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The frequency degenerate and nondegenerate two-photon absorption �2PA� spectra of direct band gap semi-
conductor quantum dots are studied. Measuring the spectra for both cases in samples of CdSe and CdTe with
different quantum dot sizes and size distributions, we observe that the 2PA spectra and the 2PA coefficient are
size dependent, so that smaller dots have smaller 2PA even after taking into account the volume fraction.
Theory considering the mixing of the hole bands, in a k� · p� model, explains the data quite well except for the
smallest dots. A comparison with the parabolic band approximation is also shown.
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I. INTRODUCTION

Quantum-confined semiconductors, including quantum
wells, quantum-wires, and quantum dots �QDs� have been
investigated for both the understanding of the physical ef-
fects in finite structures and the possibility for applications in
several areas.1,2 For QD’s, the band gap and luminescence
spectra dependence with the QD size are two of the more
interesting properties because it is possible to control these
spectra by controlling the QD growth. Recently, using core-
shell QDs, it has become possible to not only control the
luminescence spectra but also enhance the quantum yield,
making QDs good candidates for applications in optical
amplifiers.3 Due to their small size, QDs have a high density
of surface states �surface/volume ratio is inversely propor-
tional to the QD size�, and these states are localized at the
interface between the semiconductor and the matrix. The
photo-excited electron trapping on these states is faster than
some radiative processes which accelerates the electron-hole
recombination process, and hence these confined materials
exhibit response times up to three orders of magnitude faster
than for bulk semiconductors.4

Nonlinear optical �NLO� properties, such as nonlinear re-
fraction and two-photon absorption have also been studied
for quantum confined semiconductors, but, unlike the linear
optical properties, these NLO processes are not completely
understood. The combination of high nonlinear refraction
and fast response time could make applications in all-optical
switching possible.5,6 Recently, interest has been directed to
the imaginary part of the third-order susceptibility, i.e., two-
photon absorption �2PA�. High values for 2PA cross sections
are desirable for applications in three-dimensional imaging
of biological systems, and semiconductor QDs may be useful
for such applications.7–9

Considering the recent interest for the 2PA process in
QDs, in a previous paper we reported the dependence of the

2PA coefficient on the size of nanocrystals of CdTe.10 We
found that the maximum value of the 2PA decreases when
the QD size is made smaller for these CdTe samples.10 This
is true even taking into account the reduced volume fraction.
In the present paper we report both frequency degenerate
�i.e., absorption of two equal energy photons� and nondegen-
erate 2PA spectral measurements for CdTe and CdSe quan-
tum dots. The spectra show that the 2PA coefficient and cross
section become smaller at all wavelengths studied as the QD
size is reduced even after taking into account the volume
fraction. Previously we showed that a model using the para-
bolic band approximation can fit the 2PA well for larger QDs
�QDs radius � exciton Bohr radius�.10 Schmidt et al. have
studied the influence of quantum confinement on the degen-
erate 2PA in CdSe QDs.11 However, this model cannot ex-
plain the behavior of 2PA for QDs with radii less than the
exciton Bohr radius. In the present paper, we present a study
of the degenerate and nondegenerate 2PA for different sizes
of different semiconductor QDs and use a theoretical model
for describing the 2PA in semiconductor QDs which de-
scribes the observed reduction as the QD size is reduced.
Unlike the model previously proposed,10 in this model, the
mixing of the heavy and light holes bands is considered by
solving the k� · p� Hamiltonian to first order in k�. As expected
from previously reported results for linear absorption,12,13

this model improves the fitting of the 2PA for smaller QDs.
However, unlike the parabolic band model, it has no analyti-
cal solution and must be solved numerically. The theoretical
results indicate that the heavy and light holes band mixing is
important in quantum dots and for a more complete descrip-
tion the mixing of the split-off band should also be consid-
ered.

II. TWO-PHOTON ABSORPTION: THE k� ·p� MODEL

Different theories have been proposed for describing the
degenerate 2PA in systems with quantum dots.10,14,15 A
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theory based on the parabolic band approximation has been
proposed by Fedorov et al.14 for the degenerate 2PA in direct
band gap semiconductor QDs. This simple theory describes
the semiconductor structure as four independent bands with
constant effective mass and does not consider the band mix-
ing between the light and heavy holes in the valence
band.12,14 Kang et al.15 and Sercel and Vahala12 have shown
that it is important to consider the band mixing for a com-
plete description of the electronic structure and, conse-
quently the linear and nonlinear optical properties in such
three-dimensionally confined semiconductors. However,
when the band mixing is considered, the two-photon transi-
tion rate must be calculated numerically, as opposed to the
simpler model which results in analytical expressions for the
one and two photon transition oscillator strengths. These cal-
culations depend on the semiconductor properties and the
quantum dot size and size distribution.10,14

In this section we explain how we use the model based on
the k� · p� Hamiltonian12 for describing the complete spectrum
of both the degenerate and nondegenerate 2PA in systems
with direct band gap semiconductor QDs. In this model we
solve the Kane Hamiltonian12 for the quantum-confined
structure considering the perturbation to first order in k� for
k�→0.

For any system, the 2PA transition rate in the degenerate
and nondegenerate cases can be calculated from16

Wd,nd
�2� =

2�

�
�
i,f

�Md,nd
f ,i�

2��Ef − Ei − ��2 − ��1� . �1�

For the degenerate case, �1=�2. The energies Ef and Ei are
the energies for the final and initial states, respectively.

From here we calculate the transition rate for the nonde-
generate 2PA and later we will generalize the result for the
degenerate case simply by setting �1=�2=�. The matrix
element Mf ,i, which gives the oscillator strength of the tran-
sition from the state i to f for the nondegenerate case is
written as10,16

Mnd
f ,i = �

a

H2f ,aH1a,i

Ea − Ei − ��1 − i��
+

H1f ,aH2a,i

Ea − Ei − ��2 − i��
,

�2�

where a represents the intermediate state and

Hj =
e

mc
A� j · p� , �3�

where Hjf ,i
= �� f�Hj��i�, and � is the inverse of the lifetime

for each intermediate state.
The sum over a includes all states in the valence and

conduction bands. This requires that the 2PA in this model,
as in the parabolic band model, is constituted by one intra-
band and one interband transition.

To solve Eq. �2�, it is necessary to know the eigenstates.

From the model proposed in Ref. 14 the states result from
the mixing of all four bands and in general are given by17

�FM±�r�� = �
l

Aljl�kn�lr��
JZ

cJZmMYl
m�	,
��uJ,JZ

� , �4�

where JZ+m=M, cJzmM’s are Clebsch-Gordon coefficients,
and �uJ,JZ

� are the eigenstates of the total Bloch angular mo-
mentum at k=0, i.e., at the bottom of the conduction band or
at the top of the valence band.12 F is the total angular mo-
mentum and both F and M are good quantum numbers12 so
that the eigenstates can be divided in subspaces with the
same quantum number F.12

The electronic conduction band is separated from the two
hole bands by the band gap energy, Eg, and from the split-off
band by Eg+�SO, where �SO is the split-off energy. If both
energies, Eg and �SO, are larger than the separations between
the states in the hole bands, we can consider the conduction
and split-off bands as remote bands and ignore their mixing,
and solving them independently. With this in mind, the only
band mixing that has to be considered is that between the
light and heavy-hole bands. For a more realistic model it
would be necessary to also consider the mixing of these
bands with the split-off band, especially for smaller QDs
when the separation between states in the valence band is not
much smaller than �SO; however, this is computationally
much more complex.

Excluding the mixing of the split-off and conduction
bands the eigenstates for these bands are given by

�FM±�r�� = jl�knlr��
JZ

cJZmMYl
m�	,
��uJ,JZ

� , �5�

with knl being the nth zero of a spherical Bessel function of
order l. In the subspace F=1/2 there are no heavy-hole
states. Then the light-hole states are written in the same way
as in Eq. �5�, but the Bloch eigenstates need to be switched
from �u1

2
,JZ

� to �u3
2

,JZ
�. For the subspace F=3/2, the hole

bands mix with each other, and the eigenstates are written in
the same way as in Eq. �4�, but kn�l is not a zero of any
spherical Bessel function. It instead consists of zeros of a
linear combination of spherical Bessel functions as given in
Ref. 12. In our model, we consider that the eigenstates are
zero for spatial regions outside the QDs.

The 2PA oscillator strength for each transition is calcu-
lated by using the momentum operator in spherical
coordinates.18 The 2PA transition rate is given by the sum of
the oscillator strengths over all the allowed two-photon tran-
sitions which is numerically calculated. The 2PA coefficient
spectrum is given by

�nd�x1,x2� =
N

Eg
3

k2

x1x2
2 �Wnd

�2��x1,x2�� , �6�

where k is a constant used for adjusting the theoretical curve
to the experimental data,10 N the concentration of QDs in the
sample, xi=

��i

Eg
, and �Wnd

�2�� is the average of the two-photon
transition rate �Eq. �1�� over the QD size distribution, which
is considered here as a Gaussian distribution.
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Figure 1 compares the first 2PA transitions predicted by
the parabolic band model10 and by the k� · p� approximation
presented above. The band mixing introduced in this model
changes the position of the allowed transitions and also their
strength, increasing the relative strength of the high energy
transitions.

III. EXPERIMENTAL

A. Synthesis of CdTe and CdSe nanocrystals

The CdTe QDs in borosilicate glass were made by melting
the glass matrix components together with CdO and metallic
Te, and by heat treating to define the quantum dot size and
size distribution. The details of the growth process are de-
scribed in Ref. 19. Sample CdTe-750 has quantum dots of
6.6±0.9 nm radius and a band gap of 1.67 eV. The QD con-
centration in this sample is 	0.9%. The second sample,
CdTe-600, has smaller nanoparticles, 3.2±0.4 nm in radius,
and a band gap of 2.07 eV, with a concentration of 	2.0%.
The concentration and size distribution of QDs in each
sample is estimated from TEM images. Figure 2�a� shows
the linear absorption spectra of these two samples.

The CdSe samples are colloidal QDs dispersed in metha-
nol and octadecene. The synthesis of CdSe quantum dots was
realized according to a slightly modified procedure taken
from Refs. 20–22. Cadmium oxide �99.99%�, selenium �100
mesh, 99.999%�, oleic acid �OA�, trioctylphosphine �TOP,
97%�, ethanolamine �EA�, 1-amino-5-pentanol, and
1-octadecene �ODE, tech. 90%� were purchased from Ald-
rich and were used as received without further purification. A
mixture of CdO �0.064 g, 0.5 mmol�, OA �1.73 mmol�, and
ODE �15.78 g� was heated up to 300 °C to allow decompo-
sition of CdO and formation of Cadmium oleate until a clear
solution was obtained. A second mixture of Se �0.039 g,
0.5 mmol�, trioctylphosphine �0.185 g, 0 ,5 mmol�, and
ODE �2.36 g� was heated to 150 °C and kept at constant
temperature until a clear yellow solution was observed, indi-

cating the formation of a TOP-Se complex. The selenium
solution was then cooled down to room temperature and rap-
idly injected into the hot cadmium solution. The temperature
of the final mixture was set at 280 °C to allow crystal
growth. The solution undergoes a slow change in color from
pale yellow to dark wine red, directly indicating CdSe par-
ticle formation and growth. The reaction was stopped when
the desired nanocrystal size was reached. All the synthesis
was carried out under argon atmosphere.

Unreacted cadmium and selenium precursors were sepa-
rated from the main batch through repeated washing using a
CHCl3 /CH3OH �1:1� solution, and performing centrifuga-
tion at 3000 rpm for 5 min after each wash.

Ethanolamine, EA, was added to the CdSe solution in
ODE �EA: superficial Cd atoms=100:1� and incubated over-
night until a red deposit was isolated at the flask bottom.
Clear ODE was then separated from the main batch and the
CdSe powder washed with acetone. To dissolve the nanopar-
ticles into polar solvents such as methanol �MTH�, 1-amino-
5-pentanol was used to complex the nanocrystal surfaces.
The same molar ratio reported for EA has been adopted for
the above described capping procedures.

The resulting samples are CdSe-590 �concentration
=5.80 g/L, R=2.4±0.5 nm� dispersed in ODE, CdSe-574

FIG. 1. Comparison between the 2PA transitions predicted by
the parabolic band model and the k� · p� approximation for 2.4 nm
CdSe QDs.

FIG. 2. �a� Linear absorption for the CdTe quantum dots, CdTe
600, inset CdTe 750; �b� Linear absorption for the CdSe quantum
dots. The spectra are vertically shifted for clarity.
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�concentration=4.04 g/L, R=2.2±0.5 nm� dispersed in
ODE, CdSe-555 �concentration=4.7 g/L, R=2.1±0.3 nm�
dispersed in MTH, and CdSe-534 �concentration=3.5 g/L,
R=1.9±0.3 nm� dispersed in MTH. Figure 2�b� shows the
linear absorption spectra for the CdSe samples.

For all the CdTe and CdSe samples the QD average sizes
were measured directly via TEM microscopy and the linear
absorption spectra were taken at room temperature.

B. Experimental setup

The degenerate 2PA spectra were measured by two differ-
ent experiments, Z scan and photoluminescence. The CdTe
samples, which are more concentrated but present low quan-
tum yield for photoluminescence, were measured by open
aperture Z scans at many wavelengths.23 The CdSe samples
were measured by two-photon excited luminescence �or two-
photon fluorescence, 2PF�,24 because they have low concen-
tration but high quantum yield. Both experiments, Z scan and
2PF, are performed using an OPA �optical parametric ampli-
fier� tunable from 500 nm up to 2.2 
m, generating femto-
second pulses with 	140 fs FWHM, 1 kHz repetition rate.
The OPA is pumped by a Clark-MXR CPM-2010, which
generates 1 mJ and 140 fs pulses at 775 nm, at 1 kHz rep-
etition rate. The 2PF technique is a relative method to mea-
sure 2PA. The absolute 2PA coefficients are obtained by
comparing the sample’s photoluminescence excitation spec-
trum with the same spectrum from a reference sample, in this
case, Rhodamine 6G.25

The nondegenerate 2PA spectra were measured by a fem-
tosecond pump-probe technique with a single wavelength
pump and a weak white light continuum �WLC� probe.26 In
this experiment the pump beam is generated by an OPA iden-
tical to that used for Z scan and 2PF measurements, and the
WLC probe is generated in a CaF2 crystal pumped by an-
other OPA at 1300 nm. Spectral filters, with 	10 nm spec-
tral bandwidth and central wavelength at �1, are used for
selecting the probe wavelength so that we are able to study
the absorption of the probe photon, with energy ��1, due to
the presence of the pump photon, with energy ��2. Using
filters with different �1 we can cover the entire spectrum for
the nondegenerate 2PA. The pump photon energy is chosen
to be lower than 1

2Eg, and the probe beam is made weak
enough so that the influence of any degenerate 2PA in our
nondegenerate experiment is negligible.

IV. EXPERIMENTAL RESULTS

Figures 3 and 4 show the degenerate 2PA spectra for all
the CdTe and CdSe samples studied. The dependence of
these spectra with the size of the QDs is clear. The theoreti-
cal curves shown for each sample are calculated from the
parabolic band approximation.10 It can be seen that this
theory fits the data reasonably well for QDs with radius close
to the Bohr radius, aB, i.e., CdTe-750 �for CdTe aB

7.5 nm�.

From Figs. 3 and 4 it is clear that the parabolic band
approximation10 fails to describe the 2PA for the smallest
quantum dots. This occurs mainly in two regions, close to the

2PA edge and for higher photon energies near the linear ab-
sorption edge. That theory predicts a first peak that is not
experimentally measurable and at higher energies it predicts
smaller values for the 2PA than those measured.

The fitting by the model based on the k� · p� Hamiltonian is
made for the degenerate 2PA for CdTe-600 and for the four
CdSe QD samples, CdTe-750 is not fitted by this model be-
cause for this sample the 2PA spectrum involves about 4
times more transitions than the samples with smaller QDs
and then the calculation would be very time consuming, also
the parabolic band approximation fits well the 2PA for this
sample. When band mixing is considered, the first peak’s
height decreases and for the higher energy spectral region the
values predicted are closer to those experimentally measured.
The reason for this is that the band mixing breaks the sym-
metry of the wave functions and allows some transitions that
were forbidden in the parabolic band model, thus increasing
the oscillator strength at higher energies relative to lower
energies. For the parabolic band approximation, the states are
proportional to spherical Bessel functions and the eigenval-
ues are given by the zeros of those functions. Then, due to
the orthogonality of the spherical Bessel functions, a transi-
tion from the nth valence state to the n’th conduction state
has as intermediate states only the n’th valence state and the
nth conduction state.10,14 From the band mixing, the eigen-
states of the hole states are not zeros of the spherical Bessel
function, but come from a linear combination of these �see
Eq. �4��. Then the number of intermediate states increases.
For example, for the transition from 4S3/2 �fourth hole-

FIG. 3. Degenerate 2PA for CdTe quantum dots. The experimen-
tal data is fit by the parabolic band approximation �Ref. 9� �dashed
line� and the k� · p� model �continuous line�.
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mixing state in the F=3/2 subspace, with odd parity� to 1Pe
�first electronic state with odd parity�, the intermediate states
can be 1LH1/2

+, nP3/2, nSe, nDe, with n=1,2 ,3 , . . ., using the
same notation as Norris and Bawendi.27

Many authors have reported that the band mixing is im-
portant for describing linear processes in QDs,12,14 and our
results show the importance for describing the complete 2PA
spectrum as well. Even though there is considerable im-
provement in the fitting over the parabolic band approxima-
tion, from Fig. 4, we see that the present theory still fits the
larger QDs better than the smallest QDs. The reason may be
that this theory does not consider the mixing of the conduc-
tion and split-off bands. This approximation is valid if Eg and
�SO are larger than �E, the difference between the energies
of two states within the valence band.

The difference between the energies of the eigenstates of
the QDs is, to first approximation,12 proportional to the in-
verse of the QD radius squared �R−2�.12,14 Consequently, for

smaller QDs �E increases becoming comparable to Eg and
�, and the split-off band can no longer be considered as
remote. For the best fitting of the smaller QDs, especially
samples CdSe-555 and CdSe-534, it would be necessary to
include the mixing of the split-off band. The fittings in Fig. 4
suggest that even for the samples with the largest QDs, an
even more complete model, considering the split-off band
mixing and going to higher order perturbation in the vector k�,
may fit the 2PA spectrum better. The peaks in the data for
samples CdSe-590 and CdSe-574 �see Fig. 4� are identified
from the theory as being due to transitions from the fourth
and fifth mixed hole states with odd parity to the first elec-
tronic state with odd parity �4S3/2→1Pe and 5S3/2→1Pe�.
The peaks measured are not exactly in the position
predicted by the theory; however, the shift of about 2% of
the total value may be due to the choice of the fitting
parameters.

Figure 5 shows the degenerate and nondegenerate 2PA
spectra for CdTe-750, CdTe-600, CdSe-590, and CdSe-555
and the theoretical fitting using the parabolic band approxi-
mation for CdTe-750 and the k� · p� model for the other three
samples. The parabolic band approximation works well for
the largest QDs, CdTe-750, as it close to the bulk semicon-
ductor material. For such large QDs the states are closely
spaced and the k� · p� model would be very computationally
intense.

The nondegenerate experimental data show enhancement
of the 2PA coefficient with respect to the degenerate case
since one of the photons has energy closer to Eg and hence is
closer to the intermediate state resonance.10,24 This is seen in
Eq. �2� by the denominators getting smaller from the
intraband-interband process. This enhancement is also ob-
served in bulk semiconductors17 and other materials such as
organic dyes.25

The degenerate two-photon cross section is calculated by

���� = �−1������
N

, �7�

and it is given in Goppert-Mayer units �1 GM
=10−50 cm4 s1�. Here N is the QD concentration in the
samples and it is given by the volume fraction divided by the
single quantum-dot volume. For the nondegenerate two-
photon cross section it is necessary to replace � with
��1+�2� /2 in Eq. �7�. � is the local field correction factor,
defined by the Maxwell-Garnet model,28 calculated to be
	0.3. However, in a real sample, because the local field in
the quantum dot is reduced, so the useful cross section which

is given by
������

N instead of Eq. �7�. Figure 6 shows the
spectrum of the degenerate 2PA cross section for the four
CdSe and two CdTe samples. The comparison indicates a
decrease of the cross section with a reduction in the QD size
even when it is normalized by its volume, but the reduction
is more pronounced for the CdTe samples, which have larger
difference in size. The same trend has already been shown in
water-soluble CdSe by Larson et al.7 and in CdTe quantum
dots.10

FIG. 4. The same as Fig. 3 but for the CdSe quantum dot
samples. The arrows �a� and �b� in the spectra for the two samples
with the largest quantum dots show the position of the predicted
transitions 4S3/2→1Pe and 5S3/2→1Pe, respectively.
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The quantum confinement increases the oscillator strength
for each transition separately. However, for the total 2PA
cross section it is necessary to consider the sum over all the

oscillator strengths of all possible transitions. The energy
density of possible transitions decreases as the quantum dots
become smaller. Also from Eq. �6�, the 2PA is inversely pro-
portional to Eg

3, and it is well known that the smaller the
quantum dot, the larger is the band gap energy.12,14

Figure 7 shows the nondegenerate 2PA cross section for
CdSe-590 and CdSe-555. The experimental results show the
enhancement due to the nondegeneracy and that it is possible
to have a two-photon cross section, when considering the
local field factor, as high as 60 000 GM for CdSe-590
�2.4 nm in radius� by making the difference between the
pump and probe energies larger. From the k� · p� model, we can
directly calculate the parameter k in Eq. �6�. This gives
k	0.296, as compared to the best fit values for the data in
Fig. 7, which are k=0.216 for CdSe-590 and k=0.201 for all
CdSe-555 data. Hence, since the 2PA cross section is propor-
tional to k2, our data is in absolute agreement with theory to
within a factor of 	2. The theoretical k� · p� fitting agrees well
with the experimental data for both samples, predicting the
intermediate state resonance enhancement, so this fitting can
be extrapolated to even larger differences �e.g., pump at
1700 nm�, showing that it is possible to get values even
higher for the two-photon cross section far from the linear
absorption edge �see dashed lines in Fig. 7�.

FIG. 5. Nondegenerate 2PA spectra for �a� CdTe and �b� CdSe
quantum dot samples. The degenerate spectra are also plotted to
show the resonant enhancement. The fitting is done by the parabolic
band approximation �Ref. 9� for sample CdTe-750 and by the k� · p�
model for all the other 5 samples.

FIG. 6. Degenerate two-photon absorption cross section, � for
�a� CdTe �shown on log scale� and �b� CdSe samples. The cross
sections shown include the local field correction, as given by Eq.
�7�.
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V. CONCLUSIONS

In this paper we have presented a thorough experimental
characterization and analysis of the frequency degenerate
and nondegenerate two-photon absorption spectra for differ-
ent sizes of CdSe and CdTe quantum dots. The influence of

the quantum confinement and of the QD size is clearly ob-
served. For example, the 2PA is reduced for the smaller
quantum dots at all wavelengths studied even taking into
account the reduced volume fraction. Using two models for
describing 2PA in direct band gap semiconductor QDs, in
agreement with results observed by using the k� · p� theory for
fitting the linear absorption, we show the importance of band
mixing in the determination of the 2PA spectra for these
QDs. This is especially true for the smaller QDs. The theory
proposed, considering the mixing between the light and
heavy hole bands obtained from k� · p� theory, fits the data
better than the parabolic band approximation, and the im-
provement comes from breaking the symmetry of the wave
functions. From fitting the CdSe QD data, we found that this
theory predicted the 2PA spectra better than the parabolic
band approximation but added to the complexity. This is es-
pecially true for the highest energy transitions we measured
as well as for the first band, i.e., that closest to the band edge.
However, for the smallest 	1.9 nm QDs, i.e., CdSe-534, this
theory still did not do a complete job of predicting the 2PA
spectrum at the highest energies. For the CdSe samples of
intermediate sizes �CdSe-590 and CdSe-574�, the experimen-
tal data shows evidence of two peaks corresponding to tran-
sitions from deeper states, 4S3/2→1Pe and 5S3/2→1Pe, as
predicted by the k� · p� model.

The experimental results show an increase of the 2PA due
to intermediate-state resonant enhancement when the energy
of the two photons is made different, a reduction of the two-
photon cross sections with a decrease of the quantum dot
average size, and a reduction is observed even if the quantum
dot volume is taken into account. However, the maximum
measured values for these two-photon cross sections are still
higher than 10 000 GM.
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