
Nonlinear optical beam propagation for optical limiting
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We implement numerical modeling of high-energy laser-pulse propagation through bulk nonlinear optical
materials using focused beams. An executable program with a graphical user interface is made avail-
able to researchers for modeling the propagation of beams through materials much thicker than the
diffraction length ~up to 103 times longer!. Ultrafast nonlinearities of the bound-electronic Kerr effect
and two-photon absorption as well as time-dependent excited-state and thermal nonlinearities are taken
into account. The hydrodynamic equations describing the rarefaction of the medium that is due to
heating are solved to determine thermal index changes for nanosecond laser pulses. We also show how
this effect can be simplified in some cases by an approximation that assumes instantaneous expansion
~so-called thermal lensing approximation!. Comparisons of numerical results with several Z-scan,
optical limiting and beam distortion experiments are presented. Possible application to optimization of
a passive optical limiter design is discussed. © 1999 Optical Society of America
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1. Introduction

With the rapid advances in low-cost computer tech-
nology, numerical modeling of pulsed laser beam
propagation through nonlinear optical ~NLO! mate-
rials is becoming a powerful tool for investigating the
interaction of light with matter. In addition, this
modeling is now progressing to the stage where NLO
device design can realistically be performed numeri-
cally. A variety of algorithms have already been de-
veloped and implemented in different areas of optical
science, including propagation in waveguide struc-
tures1 and fibers,2,3 the atmosphere,4 NLO materi-
als,5 and in laser cavity design.6 In this paper we
focus on the numerical simulation of high-energy la-
ser beam propagation in bulk NLO media primarily
aimed at passive optical limiting applications.7
There are several difficulties associated with this
task. First, the propagation distance through the
samples under consideration is up to 2–3 orders of
magnitude larger than a Rayleigh length ~depth of
focus! of the input beam; thus the beam size experi-
ences significant changes along the propagation dis-
tance. However, the numerical sampling of the
electrical field must be kept fine to accommodate for
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the large variation of the beam irradiance ~that is due
to the nonlinear absorption! or the induced phase
that is due to the nonlinear refraction!. Second, the
dditional equations describing the dynamics of the
onlinear response ~system of rate equations,
coustic-wave equation, etc.! must be solved in par-
llel to the electromagnetic wave equation. This
eads to rather computationally intense coding and
equires large amounts of memory storage ~because
he spatial profile of the optical susceptibility has to
e stored for each time within an optical pulse!.
herefore, until recently, the simulations of high-
nergy laser beam propagation through bulk NLO
aterials were performed only on high-end worksta-

ions or supercomputers.
The main objective of our research is to develop a

et of computer codes that will allow us to determine
he influence of different nonlinear mechanisms and
heir coupling on the self-action of the propagating
eam. For this purpose, and to allow user-friendly
ccess to such modeling capabilities, we developed a
rogram based on Windows 95yNT, named
LO_BPM.8 This program models the propagation

of the laser pulse through a typical system ~Fig. 1!,
here the sample can be comprised of one or a few
LO elements. One of the ultimate uses of this code

s to design passive optical limiting devices.7 The
current capabilities allow the user to propagate pico-
second pulses to microsecond pulses through bulk
media having a thickness of up to 103 times the dif-
fraction length. It also has the capability to model
trains of picosecond pulses, typical of those emitted
by Q-switched, mode-locked lasers, and multiple non-
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linear elements as in a tandem optical limiting de-
vice.

Taking advantage of the cylindrical symmetry of
common optical systems ~e.g., TEM00 laser mode or

at-top beam! allows us to save computer time and
emory by reducing the four-dimensional ~three di-
ensions in space and one dimension in time! prob-

em to three dimensions ~two dimensions in space and
ne dimension in time!. This also allows us to use
C’s to perform calculations on considerably more
omplicated materials and limiting geometries.
Reference 9 describes another propagation code de-
eloped for high-end computer systems that solves
oncylindrical symmetry problems but is restricted

n the nonlinearities it models, e.g., saturable absorp-
ion and thermal diffusion.! Assuming the pulse
idth is long enough and the propagation distance is

hort enough that we can ignore the dispersion of the
aterial, the modeling of the beam self-action can be

plit into two separate tasks. ~This is an excellent
pproximation for the nanosecond and picosecond
ulse systems under study.! The first of these tasks
s the computing ~and storing! of the spatial distribu-
ion of the nonlinear susceptibility within the sample
or each particular moment in time. The second
ask is the propagation of each time slice Dt ~the
onlinear susceptibility is assumed unchanging
ithin Dt! through the material.
In Section 2 we describe the numerical methods

that we used to solve the paraxial wave equation in
the nonlinear media. In Section 3 the different non-
linear mechanisms modeled in our code are de-
scribed. These mechanisms include the Kerr-like
nonlinear index ~assumed instantaneous!, two-
photon absorption ~2PA!, excited-state absorption
~ESA!, and excited-state refraction in multilevel sys-
tems as well as the refractive-index change that is
due to thermal expansion. We give examples of cal-
culations of beam propagation through materials
with these types of optical nonlinearities. We then
show results of modeling and compare the numerical
outputs to Z-scan,10 optical limiting and beam distor-
tion measurements.

2. Beam Propagation Algorithm

The propagation of light through optical media can be
described by the solution to the vector wave equation
~e.g., Ref. 11!:

¹ 3 ¹ 3 E~r, t! 1
1
c2

]2E~r, t!
]t2 5 2m0

]2P~r, t!
]t2 , (2.1)

Fig. 1. Typical layout of the system under investigation.
where E~r, t! and P~r, t! are the electric field and
medium polarization, respectively. If the laser-
pulse duration is much longer than an optical cycle,
and the nonlinearity changes slowly compared to an
optical oscillation rate, Eq. ~2.1! can be simplified
assuming that the pulse envelope in time is slowly
varying compared to an optical cycle. This results in

2¹2E~r, t! 1
~1 1 xL!

c2 F2jv
]E~r, t!

]t
2 v2E~r, t!G

5 2m0v
2PNL~r, t!, (2.2)

where we used E~r, t! 5 ı̂E~r, t!exp~ jvt!, P~r, t! 5 ı̂P~r,
t!exp~ jvt!, and P 5 ε0xLE 1 PNL, with the assump-
tion that the vector field amplitude and polarization
can be treated as scalar quantities ~ı̂ is a unit vector!.

he slowly varying envelope ~in time! approximation
ssumes that

U]2E
]t2 U ,, 2vU]E

]t U .

We also ignore dispersion2 because our analysis is for
laser pulses longer than a few picoseconds, and thus
the propagation length L is much longer than the

ispersion length LD 5 tp
2yub2u ~where b2 is the

group-velocity dispersion!. Note that Eq. ~2.2! does
not generally require the pulse envelope to be slowly
varying along the direction of propagation z, allowing
tight focusing to be included. However, for a slow
~i.e., large f-number! optical system, Eq. ~2.2! can be
reatly simplified by use of the paraxial approxima-
ion and, after further transformation of the coordi-
ates to a frame moving at the light phase velocity,
q. ~2.2! can be rewritten in the following form:

2jk
]C~r, z, t!

]z
5 ¹'

2C~r, z, t! 1 @k0
2xNL~r, z, t!

2 jkaL#C~r, z, t!, (2.3)

where E~r, t! 5 C~r, z, t!exp~2jkz!, PNL~r, t! 5
ε0xNL~r, z, t, E!E~r, z, t!, and the paraxial approxi-
mation is valid when

U]2C

]z2 U ,, 2kU]C

]z U .

Here ¹'
2 and r denote the transverse Laplace oper-

tor and radial spatial coordinate, whereas k 5

0k0 5 n0vyc is the wave vector in the medium with
linear index of refraction n0 5 ~1 1 Re$xL%!1y2 and
linear absorption aL 5 2~k0yn0!Im$xL%. The parax-
ial approximation narrows the task to modeling only
relatively weakly focused beams @e.g., use of Eq. ~2.3!
for modeling the propagation of a plane wave whose
wave vector forms an angle of 25 deg with respect to
the z axis results in a phase error of >5%12#. For
Gaussian beams, the beam size at the waist should be
much larger than a wavelength for the paraxial wave
approximation to be valid.13 ~Numerical algorithms
implementing nonparaxial beam propagation have
20 August 1999 y Vol. 38, No. 24 y APPLIED OPTICS 5169
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also been developed, but are still at the stage of test-
ing and are beyond the scope of this paper.!

xNL~r, z, t! is the nonlinear susceptibility of the
material, which may consist of instantaneous and
cumulative parts:

xNL~r, z, t! 5 xNL
ins~r, z! 1 xNL

cum~r, z, t!. (2.4)

quation ~2.3! is written in a moving coordinate sys-
em and therefore has no explicit time dependence,
lthough the field amplitude as well as the nonlinear
usceptibility are, in general, functions of time.
ence the modeling of the laser-pulse propagation in

he nonlinear medium can be split into two separate
umerical tasks. The first task is dividing the pulse

nto a number of time slices C~r, tn! 5 Cn~r! and
propagating each slice as if it were a continuous-wave
~cw! beam. The second task is computing and stor-
ing the cumulative part of the nonlinear susceptibil-
ity that is being induced by each slice xNL~r, z, tn! 5
xNL

n~r, z!. Therefore the solution to the original
time-dependent wave equation @Eq. ~2.3!# is con-
verted to a cw propagation problem.

There are a variety of methods dealing with the cw
paraxial wave equation. Here we use the beam
propagation method, which requires recomputing the
transverse field distribution along the direction of
propagation z using the formal solution to Eq. ~2.3!:

C~r, z 1 Dz! 5 exp@2jŜ~r, z!Dz#C~r, z!, (2.5)

with the propagation operator

Ŝ~r, z! 5
1

2kF ]2

]r2 1
1
r

]

]r
1 k0

2xNL~r, z! 2 jkaLG . (2.6)

For simplicity, we henceforth combine the linear ab-
sorption and nonlinear susceptibility into a new pa-
rameter, xNL9~r, z!, where

xNL9~r, z! 5 xNL~r, z! 2 j
n0

k0
aL. (2.7)

We use two algorithms to numerically solve Eqs.
~2.4!–~2.7!. First is the spectral method ~SM! sug-
gested by Feit and Fleck3 that uses a formal expan-
sion of the propagation operator ~2.5! into a Taylor
series and one-dimensional fast Fourier transform to
evaluate the radial derivatives in Eq. ~2.6!. The sec-
ond algorithm is the Crank–Nicholson finite differ-
ence method ~FDM! reformulated for cylindrical
coordinates which is commonly applied to solve par-
abolic differential equations ~e.g., the time-dependent
Schrodinger equation!. The FDM is accurate to sec-
ond order in Dz and Dr.14,15 We keep the same order
of accuracy in the SM by neglecting higher expansion
terms of Eq. ~2.5!. The SM, although not unitary,
yields accurate results if the step size Dz is chosen to
be small enough ~in our calculations this must be of
the order of a few optical wavelengths!.3 The second
lgorithm is unitary and unconditionally stable in the
inear case, therefore it is less restrictive on the
hoice of Dz. We can increase the accuracy of the SM
170 APPLIED OPTICS y Vol. 38, No. 24 y 20 August 1999
beyond O~Dz ! by including higher-order terms in the
expansion of the propagation operator in Eq. ~2.5!.3,16

This will, however, increase the computation time.
Thus we primarily use the Crank–Nicholson algo-
rithm for its robustness and efficiency. We also find
that the requirement on radial sampling size is less
strict for the SM than for the FDM, thus allowing
fewer sampling points to be used. The radial sam-
pling size in the SM is defined so that aliasing does
not occur. ~There should be at least two sampling
points per cycle to avoid aliasing.14! The choice of Dr
in the FDM is dictated by the condition that the
phase difference between adjacent points be less than
a fraction of p radians ~e.g., py10!. For the parabolic
phase front ~typical for Gaussian beams! this results
in Dr , lzy~20w!, where z is the distance from the
focus and w is the maximum radial beam size.
Overall, the SM is to be used for tasks that require
higher ~than third-order! accuracy and when the
CPU time is not a critical issue; however, we suggest
using the FDM in most cases for its speed.

The developed algorithms allow us to save com-
puter memory by use of only two-dimensional arrays
of data to store the complex electric field amplitude
C~r, t! and by use of cylindrical symmetry of the
system. At the same time, the cumulative part of
the nonlinear susceptibility has to be saved as a func-
tion of spatial coordinates r and z and be updated
after every time slice propagates through the sample.
However, these two-dimensional arrays representing
xNL

cum~r, z! for a particular moment in time can have
a sampling step size DzNL along z that is considerably
larger than the propagation step size Dz if the cumu-
lative nonlinearity is a more slowly changing function
of z than the field distribution. It is convenient to
have DzNL be a multiple number of Dz.

The methods chosen to model the cw beam propa-
gation are efficient, allowing us to model the propa-
gation of the beam through distances of tens or even
hundreds of diffraction lengths, while the beam
changes its size by several orders of magnitude. To
test both methods we modeled the free-space propa-
gation of the cw Gaussian beam ~beam size at the
waist, w0 5 8 mm; wavelength, l 5 532 nm! through
0 Rayleigh ranges ~z0! starting at the position 20z0

before the waist. The accuracy of the modeling was
checked by a comparison of the beam size w~z! ~cal-
culated as the second moment of irradiance# and the
power P~z! with the analytical values. We kept the
radial sampling step constant ~although the number
of points varied depending on the beam size!. The
largest error occurred at the waist where the number
of sampling points is the smallest ~128 points!. In
this test we found that generally the FDM is approx-
imately 8–10 times faster than the SM for the same
accuracy in estimating w~z! and P~z! ~the error was
kept below 0.2%!. The CPU time for a Pentium II
300-MHz computer was approximately 3.5 and 30 s
for the FDM and SM, respectively. ~Note that abso-
lute values of the CPU times include the time for
outputting to data files, etc., so that the ratio between
the CPU times is the more meaningful number.!
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The sampling step along z in the FDM was ten times
greater than in the SM~Dz ; 6l for the SM!; however,
the radial sampling step was four times smaller for
SM~Dr ; 3l for the SM!. Options for both the SM
and the FDM are included in the NLO_BPM code.8

3. Nonlinear Mechanisms

The nonlinear susceptibility as given in Eq. ~2.4! is
elated to the nonlinear refractive-index change Dn

and the absorption of the material as

Re$xNL9~r, z!% 5 2n0Dn~r, z!, (3.1a)

m$xNL9~r, z!% 5 2
n0

k0
a~r, z! 5 2

n0

k0
@aL 1 aNL~r, z!#.

(3.1b)

Here aL is the linear absorption coefficient and aNL~r,
! is the nonlinear absorption coefficient of the mate-
ial.

A. Instantaneous Nonlinearities

If the nonlinear response of the material has a char-
acteristic time much shorter than the pulse width ~for
our purposes shorter than a few picoseconds!, then
we can consider it to be instantaneous and it can be
described by the first term of the nonlinear suscepti-
bility in Eq. ~2.4!. Typical examples of such nonlin-
arities are the bound-electronic nonlinear Kerr
ffect @nonlinear refractive index n2, as defined in Eq.

~3.2! below# and 2PA ~coefficient b2!. The relations
for these quantities are

Dn~r, z! 5 n2 I~r, z!, (3.2)

aNL~r, z! 5 b2 I~r, z!. (3.3)

To demonstrate the usefulness of the beam propaga-
tion codes, we show the results of modeling a thick-
sample Z-scan experiment for materials exhibiting
only an instantaneous nonlinear response. Figure 2
shows an open-aperture Z-scan of a two-photon ab-
sorber ~b2 5 6 cmyGW! and a closed-aperture Z-scan
of CS2 ~n2 5 3.1 3 1025 cm2yGW! both obtained by
use of a Gaussian beam focused to an 8-mm spot size
~HW1ye2M of irradiance! and a pulse width of 20 ps
~HW1yeM of irradiance!. The thickness of the sam-
ple in both cases was 1 cm, which is 16 times longer
than the Rayleigh range of the Gaussian beam inside
the material ~26.5z0 in air!. The CPU time to calcu-
late each point in the Z-scans was approximately 13 s
for the Pentium II 300-MHz computer ~five slices in
time were used!.

B. Excited-State Nonlinearities

ESA is a well-known two-step process. An absorp-
tion process creates population in an excited state ~for
semiconductors these are free carriers!, which subse-
quently absorbs light linearly to some higher state
~free-carrier absorption in semiconductors!. The ini-
ial absorption process can be linear or nonlinear;
owever, we first discuss the case of linear excitation
f the excited state with ground-state absorption
ross section sG. This results in an overall third-
order nonlinear absorption process.17–19 Depending
on whether the ESA cross section se is smaller or
larger than sG, we can distinguish saturable absorp-
tion ~sG . se! from reverse saturable absorption
~RSA! ~sG , se!. RSA was shown18,20 to be a prom-
ising nonlinearity for passive optical limiters ~devices
that are transparent for low-energy inputs but ex-
hibit low transmittance for high-energy inputs7! be-
cause the material becomes highly absorptive as the
input fluence ~energy per unit area or time-integrated
irradiance! of the beam increases. Because this non-
linear effect accumulates in time, this nonlinearity is
often more effective for longer pulses than instanta-
neous nonlinearities ~i.e., fast response with no mem-
ry!. Several organic materials exhibit RSA
roperties in the visible region, including several por-
hyrin dyes, phthalocyanines, naphthalocyanines
nd their derivatives, as well as polymethine
yes.19,21 The energy-level structure of these mate-

rials can be well approximated by a five-level model
~see Fig. 3! where the G–S1 transition represents the
linear absorption and S1–S2, or T0–T1, represent the
ESA. Time constants and cross-sectional values
were experimentally investigated for Zn:tetra~p-

ethoxyphenyl!benzporphyrin ~TBP!, silicon naph-
halocyanine ~SiNc!, lead phthalocyanine ~PbPc!, and
everal other materials.17,18

The overall absorption of the system can be derived
as a function of the populations of the levels:

a 5 sG NG 1 sS NS1
1 sT NT1

, (3.4)

where sS or sT . sG for RSA. The dynamics of the
five-level system can be described by a set of five rate
equations19 that usually can be simplified for a par-
ticular time scale of the laser pulse to reduce the
computation time.16,20 For nanosecond pulses, a

Fig. 2. Thick-sample Z-scan. Closed-aperture Z-scan of CS2

~n2 5 3.1 3 1025 cm2yGW!, open-aperture Z-scan of 2PA ~b2 5 6
myGW!, and open-aperture Z-scan of a two-element optical lim-
ter. Thickness of the sample is 1 cm ~26.5z0 in air!. The two-

element tandem limiter is based on a toluene solution of SiNc
~thickness of the cells is L1 5 2 mm, L2 5 1 mm; separation S 5 7
mm!.
20 August 1999 y Vol. 38, No. 24 y APPLIED OPTICS 5171



t

T

l
n

1

d

t

4

5

good approximation is obtained by one assuming the
decay time of levels S2 and T2 to be much smaller
han the pulse width ~usually tS2

and tT2
are of the

order of a few picoseconds or less!. This eliminates
the need for tracking the populations of levels S2 and

2 because their populations remain near zero. Also
if the decay time of the first triplet level tT1

is much
onger than the pulse width, it can be taken as infi-
ite. These simplifications result in

dNS1

dt
5 sG NG

I
\v

2
NS1

tS1

,

dNT1

dt
5

NS1

tisc
,

NG 1 NS1
1 NT1

5 N0. (3.5)

Here the overall decay rate of S1 is 1ytS1
5 1yt0 1

ytisc, where tisc is the intersystem crossing time that
characterizes the dynamics of decay from the singlet
manifold to the triplet manifold. In some molecular
systems tisc could represent a cis–trans transition
~e.g., in polymethine dyes21!. The triplet yield is
given by f 5 tS1

ytisc and N0 is the total density of
molecules ~atoms or ions!. If the laser pulse is in the
range of tens of picoseconds, decay to the triplet man-
ifold can often be entirely ignored because tisc .. tp,
and thus the five-level system can be reduced to a
three-level system. In this case, and assuming no
saturation of level S2, the three-level system has an
analytical solution.16,20 To illustrate the utility of
the developed beam propagation method codes, we
show the result of modeling a Z-scan experiment10

with a two-element tandem optical limiter based on a
toluene solution of SiNc ~in Fig. 2, experimental pa-
rameters are taken from Ref. 7!. Such experiments
help to define the position of the focal plane of the
system under investigation.

Because such materials exhibit ESA, they nor-
mally show excited-state refraction as well. This is
a consequence of the redistribution of population
changing the absorption spectrum, which by causal-
ity ~resulting in Kramers–Kronig relations22!
changes the refractive index. However, the magni-
tude ~and sign! of this nonlinear refraction has a

ifferent frequency dependence from that of the non-

Fig. 3. Five-level system. For SiNc, sG 5 2.8 3 10218 cm2, sS 5
0 3 10218 cm2, sT 5 120 3 10218 cm2, t0 5 1.6 ns, tisc 5 6.5 ns,

tS2
5 1.3 ps, and tT1

5 0.3 ms.
172 APPLIED OPTICS y Vol. 38, No. 24 y 20 August 1999
linear absorption. This nonlinear refractive-index
change has been observed for several materials and it
is proportional to the density of excited states ~or free
carriers!. Mathematically this can be represented
by refractive cross sections, defined by16

Dn 5
sS1,r

NS1
1 sT1,r

NT1

k
, (3.6)

where sS1,r
and sT1,r

are refractive cross sections of
the first singlet and triplet levels.

C. Thermal Effects

A laser pulse, while passing through absorbing me-
dia, induces temperature and density gradients that
change the refractive-index profile. This process is
often called the thermal lensing effect because the
change in refractive index usually follows the beam
shape, thus forming a lens within the medium. This
phenomenon has been rigorously studied both
experimentally23–25 and theoretically.26–34 The heat
deposited in the material by absorption of light de-
termines the temperature gradient that may change
according to thermal diffusion. Steady-state,
diffusion-dominated thermal lensing was investi-
gated in Refs. 26–28. The density changes that re-
sult from the temperature gradient ~or by
electrostriction induced by the gradient of the electric
field of the laser beam11!, are transmitted at the
speed of sound as described by the acoustic-wave
equation.29,30 Hence, for various time scales the
thermal effect has different manifestations.

If the pulse width is longer than a few microsec-
onds, the heating of the material can be described by
the following diffusion equation giving the tempera-
ture distribution in space and time30:

rcp

]T
]t

2 k¹2T 5 aL I, (3.7)

where r is the density of the medium, cp is the specific
heat at constant pressure, k is the thermal conduc-
ivity, and aLI is the portion of the laser power trans-

formed to heat. However, in this paper we are
working on time scales short enough ~up to a few tens
of nanoseconds! that diffusion can be ignored, and
thus the temperature change induced by laser radi-
ation can be estimated for any spatial position as

DT~t! 5
1

rcp *
0

t

aL I~t9!dt9. (3.7a)

In general, the refractive-index change is a function
of both temperature and density changes inside the
material:

Dn 5 S]n
]rDT

Dr 1 S]n
]TD

r

DT. (3.8)

Here ~]ny]r!T describes the index changes that are
due to rarefaction or compression of the medium,
which could be a result of heating or of electrostric-
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tion. ~]ny]T!r may include a variation of index that
is due to other temperature-induced changes in the
material, such as, for example, changes in the
bandgap energy.16 These other effects are often
dominant in solids, but in liquids, density changes
usually dominate. For longer times, ignoring elec-
trostriction, Dr 5 ~]ry]T!pDT, where the derivative
~]ry]T!p is a constant of the material. Because our
interest is driven by optical limiting, we often work
with strongly absorbing liquids in which case electro-
striction is dominated by thermal effects. This is
generally not the case for solid media in which the
thermal refractive-index variations are usually an
order of magnitude smaller than in liquids and often
can be masked by the electrostrictive effect.35,36 In
what follows we concentrate on liquids and ignore the
electrostrictive effect. However, it should be noted
that modeling of the thermal effect easily allows for
modeling of electrostriction and both are included in
the NLO_BPM code.

On a nanosecond time scale, refractive-index vari-
ations that are due to expansion of the medium gen-
erated by local heating ~absorptive mode! or by
compression that is due to the electromagnetic field of
the laser beam ~electrostrictive mode! are highly
transient. According to the derivation given in Ap-
pendix A, the thermal index change induced by prop-
agation of a nanosecond laser pulse through a liquid
can be described by the following acoustic-wave equa-
tion:

¹2~Dn! 2
1

CS
2

]2~Dn!

]t2 5 2
geb

2n
¹2~DT!, (3.9)

where CS is the velocity of sound, b is the thermal
expansion coefficient, and ge is the electrostrictive
coupling constant. For typical values of the sound
velocity in liquids ~CS 5 1–2 mmyns!, if we have a few
nanosecond-long pulses focused to a spot size, w 5
0–20 mm, only later portions of the pulse experience
he index changes induced by the front part of the
ame pulse. In such a case, where the acoustic tran-
it time tac 5 wyCS is greater than the pulse width,

we must solve Eq. ~3.9!. However, in cases in which
tac is somewhat less than the pulse width, we can
simplify the numerical modeling of this photoacoustic
effect by parameterizing the index change close to the
propagation axis by the following expression ~essen-
tially assuming an instantaneous expansion!:

Dn > Sdn
dTD0

DT, (3.10)

where ~dnydT!0 5 geby2n is called the thermo-optic
constant. With such a approximation we can signif-
icantly reduce the computational time required to
numerically solve the acoustic-wave equation for
each time slice of the pulse. In fact, there are ex-
perimental results in the literature where the
thermo-optic coefficient was calculated with this ap-
proximation for different liquids.38–40

To verify the validity of such an approximation, we
present in Fig. 4 the results of modeling the propa-
gation of a 10-ns ~HW1yeM of irradiance! pulse with

Gaussian spatial profile ~beam size at the waist is
0 5 6 mm, HW1ye2M of irradiance! through a water

solution of nigrosine dye ~linear transmittance TL 5
90%, thickness L 5 200 mm!. Nigrosine is chosen
because it shows little nonlinear response other than
thermal refraction induced by linear absorption for
nanosecond inputs. The closed-aperture Z-scan sig-
nals computed with and without approximation
~3.10! show excellent agreement with each other.

Nevertheless, one has to be careful using approxi-
mation ~3.10! and the experimental data for the ef-
ective Dn reported in the literature. For example, if

Dn was determined by use of the closed-aperture
Z-scan technique with input laser pulses on the nano-
second time scale, the approximation may be vio-
lated. Relation ~3.10! assumes that the thermal lens
s being induced instantaneously and ignores the
mall-index disturbances on the wings of the beam,
hich are due to the acoustic-wave propagation.41 If

the beam size is too large and the acoustic wave does
not have enough time to grow within the pulse, ap-
proximation ~3.10! will overestimate the induced in-
dex change. Such a discrepancy is shown in Fig. 5,
where the waist of a Gaussian beam was increased to
w0 5 30 mm. The input energy was also increased
y a factor of 25 to keep the same value of fluence at
he focal plane and therefore the same value of the
hin-sample closed-aperture Z-scan signal. If this
pproximation were used to analyze the experimen-
al data ~for example Z-scan curves!, the value of the
hermo-optic coefficient ~dnydT!0 would be overesti-

mated as can be seen in Fig. 5. Clearly, approxima-
tion ~3.10! yields a larger nonlinear phase shift and
onsequently larger value of the peak-to-valley trans-
ittance DTP–V.

Fig. 4. Closed-aperture Z-scan of nigrosine solution in water.
Nonlinear refractive-index change was computed as a solution to
the acoustic equation and its approximation. Parameters of the
laser beam are pulse width tp 5 10 ns ~HW1yeM!, beam size at the

aist w0 5 6 mm ~HW1ye2M!, and input energy EIN 5 2 mJ.
inear transmittance of the sample TL 5 90% and thickness of the
ample L 5 200 mm ~tpytac 5 2.5!.
20 August 1999 y Vol. 38, No. 24 y APPLIED OPTICS 5173
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To explore the range of validity of approximation
~3.10! even further, we model the closed-aperture

-scan experiment for different values of the ratio
between the pulse width tp and the acoustic transit
time tac, computing the thermal index change Dn as
a solution to the photoacoustic-wave equation @Eq.
3.9!#. We then normalize the peak-to-valley change
n transmittance DTP–V, obtained this way to the

DTP–V calculated if approximation ~3.10! is applied.
Repeating this procedure for various values of the
pulse width and beam size as well as different input
energies, we obtain the same dependence between
the DTP–V @normalized to the value estimated with
elation ~3.10!# and tpytac shown in Fig. 6. Note that
he relation between the thickness of the sample and
he beam size satisfied the thin-sample approxima-
ion for which the theory of the Z-scan experiment

Fig. 5. Closed-aperture Z-scan of nigrosine solution in water.
Nonlinear refractive-index change was computed as a solution to
the acoustic equation and its approximation. Parameters of the
laser beam are tp 5 10 ns, w0 5 30 mm, and EIN 5 50 mJ. Linear
ransmittance of the sample TL 5 90% and L 5 200 mm ~tpytac 5
.5!.

Fig. 6. Sensitivity ~DTP–V! of the closed-aperture Z scan as a
function of ratio between pulse width tp and acoustic transit time
tac 5 w0yCS. DTP–V is normalized to the value obtained with the
hermal lensing approximation.
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as derived.42 Hence we conclude that the ratio tpy
tac can be used to describe the transient photoacous-
tic effect, and approximation ~3.10! is only valid when

tp

tac
$ 1.5. (3.11)

ote that the values of the ratio tpytac for the Z-scans
shown in Figs. 4 and 5 are 2.5 and 0.5, respectively,
which explains why approximation ~3.10! works for
he first case ~tpytac 5 2.5! and fails to work for the

second ~tpytac 5 0.5!. The detailed studies of the
thermal transient effects are described in Ref. 41,
where we also explain why the solution to the acous-
tic equation overshoots its steady-state value.

To justify our conclusions we modeled the closed-
aperture Z-scan experiment performed with the
aqueous solution of nigrosine dye taking the value of
the thermo-optic coefficient of water to be 20.9 3
1024 K21.37 The parameters of the laser pulse ~w0 5

mm and tp 5 4.2 ns! give the value 0.94 for the ratio
in inequality ~3.11!, and therefore, according to Fig. 6,
approximation ~3.10! is expected to slightly overesti-

ate the value of DTP–V ~by approximately 15%! as
an be seen in Fig. 7. However, a good agreement of
he modeling with the experimental data is demon-
trated if the photoacoustic equation @relation ~3.10!#
s used to estimate the refractive-index change.

As mentioned above, heating of the material is
aused by absorption of the laser beam energy; how-
ver, the mechanisms of such absorption can vary.
f we consider the source of the thermal nonlinearity
o be RSA, we can evaluate the significance of this
ffect by running the propagation code including RSA
nly and including both RSA and the thermal effects
ogether. The toluene solution of SiNc was chosen to
e the material for this test because all the parame-
ers needed for the numerical modeling are relatively
ell known.17,37 For low input energy, thermal re-

fraction has a small effect on the propagation of the
4.6-ns ~FWHM! pulse focused to w0 5 8 mm inside the
1-mm-thick sample. ~The sample with linear trans-

Fig. 7. Closed-aperture Z-scan of nigrosine in water @tp 5 7 ns
~FWHM!, w0 5 6 mm, TL 5 40%, L 5 50 mm, EIN 5 0.55 mJ#.
Comparison between modeling and experimental data.
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mittance TL 5 60% is placed so that the linear optics
beam waist is located at the center of the sample.!
Note that the thickness of the sample is approxi-
mately three times greater than the Rayleigh range,
hence diffraction of the beam has to be considered,
requiring the beam-propagation-based numerical ap-
proach to tackle the problem. We found that cou-
pling between the refractive-index change and the
RSA becomes evident once the input fluence reaches
a value of approximately one order of magnitude
smaller than the damage threshold of the glass cu-
vette container ~approximately 10 Jycm2, which cor-
responds to an input energy of 20 mJ!. We chose a
value of the input energy, EIN 5 2 mJ, to be ten times
ess than the damage value ~it caused a maximum
alculated temperature change inside the sample of
pproximately 70 K!. Figure 8 shows the irradiance
istribution on the back surface of the sample as a
unction of time and radial coordinate for the cases
hen only RSA is included in the modeling @Fig. 8~a!#
nd when both RSA and thermal effects are taken
nto account @Fig. 8~b!#. Figure 9 shows the beam
ize ~numerically evaluated as the second moment of
rradiance! as a function of time and z coordinate.
learly, the later parts of the pulse are severely de-

Fig. 8. Modeling of spatial irradiance distribution in the center of
the pulse passing through the cell filled with the toluene solution
of SiNc @tp 5 4.6 ns ~FWHM!, w0 5 8 mm, TL 5 60%, L 5 1 mm,
EIN 5 2 mJ#: ~a! with RSA only and ~b! with RSA and thermal
refraction.
ocused by the thermal effects. Note that the ther-
al defocusing of the beam for the later times of the

ulse aggravates linear defocusing ~diffraction! be-
ause half of the sample is located after the beam
aist. The calculations discussed above are useful
hen we study the limiting performance of the liquid

olutions of RSA materials for nanosecond pulses.

4. Limiting Experiments

Limiting devices based on liquid solutions of organic
dyes exhibiting RSA ~discussed above! were shown to
have high dynamic ranges and reusability.43 The
limiting performance of such absorbers is strictly flu-
ence dependent if the input laser pulse is in the pico-
second range. This is due to the ESA introduced by
the first singlet level ~S1 in Fig. 3!. However, for
nanosecond pulses it was reported that the limiting
performance of these materials used in tandem limit-
ing geometries is lower than predicted by a five-level
model.7,43 We expect that the primary mechanism
responsible for this degradation in performance is the
transient thermal refraction caused by local heat-
ing44,45 of the liquid solvent. Another effect that can
significantly change the limiting characteristics of
such devices for high inputs is nonlinear scatter-

Fig. 9. Beam size ~computed as a second moment of irradiance!
inside the sample as a function of z and time during the pulse.
Parameters of the system are the same as for Fig. 8: ~a! with RSA
only and ~b! with RSA and thermal refraction.
20 August 1999 y Vol. 38, No. 24 y APPLIED OPTICS 5175
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ing.46,47 Both effects were experimentally studied
and even some phenomenological analysis including
the simplified thermal effect was offered. Neverthe-
less, to analyze the experimental data one needs to
combine all relevant self-action mechanisms ~includ-
ing transient effects!, and in this case numerical mod-
eling is required. Moreover, if the thickness of the
limiter exceeds the depth of focus ~Rayleigh range! of
the beam ~or if the nonlinear phase distortion becomes
large!, diffraction within the sample must be included.
This often results in coupling of different nonlinear
mechanisms with each other and with the diffraction
phenomenon. This is especially evident when the in-
put fluence reaches values comparable to the damage
threshold of the device. To the best of our knowledge,
none of the numerical codes discussed in the litera-
ture9 is capable of modeling this scope of tasks.

Figures 10 and 11 present the results of modeling
the performance of an optical limiter based on a tol-
uene solution of SiNc. The transient photoacoustic
refraction was included along with RSA in the calcu-
lations. The position of the 1-mm-thick ~;3.3z0!
sample was varied to study the importance of the
thermal effect and its coupling with RSA. We also
experimentally detected the values of the input flu-
ence when nonlinear scattering ~which has not yet
been incorporated in our models! becomes observable
~Fig. 10!. We experimentally detect scattering by
placing a detector off to the side of the sample. The
pulse width is 7 ns ~FWHM! and the values of the
atio tpytac corresponding to the positions of the sam-

ple are also shown in Fig. 11 ~beam size at the waist
is 6 mm!. Although no fitting parameters are used in
the modeling, the comparison with the experimental
data shown in Fig. 10 gives excellent agreement.
Here we also assumed that all the absorption goes to

Fig. 10. Limiting curves showing the performance of the 1-mm
SiNc–toluene limiter for two positions of the limiting element with
respect to the focus as a function of input fluence @w0 5 6 mm, tp 5
7 ns ~FWHM!, TL 5 48%#. Solid curves show the results of mod-
ling if the aperture ~S 5 99%! is placed in front of the detector.
rrows show the values of input fluence at which the nonlinear
cattering becomes noticeable as observed by a detector positioned
ff to the side of the sample.
176 APPLIED OPTICS y Vol. 38, No. 24 y 20 August 1999
heat, ignoring radiative decay from excited singlet
and triplet levels. Nonlinear scattering reduces the
amount of the absorptive energy transferred to heat
and thus, for the purpose of modeling, can be treated
as an additional absorption mechanism that does not
participate in the thermal equations. Hence the
thermal lens predicted by modeling slightly overesti-
mates the experimental one ~Fig. 10!. Also it is im-

ortant to emphasize that thermal refraction is
ritical only if the sample is placed near focus, where
he beam size is the smallest. Experimentally we
etermine this position by running the open-aperture
-scan experiment and detecting the shift Dz corre-

sponding to the minimum of the Z-scan curve. If the
thermal self-action is negligible, the limiting perfor-
mance, at a fixed fluence, should be the same for all
positions of the sample ~Fig. 11!. This conclusion is
especially useful for the design and optimization of
limiting devices based on liquid solutions of RSA ma-
terials ~e.g., tandem limiters!. We also observed
that the combined effects of thermal refraction and
nonlinear scattering noticeably expand the beam
passing through the cuvette filled with a toluene so-
lution of SiNc for high values of input fluence.
Therefore the aperture of the collecting lens placed
behind the sample may clip the beam. To model
such clipping we calculated the limiting curves pro-
duced with an S 5 99% linear transmittance clipping
perture ~also shown in Fig. 10!. The value of S ~as
efined in the Z-scan literature10,42! is rather arbi-

trary and used only to show that the limiting perfor-
mance will benefit if such an aperture is used. This
is due to the fact that thermal defocusing changes the
spatial profile of the beam on the detector ~or on the
ollecting optics! to have a large pedestal caused by
evere spatial expansion of the later portions of the
ulse.

5. Flat-Top Beam Analysis

We also performed experiments and analysis of so-
called flat-top beams. We experimentally produce

Fig. 11. Limiting performance of the SiNc–toluene limiter for
various positions of the sample. Parameters are the same as for
Fig. 10.
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these by expanding an initially Gaussian beam and
sending it through a finite aperture that clips the beam
to approximate a cylindrically symmetric flat-top
beam. Figure 12 shows a comparison of the calcu-
lated radial fluence distribution with the experimental
distribution for a flat-top beam focused into a solution
of nigrosine dye dissolved in water. The detector in
this experiment is located at the plane where the size
of the beam is equal to the size of a clipping aperture
~note that an extra lens is placed after the sample; see
the output lens in Fig. 1!. The sample is placed at the
position corresponding to the minimum of the closed-
aperture Z-scan curve ~Fig. 13!. For low values of
input energy the beam shape on the detector is just a
replica of the input top-hat profile ~with minor diffrac-
tion ripples!. However, by increasing the input en-
ergy of the laser beam we introduce a certain amount
of nonlinear phase shift. For a defocusing nonlinear-
ity this results in distortion of the beam profile on the
detector making it ringlike. In this case most of the
energy is concentrated in the wings. Therefore it is
possible to eliminate a large portion of the output en-
ergy by placing a suitable aperture in the beam. In
this way the nonlinear thermal effect in liquid solvents
could be used to enhance the performance of the optical
limiter, i.e., block energy at high inputs. However,
ideally, the aperture should have no effect on the low-
energy input beam, and thus such an approach has a
significant drawback. For a self-focusing nonlinear-
ity the profile becomes more sharply peaked with the
sample placed after the focus; however, with the sam-
ple placed prior to focus it also has a ring shape.

6. Conclusions

We have developed computationally efficient com-
puter codes for modeling the propagation of high-
irradiance laser pulses through thick ~many

iffraction lengths! nonlinear optical materials in-

Fig. 12. Normalized radial fluence distribution at the image
plane of the system with the flat-top input beam spatial profile
@input radius wIN 5 3 mm, tp 5 7 ns ~FWHM!, EIN 5 0.417 mJ,

L 5 47.5%, L 5 50 mm#. A sample filled with nigrosine dissolved
n water is placed at the position corresponding to the minimum of
he closed-aperture Z-scan curve.
 luding several nonlinear mechanisms relevant to op-

ical limiting. In addition to the inclusion of both
ltrafast nonlinear absorption and refraction, we
ave included the effects of excited states on both the
bsorption and the refraction. These nonlinearities
ccumulate with time within a laser pulse. Compu-
ationally this requires the code to remember the
ffects induced by previous parts of the laser pulse.
e have also included the effects of thermal lensing
ith the added complication of the acoustic waves
enerated by linear and nonlinear absorption. This
equires simultaneous solutions to two wave equa-
ions and is computationally intensive; however, this
s still within the range of modern PC’s. To produce
more time-efficient code we have studied the region

f validity of an approximate solution to the acoustic-
ave equation. We model the limiting performance
f a SiNc–toluene limiter for nanosecond input pulses
ncluding transient thermal effects and show how one
an suppress thermal defocusing by placing the lim-
ter in front of the focal plane. The attractive fea-
ures of this beam propagation code is its speed,
ccessibility ~runs on PC’s!, and exact modeling of
ime-dependent nonlinear self-action phenomena
e.g., excited-state nonlinearities and transient ther-
al effects!. Comparisons between the output of

ur program with experiments are given for the most
omputationally challenging geometries ~thick sam-
les, top-hat beams! and NLO responses ~coupled
SA and thermal refraction!.

Appendix A

When a liquid or gas medium absorbs energy from a
laser beam, the result is changes of density, temper-
ature, pressure, and fluid velocity. The system of
equations describing such changes can be derived
from the three fundamental laws of hydrodynamics48:

]r

]t
1 ¹~ru! 5 0, (A1)

Fig. 13. Closed-aperture Z-scan of nigrosine in water. Flat-top
input beam geometry was used. Parameters of the system are the
same as for Fig. 12.
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the continuity or conservation of mass equation,

rF]u
]t

1 ~u¹!uG 1 ¹p 1 h¹2u 1 Sz 1
h

3D¹~¹u! 5 ¹F,

(A2)

the Navier–Stokes or conservation of momentum
equation, and

rTS]s
]t

1 u¹sD 5 ¹~k¹T! 1 sik9
]ui

]xk
1 Q, (A3)

the heat balance or conservation of energy equation.
Here r is the density, p is the pressure, T is the
temperature, s is the entropy, u is the fluid velocity of
the media, k is the thermal conductivity, and h, z are
the effective viscosities. The pressure induced by
the electrostrictive effect is given by29

F~r, t! 5 rS]n
]rDT

I~r, t!
c

. (A4)

Q~r, t! 5 aL I~r, t! (A5)

is the heat generated by absorption of the laser pulse
with irradiance I~r, t!. c is the velocity of light in
vacuum, n is the index of refraction, and aL is the
linear absorption coefficient of the medium ~the for-
malism can clearly be extended for the case of non-
linear absorption in which case the expression for Q
will include, e.g., b2I2 for 2PA!. Combining the con-
tinuity of Eq. ~A1! with the Navier–Stokes equation
in Eq. ~A2! and expressing all the quantities in terms
of the local density r9 and temperature change T9
~where r9 and T9 are assumed to be small quantities
ompared with equilibrium values r and T!, we ob-

tain

S2
]2

]t2 1
CS

2

g
¹2 1

h

r

]

]t
¹2Dr9 1

CS
2br

g
¹2T9 5

ge

2nc
¹2I,

(A6)

where CS 5 @~]py]r!S#1y2 is the adiabatic velocity of
sound, g 5 cpycV is the ratio between constant pres-
sure and constant volume heat capacities, b 5 2~1y
V!~]Vy]T!p is the coefficient of thermal expansion,
and ge 5 r~]n2y]r!T is the electrostrictive coupling
constant, which can be estimated by use of Lorentz–
Lorenz law as ~n2 2 1!~n2 1 2!y3. Combining the
heat transfer equation in Eq. ~A3! with the continuity
equation in Eq. ~A1! and eliminating all the variables
except density and temperature variations, we obtain

SrcV

]

]t
2 k¹2DT9 2

cp 2 cV

b

]r9

]t
5 aL I. (A7)

The resultant Eqs. ~A6! and ~A7! are usually used for
analysis of the hydrodynamics of a liquid media while
interacting with a laser beam.35–37

If the time scale of the laser pulse is of the order of
a few nanoseconds, the diffusion term in Eq. ~A7! can
e ignored, as the characteristic time of thermal dif-
usion is usually a few orders of magnitude longer
178 APPLIED OPTICS y Vol. 38, No. 24 y 20 August 1999
than a pulse width. If we take the derivative with
time of Eq. ~A6! and the Laplacian of Eq. ~A7!, the two
quations can be combined into one:

]

]tS]2r9

]t2 2 CS
2¹2r9D 5

CS
2baL

cp
¹2I 2

ge

2nc
]

]t
¹2I, (A8)

which is the wave equation for the density perturba-
tion that is due to the two effects ~two source terms on
the right side!—absorption of the light energy and
he electrostrictive effect.

In absorptive liquid solutions, electrostriction is
sually the smaller effect, and thus we ignore the
econd source term in Eq. ~A8!. Here we also as-
ume that the light energy absorbed is converted into
inetic energy of the molecules on a time scale
horter than the pulse itself. This is usually true for
elaxation of vibration transitions of molecules in liq-
ids.35,36

The refractive index is related to the density and
temperature changes as

Dn 5 S]n
]rDT

r9 1 S]n
]TD

r

T9 5
ge

2nr
r9 1 S]n

]TD
r

T9. (A9)

For most liquids the refractive index is generally
more sensitive to density variations than to temper-
ature variations, and therefore the last term in Eq.
~A9! can be neglected.

Thus the wave equation for the index change that
is due to the photoacoustic effect can be written as

]2~Dn!

]t2 2 CS
2¹2~Dn! 5

ge

2nr

bCS
2

cp *
2`

¹2@aL I~r, t9!#dt9.

(A10)

The source factor in Eq. ~A10! can be expressed in
terms of the temperature change. The simplified
heat balance equation in Eq. ~A3! for a static liquid
for the case when the heat flow is mainly due to
thermal conduction is

rcp

]T
]t

2 k¹2T 5 aL I (A11)

and can be integrated for nanosecond time scales
~ignoring temperature diffusion! to yield

T9~r, t! 5
1

rcp *
2`

aL I~r, t9!dt9. (A12)

Combining Eqs. ~A10! and ~A12! we obtain the final
form of the acoustic-wave equation for refractive-
index changes:

]2~Dn!

]t2 2 CS
2¹2~Dn! 5 CS

2 geb

2n
¹2T9~r, t!. (A13)

The refractive-index change in the paraxial approxi-
mation ~close to the laser beam axis! for times longer
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Liquids and Power Limiters, C. M. Lawson, ed., Proc. SPIE
than the acoustic transit time ~tp . tac 5 wyCS! can
be reduced to29

Dn 5 Sdn
dTDT9, (A14)

where ~dnydT! 5 geby2n @if only the absorptive
source term in Eq. ~A8! is taken into account# and the
temperature change is given by Eq. ~A12!. The ex-
pression in Eq. ~A14! is a commonly used approxima-
tion called the thermal lensing effect, which is
usually applied for much longer time scales CStyw .

~microseconds up to cw! when the index change is
ontrolled by thermal diffusion. This coefficient in
q. ~A14! ~dnydT! is called the thermo-optic coeffi-

cient, and it has been measured for many organic
solvents. The actual thermal lens induced by the
density perturbation in the material is an aberrated
replica of the one in Eq. ~A14! because this approxi-
mation can only be made for near-axis index changes.
Nevertheless, it was shown41 that Eq. ~A14! can be
used to describe the dynamics of the refractive-index
change in the transient regime if the characteristic
length of the acoustic wave generated by the laser
beam ~CStp! is larger than the beam size ~the acoustic
wave has enough time to travel across the beam dur-
ing the pulse!.
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