low energies,
therefore, the contribution of the nonlinear refraction was
insignificant, and the low energy data is not shown here
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Fig. 10. Experimental and numerical results for output versus
input energy. Open aperture Z-scan experimental results are
shown as open squares and numerical simulation of beam propa-
gation as a long dash curve. For closed aperture Z-scan data the
detector is placed on axis 13 mm after the sample. The 5 mm ap-
erture is 6.5 times larger than the beam FW1/e? M at this posi-
tion in the linear regime. The closed aperture experimental re-
sults are shown as closed squares and the numerical simulation
of the beam propagation as a short dash curve. Dot-and-dash
curve shows numerical simulation results with 70% of the pre-
dicted theoretical refraction for comparison.

to make the graph more readable. Pulse profiles at low
energies (9 ud and 25 ud) were used to obtain the value
for the absorption cross section of ¢j,=4.8x 10716 ¢m?,
which is within the range of values 3.8—8.6x 10716 cm?
found in the literature [5,8,9]. The change of the output
pulse shape at high input is a primary indicator of the
nonlinear refraction effect. At the maximum of the pulse,
where refraction is the strongest, the beam overfills the
detector aperture, and only the central part of the beam is
detected. This results in the temporal modulation of the
output pulse.

40

Power (W)

0.8x10°°
time (s)

0.4x10°

Fig. 11. Time-resolved measurements and the best fit with the
numerical beam propagation. The refraction cross section o,
was the only fitting parameter used. The best fit is obtained by
using 80% of the predicted theoretical refraction (Fig. 4). Input
pulse energy: 58 uJ (experimental—triangles, numerical—solid
curve), 125 uJ (experimental—squares, numerical—dashed
curve), 200 ud (experimental—circles, numerical—dot-and-dash
curve).
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Fig. 12. Output versus input energy 13 mm after the sample
with a 0.3 mm aperture on axis (open triangles) or at the maxi-
mum of transmittance (closed triangles if maximum is not on
axis). Numerical simulation of beam propagation results are
shown as a solid curve. Dashed curve shows numerical simula-
tion results with 70% of the predicted theoretical refraction for
comparison.

The calculated parameters were also used for compari-
son of the numerical modeling with an experiment for a
system with a 300 um diameter aperture (15% linear
transmittance) 13 mm after the sample (Fig. 12).

Although we obtained good agreement of the experi-
mental transmittance measurements for submicrosecond
COq laser pulses, the accurate determination of the non-
linear material parameters from such an experiment is a
daunting task, as the number of parameters simulta-
neously affecting the pulse propagation is very large. The
use of picosecond pulses is preferable for this purpose.

6. CONCLUSIONS

Previously, an order of magnitude disagreement between
calculated and measured Auger recombination rates had
been noted [10]. The inadequacy of the four-band Kane
model of band structure had been widely thought to be
the reason for this disagreement [17,26]. Our calculation
of the Auger rate in a four-band model using Fermi-—Dirac
carrier statistics yielded good agreement with the experi-
mental results available in the literature, proving it un-
necessary to resort to more detailed band structure calcu-
lations. We attribute the previous inconsistency in the
literature to unfortunate miscommunication between the-
oretical and experimental groups. Specifically, the neglect
of surface recombination in the thin films used in [10]
along with the incorrect application of the dominant
channel approximation could have led to the incorrect
conclusion of inconsistency of the theoretical calculations
with the experiments. Although our calculated results
agree well with the experiments at intermediate and high
excess carrier densities, the low excitation experiments in
thin samples yield higher relaxation rates. The impor-
tance of carrier diffusion and surface recombination is
identified as a possible reason for this disagreement.

We analyzed the nonlinear refraction in InSb based on
Kramers—Kronig relations. We refined the method ini-
tially described in [1] by taking into account Kane’s band
structure [19] and Fermi—Dirac carrier statistics.
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We presented an accurate numerical simulation of the
propagation of pulsed midinfrared radiation through
InSb. Small deviations of numerical results from the ex-
periment and distortions of the pulse-shape are attrib-
uted to slight beam asymmetry.

Our experiments confirmed the applicability of InSb for
the purpose of clamping the transmitted energy of CO, la-
ser pulses. One of the drawbacks of such a device is the
damage of the InSb crystal itself at input pulse energies
exceeding ~1md, corresponding to a fluence of
0.44 J/cm2. It might be possible to avoid this damage
when using another material placed prior to the InSb
sample and providing nonlinear defocusing at high inputs
[40]. We suggest using CS,, which exhibits thermal non-
linear defocusing at 10 um initiated by its ~0.3 cm™! lin-
ear absorption coefficient at this wavelength [41]. Use of
wedge-shaped samples is also suggested to avoid hot-spot
formation at the detector plane [42].

APPENDIX A

In this Appendix we present a step by step explanation of
how the integral in Eq. (10) is calculated. We also estab-
lish which electron states are responsible for the majority
of the Auger transitions in InSb.

The lower limit of the first integral in Eq. (10) is the
threshold wavenumber k4, and the corresponding en-
ergy of the final state 4 is known as the threshold energy
E 44, At the threshold there is only one combination of ini-
tial and final states for which energy and momentum are
conserved simultaneously in an Auger process. The ener-
gies and the momenta of the states 1-3 that correspond to
this threshold transition are denoted as Ei, Eoth, Esih,
and Ky, ko, Ksin respectively. These energies and mo-
menta should not be confused with the minimum energies
and momenta possible for states 1-3. In order to avoid
confusion, we find it important to emphasize that Ey,,
Eyy,, and Egy, just stand for the energies of the carriers
that combine to produce the lowest value of Ey. It is easy
to show that Eqy,=FEqy, and Ky, =Fkoy, for a CCHC tran-
sition [11]. We find that the threshold energy, E4y,, for a
CCHC transition is determined as follows:

2m,
E4th=Eg<1 + ), (A1)

mp
which corresponds to k4, given by

2\’mCEg< 3mc>
I
h

Fagn = (A2)

th

For each value of k4 above k4 the surface of allowed
transitions in a 6D space k;® k, (direct product of wave
vector spaces) is defined by the conservation of energy
(the conservation of momentum is already ensured in Eq.
(10) by taking kg=k; +ks-ky). Thus, the second integral in
Eq. (10) presents the integration over this surface. Beat-
tie has introduced a coordinate transformation in a com-
bined wavevector space, which significantly simplifies the
topology of the problem:
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mth mth
kl =R+ ‘ S+ ‘ 45
\,mh(mh + 2m2h) my + 2m§h
my, + m:f,h mzh
k = - S + k N AS
2 \—mh(mh N 2m£h) my + 2m2h 4 (A3)
where m" is defined by
h2k3
m:f,h _ 1th ’ (A4)
2E 1

and Cartesian coordinates of three-dimensional (3D) vec-
tors R and S are expressed in a 6D generalized spherical
coordinate system as follows:

R =s(cos 6y,sin 6; cos 6,,sin 0; sin 6, cos b5),

S = s sin #; sin 6, sin 5(cos 64,sin O, cos O5,sin 64 sin b5),
(A5)

where s2=R%?+82, 0<0,<7 (1=1,2,3,4), and 0< 65<2.
The Jacobean of the transformation into the coordinate
system s, 6; is given by

my + mzh 3

5 . 4 . 3 . 2 .
/=th S” sin 01 sin 02 sin 63 Sin 04.
\my(my +2m;")

J(S70i) =(

(A6)

The origin of the new coordinate system corresponds to
the threshold transition. For the values of k> k4, all al-
lowed transitions lie on a closed surface around the ori-
gin. For parabolic bands, the surface enclosing the origin
is conveniently reduced to a sphere (in 6D). For a nonpa-
rabolic conduction band, the surface of integration is
given by an equation s=s(6;), where s in each direction (in
6D) is obtained from the energy conservation consider-
ations:

th
2m'my,

s?= ————(Z(k,) + W(k,,R,S)), AT
m +m§h)( (ky) + W(ky ) (A7)
where for a nonparabolic conduction band [19] and a
parabolic and isotropic heavy-hole band (with a negative
effective mass —mj) the following expressions hold:

3E, [|E: #%kiE, 12k
Zkg) == ——+\|— + - T
2 4 2m, 2(my +2m.")
(A8)
E2 #’kiE E® #W’k3E
Wk,R,S) =E,— \|— + Y £
4 2m, 4 2m,
R
——, A9
o ¥ 2t (49)

where expressions Eq. (A3) relate £, and k5 to R and S.
The resulting expression for the CCHC transition rate
per unit volume is given by
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1
rccHC = ﬁf k3dk,OQccnc(ky), (A10)
b

4th

where Qccnc(ky) is the rate of the CCHC Auger transition
with a particular final state 4:

4

e mﬁh(mh + mth)2

c

Qccne =
32775ﬁ3828% \,mh(mh + 2mzh)3

|M|?Ps* sin? 6, sin® 6, sin? 6 sin 6,

X
m®m, 1w
- #2(my, + m'h) s ds
Xd 6;d 6,d 63d 6,d 65. (A11)

A similar expression in [12] contains a misprint in the
powers of the effective mass factor, which can be readily
identified by dimensional analysis.

The numerical calculation of the recombination rate in
Eq. (A11) proceeds as follows. First, quasi-Fermi energies
for electrons E and holes Ej, as well as the screening pa-
rameter \ are determined for a given excited carrier den-
sity. Then, a discrete set of values of k4> k4, is chosen
with a sufficient number of points for numerical one-
dimensional (1D) integration in Eq. (A11l). Qccuc(ks) is
computed using a Monte Carlo method in 6D. The
“VEGAS” algorithm [43] is used; however, the adaptive
mesh generation available in this algorithm has not been
employed. Sufficient accuracy of the Monte Carlo proce-
dure (~0.1%) is ensured by taking 10® different sets of
generalized direction parameters 6; (i=1,2,3,4,5). The
evaluation of the integrand is complicated by the need to
solve a transcendental equation for #; dependent param-
eters in Eq. (A7) each time a new set of 6, is used. This is
achieved by the Newtonian iteration method, which is
found to converge for all k4> k4. The accuracy of solving
Eq. (A7) is chosen to accommodate the required accuracy
of the Monte Carlo procedure. The overlap integrals in
Eqgs. (2) and (3) are calculated based on Kane wavefunc-
tions [19], which have been suitably transformed to allow
for arbitrary directions of wavevectors k;, ky, and kj
[19,20]. The scalar product of the wavefunctions resulting
in the overlap integrals of Eq. (3) has been carried out nu-
merically.

A similar procedure applies for the CHLH process. The
threshold energy for the CHLH transition is given by

mC
Epn=-E | 2+—|. (A12)
mp

The origin of the energy scale is still at the bottom of
the conduction band. Therefore, the threshold is E4(1
+m./m;,) below the top of the valence band, which corre-
sponds to k4, given by

2\ymE, 3m,
—2 1+ .

k4th = (A13)

4mh

The coordinate transformation needed to place the
CHLH threshold transition in the origin of the wavevec-
tor space is modified as follows:
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where m , Z, and W are defined by
h2kZ,,
mth = ——> (A15)
2E3th
3E, E; H°E3E, h2ky
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The resulting expression for the CHLH transition rate
per unit volume is given by

1 o0
FCHLE = 55 f k3dk,Qcmn(ky), (A18)
k

4th

where Q(k,) is the rate of the CHLH Auger transition
with a particular final state 4:

et my(my +m

Q
CHLH™ g0 1362 &2 VmP2my, + mt)3

f |M|?Ps* sin* 6, sin® 6, sin? 6 sin 6,

th)2

mthmh 10W

ﬁz(mh + mth) s s
X d 6;d 6, 0d 0,d 65 (A19)

Qccuc and Qcyr g are plotted as functions of the energy
of the final state 4 in Figs. 13 and 14 for two different ex-
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Fig. 13. Auger transition rate () versus the energy of the final
state four for the excess carrier density n=2.47 X 101 cm=3. The
CCHC process results from Eq. (A11l) (squares), and the CHLH
process results from Eq. (A19) (triangles).
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Fig. 14. Auger transition rate () versus the energy of the final
state four for the excess carrier density n=1.72% 108 cm=3. The
CCHC process results from Eq. (A11) (squares), and the CHLH
process results from Eq. (A19) (triangles).

cess carrier densities. To make the comparison easier, the
horizontal axis values correspond to E, for the CCHC
transition and to E,-E, for the CHLH transition. It is
clear that for both carrier densities considered in Figs. 13
and 14, the CCHC transition dominates [one should keep
in mind that integration in Eqgs. (A10) and (A18) includes
a geometrical factor ki, therefore, the states with larger
E, contribute more to the total recombination rate]. An-
other important observation one can make is that most
transitions occur away from the threshold for the CCHC
process. Near threshold transitions dominate only for the
CHLH process at small excess carrier densities.
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