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Purely refractive transient energy transfer by
stimulated Rayleigh-wing scattering
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Two-beam coupling is demonstrated in CS2 and other transparent Kerr liquids by use of frequency chirped,
picosecond 532-nm-wavelength pulses with several polarization combinations. As the temporal delay between
pulses is varied within the coherence time, the first pulse always loses energy while the second pulse gains this
energy. The transferred energy at a fixed delay varies linearly with irradiance. The results are consistent
with energy transfer from transient refractive gratings that are due to stimulated Rayleigh-wing scattering.
© 1997 Optical Society of America [S0740-3224(97)00504-3]
1. INTRODUCTION
Energy can be scattered from one beam to another in a
two-crossed-beam experiment (pump–probe geometry) if
a phase shift occurs between the local optical interference
pattern and the grating produced in the material through
some irradiance-dependent change in the optical proper-
ties of the material. The photorefractive effect is the
usual example of such an interaction.1 This, of course,
requires mutual spatial and temporal coherence of the
two beams. In pulsed experiments the transient energy
transfer that occurs from absorptive gratings leads to
what are commonly referred to as coherent artifacts.2–5

These coherent artifacts occur near zero temporal delay
between the pulses (within the temporal coherence time)
and transfer energy from the stronger to the weaker
beam. If, however, the real part of the refractive index
induces the grating, the phase grating can lead to coher-
ent energy transfer only if the nonlinearity has a finite re-
laxation time so as to allow a phase shift (a finite relax-
ation time is guaranteed to produce absorption
gratings).6–11 Two-beam coupling in Kerr media such as
CS2 was recently associated with stimulated Rayleigh-
wing scattering (SRWS)10,11; however, for coupling to oc-
cur, the beams must have different frequencies.12,13 The
gain of the Stokes beam depends on the frequency shift
from the laser-beam frequency.14 Nondegenerate two-
beam coupling was previously reported by Gruneisen
et al.15 For energy transfer to occur in the degenerate
case, the beams must develop a frequency difference dur-
ing the interaction. Such a frequency shift can develop
during short pulses owing to self and/or cross-phase
modulation.6–9 A similar beam-coupling effect can occur
for cw interactions for nonlinearities with slow response
times. This can be obtained from a thermal nonlinear re-
sponse if one of the beams is phase modulated (for ex-
ample, by modulating the path length of an interferom-
eter arm).16
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In the pulsed experiments reported here there is only a
refractive grating because the reorientational Kerr effect
has a finite relaxation time (e.g., 2 ps for CS2), and energy
is always transferred from the first-arriving pulse to the
second-arriving pulse independent of the relative irradi-
ances. The frequency shift is obtained by the small chirp
present in mode-locked Nd:YAG laser pulses. Thus the
phase grating produced at early times has a phase shift
with respect to the optical interference pattern at later
times, and energy transfer occurs. This leads to an en-
ergy transfer that is linearly proportional to irradiance;
thus the signal can be observed at irradiances lower than
those needed for nonlinearly induced phase modulation.
We first observed the effect in nonlinear absorption mea-
surements, where we identified the solvent to be the
cause of this coherent artifact. For example, Fig. 1
shows pump–probe data for a dilute solution of silicon
naphthalocyanine (SiNc) in toluene, which is known to
exhibit strong excited-state absorption.17 The two-beam
coupling from the solvent is clearly seen superimposed on
the reverse saturable absorption signal from SiNc. The
dashed curve represents the expected absorption signal.
The theory used for the fittings in Fig. 1 (solid curves) is
described below.
The measurements reported in this paper are per-

formed on CS2, but the results are valid for any Kerr liq-
uid that has a nonlinear index of refraction with a relax-
ation time of the order of the laser pulse width (we
obtained this coherent signal in other solvents, such as
toluene and nitrobenzene). We demonstrate that the in-
teraction follows the polarization dependence of
SRWS.12–15 The only parameters needed for the theoret-
ical model are the nonlinear index n2 , its relaxation time,
and the linear chirp of the laser pulse. The first two are
well known for CS2, and the laser chirp is independently
measured by first- and second-order autocorrelations.
1997 Optical Society of America
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2. THEORY
We assume a laser pulse that has a Gaussian temporal
distribution with a time-dependent phase shift and hence
a time-dependent frequency shift (i.e., chirp):

E~r, t ! 5 Re[A~t !exp(i$k • r 2 @v 1 Dv~t !#t%)], (1)

where

A~t ! 5 E0 expF2
1
2 S ttpD

2G . (2)

We consider the interaction between two such beams
(pump and probe) as derived from the same source. As-
sume for now that they have the same linear polarization.
The probe (subscript p) is temporally delayed by a time t
from the excitation (subscript e). They have the same
frequency v and chirp Dv (t) but slightly different wave
vectors k. Defining the total electric field as

E~r, t, t! 5 Ae exp(i$ke • r 2 @v 1 Dv~t !#t%)

1 A p exp(i$kp • r 2 @v 1 Dv~t 2 t!#

3 ~t 2 t!%), (3)

the irradiance is given by

I 5
n0ce0
2

uEu2. (4)

With q 5 ke 2 kp and V(t, t) 5 Dv(t) 2 Dv(t 2 t) the
expression for irradiance becomes

I 5
n0ce0
2

[A e Ae* 1 Ap Ap* 1 (AeAp* exp~iq • r!

3 exp$2i@v 1 Dv~t 2 t!#t%exp~2iVt ! 1 c.c.)].

(5)

Assuming that the frequency shift Dv is very small com-
pared with the frequency v, we find

Fig. 1. Normalized probe transmittance as a function of time
delay of the probe in toluene (open circles) and in a dilute solu-
tion of silicon naphthalocyanine (SiNc) (closed circles) having a
linear transmittance of 98.6%. The solid and the dashed curves
are theoretical fits (described in the text).
I >
n0ce0
2 $Ae Ae* 1 Ap Ap* 1 @Ae Ap* exp~iq • r!

3 exp~2ivt!exp~2iVt ! 1 c.c.#%. (6)

The grating formed by this interference pattern scatters
the beams through a refractive-index variation. We sup-
pose that the refractive nonlinear response obeys a Debye
relaxation equation:

trot
dnNL

dt
1 nNL 5 n2I, (7)

where trot is the rotational lifetime, i.e., the time it takes
for the nonlinear refractive index to reach its steady
state. Solving this equation, the nonlinear refractive in-
dex is given by

nNL~t ! 5
n2

trot
E

2`

t

I~t8!exp@~t8 2 t !/trot#dt8. (8)

Assuming that the relaxation lifetime is smaller than
the pulse width, we can make the approximation that
A(t) and V(t) vary more slowly than exp@(t8 2 t)/trot#, so
the slowly varying amplitude and phase approximation
can be used. This approximation holds very well for CS2
for the 17-ps half-width at 1/e maximum in irradiance
(HW1/eM) pulse width used, since the rotational lifetime
is 2.2 ps.18 For other materials such as nitrobenzene
(trot . 40 ps) or for smaller pulse widths the integrals
must be performed numerically. With this approxima-
tion the nonlinear refractive index becomes

nNL 5
n0n2ce0

2 H ~ uAeu2 1 uApu2!

1
Ae Ap* exp@i~q • r 2 Vt !#exp~2ivt!

1 2 iVtrot
1 c.c.J .

(9)

The total electric field must satisfy the wave equation

¹2E 2
1

c2
]2~n2/E !

]t2
5 0, (10)

where

n2 5 ~n0 1 nNL!2 > n0
2 1 2n0nNL . (11)

Also, because the angle between the beams is small
(>3°) and because the length of the sample is much
smaller than the Rayleigh range, the beams can be con-
sidered as copropagating and ¹2 > d2/dz2. Putting ex-
pression (3) for the total electric field into the wave equa-
tion and keeping in mind that V ! v, the terms that
oscillate as exp@i(kp • r 2 vt)# (the probe beam) are
given by
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d2

dz2
(Ap exp$i@kpz 2 v~t 2 t!#%)

5
n0

2

c2
]2

]t2
(Ap exp$i@kpz 2 v~t 2 t!#%)

1
n0

2n2e0
c

]2

]t2
XS uAeu2 1 uApu2

1
uAeu2

1 1 iVtrot
DAp exp$i@kpz 2 v~t 2 t!#%C. (12)

We ignore derivatives of the amplitude and the phase by
applying the slowly varying amplitude and phase ap-
proximation [e.g., dV/dt ! 1/(tptrot)] to reduce Eq. (12) to

dAp

dz
5

in0n2e0v

2 S uAeu2 1 uApu2 1
uAeu2

1 1 iVtrot
DAp .

(13)

If we take the derivative of Eq. (4), we obtain for the
probe-beam irradiance Ip

dIp
dz

5
n0ce0
2 SAp*

dAp

dz
1 Ap

dAp*

dz D . (14)

With Eq. (13) in Eq. (14) and using Eq. (4), we obtain the
equation for the probe-beam gain:

dIp
dz

5
n2v

c
IeIp

2Vtrot

1 1 ~Vtrot!
2
. (15)

For linearly chirped pulses the input electric field be-
comes

E(r, t) 5 E0 exp@i~k • r 2 vt !#expF2
1
2 S ttpD

2

~1 1 iC !G ,
(16)

where C is the linear-chirp coefficient.19 Comparing
with Eq. (1) and the definition of V, we find the frequency
difference, V 5 Ct/tp

2, a constant. With this, Eq. (15)
for the gain becomes

dIp
dz

5 agIeIp ,

where

g 5
n2v

c
2Vtrot

1 1 ~Vtrot!
2
. (17)

The weighting coefficient a was introduced for the more
general case when the two beams have different polariza-
tion, and it is equal to 1 when the beams have the same
parallel polarization.20 The gain g of the SRWS process
can be either positive or negative depending on the time
delay t between the pulses. Hence the earlier pulse
(with a negative delay) encounters loss, whereas the later
pulse (with a positive delay) experiences gain in the inter-
action. The energy transfer can be understood from Fig.
2. For a negative time delay t (probe before the pump),
because of the linear chirp, the probe beam has a higher
frequency than the pump beam does, such that the first
beam loses the energy that the second one gains. If the
chirp were reversed, the energy transfer would also be re-
versed.
The signal measured in the delayed pump–probe ex-

periment is given by the normalized total energy of the
probe beam after the interaction with the excitation
beam:

signal~t! 5
Ep,out

Ep,in
5

2pE
2`

`

dtE
0

`

rdrIp

2pE
2`

`

dtE
0

`

rdrIp0

, (18)

where Ip0 is the probe irradiance in the absence of the ex-
citation pulse.
For a Gaussian input pulse we obtain from Eqs. (17)

and (18) (ignoring pump depletion)

signal~t! 5
2

Ap
E

2`

` E
0

`

y exp~2x2 2 y2!

3 expH aDF0
2t/tm

1 1 ~t/tm!2

3 exp@2~x 2 t/tp!2#exp@2~yrpe!
2#J dydx,

(19)

where tm 5 tp
2/(Ctrot), x 5 t/tp , y 5 A2r/wp0, and rpe

5 wp0/we0, the ratio between the probe and excitation
beam waists. The SRWS signal depends on the nonlin-
ear phase shift DF0 5 kn2Ie(r50, t50)L, where L is the
sample length (smaller than the Rayleigh range).
In all the figures we used numerical codes in generat-

ing the theoretical curves so as to avoid approximations.
However, for understanding the shape of the SRWS sig-
nal it is useful to make some approximations to obtain a
simple form for the signal. For a small signal we can ob-
tain a first-order approximation of the integral form of
Eq. (17) that governs the gain. With this approximation
the probe irradiance after the interaction becomes

Ip 5 Ip0F1 1 aDF0
2Vtrot

1 1 ~Vtrot!
2G , (20)

Fig. 2. Excite–probe experimental setup. Detector D measures
the probe beam transmittance. Both beams are linearly
chirped; b and r represent the blue and red shifts. The earlier
pulse interacts with the higher frequency part of its spectrum,
whereas the later pulse interacts with the lower-frequency part.
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where Ip0(t, t) 5 Ip0 exp$2@(t 2 t)/tp#
2%exp@22(r/wp0)

2# is
the input probe irradiance, delayed from the excitation by
t. Integrating Eq. (20) in time and space we obtain the
signal

signal~t! 5 1 1
aDF0

~1 1 rpe
2!A2

2Vtrot

1 1 ~Vtrot!
2

3 expF2
1
2 S t

tp
D 2G

5 1 1
aDF0

~1 1 rpe
2!A2

2t/tm
1 1 ~t/tm!2

3 expF2
1
2 S t

tp
D 2G . (21)

This expression for the SRWS signal shows that its
shape is that of a derivative of a Lorentzian @2x/(1
1 x2)# weighted by a Gaussian $exp@2(x/a)2#%. The
small-signal approximation works very well for our ex-
perimental data for CS2. It is easy also to obtain Eq. (21)
directly from Eq. (19) within the stated approximation,
i.e., by expanding the exponential function of time delay.
It is interesting to observe that the substitution we have
made, tm 5 tp

2/(Ctrot), represents the time when the de-
rivative of the Lorentzian is maximum, and it would rep-
resent also the time when the signal peaks for quasi-cw
beams (pulse width much longer than tm). On the other
hand, for pulses much shorter than tm , the signal peaks
at a time equal to the pulse width tp . This is easy to
show by taking the derivative of Eq. (21) to obtain the
time delays for which the signal has a maximum and a
minimum. Hence, for tp /tm @ 1 and tp /tm ! 1, we ob-
tain

tmax,min > 6
tptm

Atp
2 1 tm

2
, (22)

which gives tm for long pulses and tp for short pulses
(relative to tm).

3. EXPERIMENT
The source for the delayed pump–probe experiment is the
second harmonic of a Nd:YAG Q-switched mode-locked la-
ser with a pulse width of 17 ps (HW1/eM) at 532 nm.
The laser repetition rate is 10 Hz. The experimental
setup is given in Fig. 2. The energy of the beams is ad-
justed by rotating a half-wave plate situated before a po-
larizer. The second harmonic (532 nm) is then split into
the pump and the probe beams. The pump beam is then
focused by a 100-cm focal-length lens onto the sample so
that the waist of the beam in the sample is 100 mm
(HW1/e2M). The probe beam is delayed by a system of
two corner cubes and a mirror, with one of the corner
cubes on a stage. The probe beam is focused to 20 mm
(HW1/e2M) by a 20-cm focal-length lens such that rpe
5 1/4. Both beams are focused onto the 1-mm-thick
sample. The angle between the beams is 3°. The exci-
tation beam has 10 times the probe irradiance (160 times
the energy); thus the probe beam does not induce any sig-
nificant nonlinearity. Using appropriate wave plates
(WP’s), we can perform the experiments with several po-
larization combinations for the pump and the probe
beams.
The signal showing the coherent two-beam coupling

can be seen, for example, in Fig. 3. To study this signal,
we performed experiments on CS2. To check that the en-
ergy transfer was due to SRWS, we had to prove that the
magnitude of our signal followed the polarization depen-
dence of any SRWS signal. The scattering process in an
isotropic medium follows the ratios 4:3:6:1 for scattering
with parallel (or perpendicular) linear polarization inputs
and with opposite (or same) circular polarization inputs,
respectively (see Table 1).12,13,20,21 We performed pump–
probe measurements using these polarization combina-
tions for the excitation and the probe beams. The theo-
retical curves (solid curves in figures) were generated
with the polarization coefficient a introduced in Eq. (17).
A comparison between the measured and the predicted
polarization dependences is illustrated Table 1.
We used the polarization coefficient for the linear but

perpendicularly polarized measurement (i.e., a 5 0.75) as
the reference in scaling the other coefficients, since this
measurement had the best signal-to-noise ratio.
A strong argument that the frequency difference

needed (V Þ 0) for the SRWS is due to linear chirp and
not due to other nonlinear processes is shown by the data
of Fig. 4. Figure 4 is a plot of the magnitude of the
SRWS signal, DTpv , (the difference between the peak and
the valley of the signal) as a function of the excitation ir-
radiance. We can see that the signal is linear in irradi-
ance up to 4 GW/cm2 (which corresponds to a nonlinear
phase shift DF0 5 1.7). The theoretical line from Fig. 4
is generated by the following formula, obtained from Eqs.
(21) and (22) with tmax,min > tp :

DTpv 5 2A2 exp~21/2!
aDF0Ctrot

tp
. (23)

Because the signal measured has a linear and not a
higher-order dependence on the excitation irradiance and
because in Eqs. (19)–(21) the nonlinear phase shift DF0
has a linear dependence on irradiance, we know that the
frequency difference between the beams V has to be inde-
pendent of irradiance. For any nonlinearly obtained
chirp, V would be irradiance dependent, and the signal
would have a higher-order irradiance dependence. As
expected, at higher irradiances (e.g., Ie0 . 4 GW/cm2) the
nonlinear processes of self- and cross-phase modulation
further chirp the pulses, altering this linear dependence.
With the known nonlinear refractive index n2 5 3.1

3 10214 cm2/W (Ref. 22) and rotational lifetime trot
5 2.2 ps,20 the only fitting parameter needed is the
linear-chirp coefficient, C. For all the curves generated
in Fig. 3 we used C 5 0.75. To independently measure
the linear chirp of the pulses, we performed first- and
second-order autocorrelations on the input beam. The
second-order autocorrelation was a usual Michelson inter-
ferometer that, by use of second-harmonic generation,
gave us the pulse width tp 5 17 ps (HW1/eM). Using
the same setup, but without the second-harmonic crystal,
one can determine the coherence time of the pulse by
measuring the first-order autocorrelation (correlation of
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Fig. 3. SRWS signal dependence on polarization: (a) parallel-linear, (b) perpendicular-linear, (c) opposite-circular, and (d) same-
circular polarization. Experimental conditions: I10 5 1.9 GW/cm2 and tp 5 17 ps. The circles are experimental data; solid curves
represent theoretical fits assuming a linear chirp, C 5 0.75.
the electric field with itself). This can be done by mea-
suring the fringe visibility. In Fig. 5 we can see how the
interference pattern changes with time delay at 1.06 mm.
By plotting the contrast of the pattern (i.e., minima and
maxima) as a function of time delay, we obtain the enve-
lope of the first-order autocorrelation function. For a
Gaussian pulse, the width of this is a factor of 2 larger
than the coherence time. This gives a coherence time of
19.4 ps (HW1/eM) at 1.06 mm, which infers a coherence
time of 13.7 ps (HW1/eM) at 532 nm (Fig. 6). This is less

Table 1. Relative Signal for Different
Polarization Combinations

Polarization a (Experiment) a (Theory)

Parallel linear 1.08 1.00
Perpendicular linear 0.75 0.75
Opposite circular 1.40 1.50
Same circular 0.27 0.25
Fig. 4. Magnitude of the SRWS signal (difference between peak
and valley) as a function of excitation irradiance (circles). The
theoretical curve is generated by Eq. (23) with the same value for
linear chirp used in fitting the data from Fig. 3.
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than the 17-ps (HW1/eM) pulse width, indicating chirp.
Assuming a linear chirp,19

tp 5 tcA1 1 C2. (24)

This method gives us the chirp coefficient C 5 0.73, very
close to the one used for generating the theoretical fits of
the SRWS signal.
To further test the signal dependence on the linear

chirp, we changed the laser pulse width from 17 ps to 25

Fig. 5. Interference pattern given by first-order autocorrelation
for (from top to bottom) 2120-, 246.6-, 0-, 46.6-, and 120-ps time
delay at 1.06 mm.

Fig. 6. Maxima (filled circles) and minima (open circles) of the
interference pattern from Fig. 5 as a function of time delay. The
solid curve is a Gaussian fit giving the coherence time of the
pulses, tcoh 5 13.7 ps (HW1/eM) at 532 nm.
ps (HW1/eM) by replacing the étalon that is the output
coupler of the laser cavity. By doing so, we decreased the
chirp of the pulses. Indeed, the chirp coefficient used to

Fig. 7. SRWS signal for different laser pulse widths: 17 ps (open
circles) and 25 ps (filled circles). The values for the linear-chirp
coefficient used in fitting the data are C 5 0.85 for the 17-ps
pulse and C 5 0.6 for the 25-ps pulse.

Fig. 8. (a) Linear chirp weighted by the Gaussian pulse (solid
curve) and the linear chirp by itself (dashed curve) (b) are used
for fitting the data (filled circles).
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fit the data from Fig. 7 changes from 0.85 to 0.6 for the
longer pulse. Note that this particular measurement
was performed six months after the rest of the measure-
ments. Hence the use of a different mode-locking dye
and lasing threshold in the laser cavity could explain the
different chirp coefficient needed to fit the data (0.85 in-
stead of 0.75 as before). The signals are obtained for the
same input irradiance, Ie0 5 1.9 GW/cm2. It can be
noted that the signal peaks at approximately the pre-
dicted values, i.e., the pulse widths: 617 ps and 625 ps.
Although the theoretical curves simulate the data very

well, there is a small discrepancy, which is that the signal
does not peak exactly where the theory predicts. As dis-
cussed before, in the case in which the pulse width tp (in
our case, 17 ps) is much smaller than tm (in our case,
>175 ps), the peaks should be at 6tp . Our data always
peak at approximately 613 ps. This fact can be easily
explained if we consider a more realistic case for the laser
pulse chirp. If the chirp is obtained in the laser cavity by
nonlinear processes, it will follow the temporal shape of
the pulse. So if we alter the chirp by considering the lin-
ear chirp weighted by a temporal Gaussian, we can see
that the curve shrinks in time so that we get a better fit to
the data (Fig. 8). The equations used before are no
longer valid, and numerical routines have to be used to
generate the curves. However, all the physical consider-
ations about the linearity in irradiance and polarization
dependence remain valid.

4. CONCLUSION
It is often assumed that purely refractive gratings will not
lead to energy transfer in pulsed degenerate pump–probe
experiments because of the lack of a phase-shifting
mechanism such as exists in photorefractive media by
means of the electro-optic effect. We have demonstrated
coherent energy transfer using refractive gratings for
identical pulses in the degenerate case but with weakly
chirped pulses and at irradiances low enough that self-
phase modulation and cross-phase modulation can be ne-
glected with 532-nm, picosecond pulses. The two beam
coupling takes place in Kerr-type media with a slow non-
linear refractive index. The material remembers the
grating written during the first part of the pump–probe
interaction, which then scatters different frequencies at
later times into the pump or probe directions, depending
on which pulse is first. The phase shifting mechanism
here is simply due to the different frequencies present at
different times in the pulses, i.e., chirp. The memory ef-
fect is due to SRWS, and the polarization dependence of
the interaction is in agreement with theoretical predic-
tions. In the case of CS2 for a usual pump–probe experi-
ment a simple formula can be used successfully to fit this
coherent effect, which depends on the product of the non-
linear refractive index n2 , the rotation relaxation time
trot , and the linear chirp coefficient C. Knowledge of any
two of these parameters allows calculation of the third.
The linear chirp is independently measured with first-
and second-order autocorrelations, and the linear chirp
found in this way is the same within experimental error
as that calculated from the known n2 and tr . Knowing
the linear chirp of the laser pulses, the SRWS signal ob-
tained with a particular material gives information about
the response time of the nonlinearity. For example, us-
ing appropriate pulse widths, one can distinguish be-
tween the reorientational (slow) and the bound electronic
(fast) nonlinear refractive index.
As with coherent artifacts from absorptive gratings,

these refractive coherent artifacts must be subtracted
from data to extract the dynamics of other nonlinearities.
As seen in Fig. 1, the solid curve fittings for the corrupted
data contain the SRWS signal, while the dashed curve
shows the dynamics of the production of the excited-state
absorbers alone.
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