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An investigation of cascaded second-order optical effects resulting in effective third-order interactions, tempo-
ral and spatial self-action, are presented for N-(4-nitrophenyl)-L-prolinol (NPP) a molecular single crystal with
one of the largest phase-matchable second-order nonlinear coefficients known in the visible and near-infrared
portions of the spectrum. We emphasize the effects of temporal and spatial walk-off in the nonlinear-optical
propagation in NPP and discuss their consequences for cascaded second-order nonlinear applications. Walk-
off effects play a detrimental role in cascaded all-optical switching. Whereas in standard second-harmonic
generation walk-off reduces the efficiency but does not prevent the generation, in the case of cascading back-
conversation is required and more-deleterious effects occur: a portion of the field is lost in that the overlap
between fundamental and second-harmonic wavelengths is reduced. © 1997 Optical Society of America.
[S0740-3224(97)00101-X]
1. INTRODUCTION
Only a few existing materials have been found to fulfill
the nonlinearity–transparency trade-offs for ultrafast
nonlinear all-optical switching in the relevant telecom-
munication windows at multiGbits/s rates.1 Indeed, it
has been shown that when they are far away from the lin-
ear absorption edge, materials with large third-order
nonlinear-optical coefficients exhibit multiphoton absorp-
tion, which in a Kramers–Kronig sense enhances the
intensity-dependent refractive nonlinearity.2 The inabil-
ity to find advanced highly nonlinear materials with a
high enough optical quality to process low-loss waveguide
structures has led to a radical new approach to the
nonlinear-optical switching problem, cascaded second-
order parametric processes.3

Early in the investigation of nonlinear-optical effects,
Ostrovsky recognized that a material with a phase-
matchable second-order process could exhibit effects re-
sembling those expected from a third-order optical re-
sponse, namely, self-focusing or self-defocusing and
temporal self-phase modulation.4 Such an approach had
to wait for the advent during the past few years of com-
mercially available transparent second-order materials,
such as potassium titanyl phosphate (KTP), lithium tribo-
rate, and b -barium borate, (deff 5 1–3 pm/V) with moder-
ate phase-matchable nonlinearities with exceptionally
large optical damage thresholds, in excess of 100 GW/cm2

for picosecond and femtosecond pulses. Similarly, low-
loss waveguides are now designed in technologically ad-
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vanced materials such as lithium niobate and KTP in
most cases with quasi-phase-matched (QPM) gratings.
Quasi-phase matching adds the flexibility of engineering
the phase-matching resonances, for instance, for
telecommunication-oriented applications such as multi-
wavelength generation and detection–amplification, and
eliminates the spatial walk-off that is due to natural
birefringence.5 This advance in materials and device en-
gineering has rapidly led to the demonstration of device
concepts such as nonlinear Mach–Zehnder interferom-
eters in a hybrid or integrated waveguide form, nonlinear
directional couplers, and spatial solitons in planar
waveguides as well as all-optical switching and solitary
waves in bulk materials, all using cascaded second-order
nonlinearities.6–12 Note that new effects, not achievable
with a simple cubic optical response, can be observed with
this approach. Transistor action and stable multidimen-
sional solitary waves are just two examples of such ef-
fects.
The effective third-order refractive nonlinearity im-

posed on the propagation of a fundamental plane wave or
waveguide mode as it propagates in a phase-matched,
quasi-resonant, second-order structure is represented by
the following expression of the intensity-dependent re-
fractive index13:
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where n(I) 5 n0 1 n2I, V is the optical angular fre-
quency, deff is the effective second-order coefficient, n1,2
are the refractive indices at the fundamental and second-
harmonic frequencies, respectively, and the wave-vector
mismatch is represented by DkL 5 (k2 2 2k1)L. It is
worth noting that the above nonlinear refractive index is
length dependent; in other words, it differs from the con-
stant cubic intensity-dependent refractive index that
arises from the third-order susceptibility that is respon-
sible for self-action in all materials. Hence n2

eff is some-
times referred to as being nonlocal. Equation (1) should
be considered valid for low pump or fundamental deple-
tion (less than 25%) in a material without a center of sym-
metry and a phase-matchable nonlinear coefficient repre-
sented by deff . In addition, under close phase-matching
conditions and large depletions, the fundamental phase
distortion does not follow the intensity but instead follows
the fundamental field amplitude, as expected in the de-
pleted fundamental regime.3 We should emphasize at
this point that to derive Eq. (1) we assumed no dispersion,
all spatial transverse phenomena were neglected, and we
dealt with long-pulse or cw operation. From the materi-
als point of view the important material figure of merit
deff

2/n1
2n2 is the same one used for second-harmonic gen-

eration.
Organic materials, which have large figures of merit

relative to other phase-matchable second-order nonlinear-
optical structures, should be well suited for cascaded all-
optical applications.14 In what follows we investigate
one such material, N-(4-nitrophenyl)-L-prolinol (NPP).
Indeed, NPP is known to possess one of the largest phase-
matchable deff known, 85 pm/V at 1064 nm, with refrac-
tive indices of 1.7–2, resulting in an excellent figure of
merit for both second-harmonic generation (SHG) and
cascaded nonlinear-optical effects. Such large nonlinear-
ity is due, at a molecular level, to an optimized charge-
transfer exciton, resulting in a broad absorption band
that peaks near 370 nm. NPP is thus a yellowish mo-
lecular crystal. At a crystalline level the molecules are
aligned with an almost ideal orientation for type I inter-
action, and the refractive-index dispersion results in a
wide variety of phase-matching geometries, in particular
for parametric downconversion devices.15–17 Because of
the presence of the charge-transfer excitonic band, a
strong refractive-index dispersion is observed over the
visible and near-infrared portions of the spectrum. As a
consequence, relatively narrow phase-matching reso-
nances are obtained. More importantly, as discussed
here, large temporal and spatial walk-off effects are ob-
served, limiting the efficiency of NPP for cascading appli-
cations. Here we discuss the regime in which Eq. (1)
fails to predict and to scale properly the nonlinear cas-
caded effects and for which a more accurate wave propa-
gation analysis needs to be introduced, in particular to
deal with walk-off effects.
In what follows we introduce the effects of walk-off in

the temporal regime, using a model that is independent of
the transverse spatial dimension. Such an approach can
be immediately translated into a transverse propagation
problem in space, for instance, in a planar waveguide.
We follow this introduction to the walk-off problem with a
similar approach in which we look at the effects of spatial
walk-off for a two-dimensional transverse beam focused
upon a NPP single crystal and compare them with our ex-
perimental results at 1064 nm with relatively long pulses
of 30 ps (FWHM). Finally, to model our experiments in a
spectral region where spatial walk-off can be neglected,
we introduce a time–space propagation model that inves-
tigates both self-focusing and self-phase-modulation
(SPM) effects encountered by a strongly focused femtosec-
ond pulse in a NPP crystal close to the SHG phase-
matching resonance. Similarly, we compare our model
with our experimental results obtained with a femtosec-
ond optical parametric oscillator (OPO) tuned near the
noncritical phase-matching (NCPM) wavelength of 1165
nm.

2. TEMPORAL NONLINEAR PROPAGATION
Following Eckhardt and Reintjes, the equations of motion
for SHG for a type I interaction can be derived.18 Here
we use a retarded time frame moving with the fundamen-
tal field, thus eliminating the effects of temporal walk-off
in the equation of motion for the fundamental field enve-
lope:
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Note that to derive Eqs. (2) we assumed the slowly vary-
ing envelope approximation on the envelope of the field
E1,2 as well as a Taylor expansion in the dispersion of the
refractive index, so the propagation constant k is ex-
panded to second order in frequency. In addition, to de-
rive the driving terms on the right-hand sides of Eqs. (2)
we have assumed that the bandwidth associated with the
pulse is smaller than the optical frequency, making the
coupling coefficient G a constant with respect to fre-
quency. In the case of NPP, G 5 140 cm21 for 1
GW/cm2. This indicates that for propagation of less than
100 mm a fundamental field of 1 GW/cm2 could result in
almost complete depletion without the presence of tempo-
ral walk-off. The dispersion of the nonlinear susceptibil-
ity is neglected. Such an approach was recently imple-
mented to describe the effects of cascaded nonlinearities
in ultrafast OPA’s.19 Figure 1 shows the spectral depen-
dence of the material’s dispersion parameters derived
from Sellmeier’s equations15: walk-off length and disper-
sion length for a 100-fs pulse. Note that the most rel-
evant length for realistic crystal thicknesses is the so
called walk-off length. We include group-velocity disper-
sion to take into account the spectral envelope of the
field.20 In the inset of Fig. 1 we show the dispersion
length for the second-harmonic field at those wavelengths
at which it may become comparable with a NPP crystal
length, in particular, at the NCPM wavelength of 1165
nm.
Here we concentrate on spectral shape distortions.

Our approach is driven from an experimental point of
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view; indeed, temporal SPM is one of the most useful
techniques for observing cascaded second-order
nonlinearities.20 We now assume that no second har-
monic is launched at the entrance of the nonlinear device
and that the fundamental is not depleted by the SHG and
thus remains unchanged while propagating in the nonlin-
ear medium. The envelope is then only time dependent.
If we now Fourier transform Eqs. (2), which describe the
evolution of the second-harmonic field envelope, we obtain
the following solution for the spectral power envelope of
the SHG field:

Fig. 1. Dispersion of the walk-off length and the group-velocity
dispersion length, defined, respectively, as Lw 5 t/uk18 2 k28u
and Ld

1,2 5 t2/k1,29 . In our calculations we used a pulse width
of 100 fs. Note that for lengths of several millimeters even pi-
cosecond pulses will endure strong walk-off effects.

Fig. 2. Contours of the evolution of the SHG spectrum under
the low-depletion approximation at phase matching correspond-
ing to the NCPM wavelength of 1165 nm for a, 150 fs and 1
MW/cm2 and b, 150 fs and 500 MW/cm2. In both cases the ab-
scissa is the fundamental wavelength in nanometers and the or-
dinate is the propagation distance in millimeters. The stronger
effect is the narrowing of the second-harmonic spectrum com-
pared with the input fundamental spectrum. c, d Show similar
contours for the detuned case in which the fundamental peak
wavelength is 1160 nm. In this case a spectral shift as well as
an asymmetric spectrum with large sidebands results from the
combined effects of the detuning and walk-off. The SHG spectra
are all normalized to the same magnitude.
uE2
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where F(v) is the Fourier spectrum of the square of the
fundamental field envelope and v refers to the Fourier
component of the field modulated with a central optical
frequency. V 5 Vc 1 v, where V is the optical angular
frequency, Vc is the carrier frequency, and v is the Fou-
rier component that describes the shape of the pulse en-
velope. Note that in the case of a long pulse or equiva-
lently of a narrow fundamental spectrum we find the
usual SHG response function, where v 5 0, dispersion
can be neglected, or both. In the other interesting limit,
in which the sinc function is narrower then the spectral

Fig. 3. Contours of the spectral evolution of the second-
harmonic when Eqs. (2) are numerically integrated for 750 fs
with an initial fundamental spectrum centered at a, b, 1165 nm
and c, d, 1160 nm for weak and strong depletion conditions of c,
d, 1-MW/cm2 and b, d, 500-MW/cm2 fundamental input intensi-
ties.

Fig. 4. Evolution of the fundamental spectrum at low pow-
ers: a, 1 MW/cm2 at phase matching and b, 500 MW/cm2 at
1165 nm. Similar highly modulated and shifted spectra are ob-
served when the intensity is increased at c, d, 1160-nm input
central wavelengths.
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Fig. 5. Output temporal profiles for fundamental and second-harmonic intensities for the same conditions as for Figs. 2 and 4. In the
second harmonic has been multiplied by a factor of 200 in a, by a factor of 104 in c, and by a factor of 100 in d.
bandwidth of F(v), ultrafast pulses propagating in NPP,
for example, the centroid of the SHG spectrum is shifted
toward v0 ' Dk/(k18 1 k28), assuming that the group-
velocity dispersion is negligible. The spectrum also has
taken the shape of the sinc2 function, narrowing the SHG
spectrum and thus resulting in a long squarelike pulse in
time. Note that such a spectral shift can also be obtained
with higher-order dispersion.21 These conclusions are
reminiscent of early results for ultrashort pulses as well
as of more recent research, which deals with such effects
in greater detail.22–24 Figure 2 shows the evolution of
the SHG spectrum as the pulse propagates in the NPP
crystal according to Eqs. (2). We integrated Eqs. (2) nu-
merically for a series of input conditions. Both funda-
mental and second-harmonic propagation losses were
taken into account.15 In general, good agreement be-
tween our numerically integrated Eqs. (2) was found with
Eq. (3) derived for low depletion. Note that at the maxi-
mum of the phase-matching resonance the centroid of the
SHG spectrum remains locked in a position corresponding
to the maximum of the fundamental field spectrum,
whereas off-phase matching of the sinc2 function can be
approximated by a sin2 function evolving into a narrower
SHG spectrum and shifting its centroid toward v0
' Dk/(k18 1 k28). For comparison, Fig. 3 shows the evo-
lution of the SHG spectrum when Eqs. (2) are integrated
for longer pulses, 750 fs long, for two phase-matching
cases. Note that the general shape of the evolution re-
mains unchanged. The SHG spectrum narrows at both
low and high powers, and off-phase matching forms a
strong sideband at a wavelength shifted from the central
spectral position of the fundamental input. The shift is
considerably smaller because we are dealing with a case
that more closely resembles the usual cw case in which,
for instance, v ' 0 in Eq. (3). The temporal evolution
results in the expected SHG long pulse’s being formed in
the presence of large walk-off. Note that the intensities
used are relatively low, 1 and 500 MW/cm2.
Inverse Fourier transforming the complex spectral am-

plitude of the second-harmonic field in the limit of large
walk-off and thus assuming a narrow spectrum for the
SHG field results in the following equation of motion:
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Note that the first term on the right-hand side of Eq. (4)
corresponds to the standard linear chirp produced by the
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group-velocity dispersion and the second term produces
an intensity-dependent power broadening, the cascading
term. The effects of walk-off are felt by the F(v0) term.
Only the Fourier component at v0 ' Dk/(k18 1 k28) con-
tributes to the power broadening, whereas in the small-
walk-off case the whole spectrum would contribute. No
dramatic redistribution of the power spectrum can be ex-
pected under the low-depletion approximation. The fun-
damental field will thus retain its shape, as expected in
the negligible nonlinearity case.25 Equivalently, SPM
measurements of the fundamental spectral broadening
will typically not be sensitive enough to permit such small
temporal phase changes to be measured. An approxi-
mate expression can be derived for the phase chirp in-
duced by the group-velocity dispersion and the cascaded
second-order nonlinearity for each fundamental Fourier
component of the pulse:
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Note that for large spectral shifts of the second-harmonic
spectrum, or equivalently for large detunings and group
velocities, the effects of cascaded nonlinearities will be
strongly reduced by the monotonic decay of F(v).
Equivalently, in the time domain the overlap between the
fundamental and the second-harmonic pulses is strongly
reduced, limiting the cascading efficiency. For small
propagation distances, long pulses, or both, the first term
of Eq. (5) can be neglected, as indicated by Fig. 1.
We show in Fig. 4 the evolution of the fundamental in

the case of NPP for both the low-depletion case and a
strong fundamental depletion, for 150-fs long pulses with
conditions similar to those used for Fig. 2. Note that the
fundamental spectral shape remains mostly unchanged
at low powers and that only large intensities will affect its
spectral distribution at and off NCPM. Such spectral re-
distributions and distortions are evidence of cascaded ef-
fects with a strong interplay among the linear propaga-
tion, walk-off, and the nonlinearity. However, the
temporal distributions of the fundamental and the second
harmonic are strongly affected, rendering their further
use difficult in an interferometric device such as an all-
optical switch that uses both fields; see Fig. 5. This situ-
ation is reminiscent of the pulse breakup problem in
third-order nonlinear switching, which could be solved by
the implementation of switches with longer pulses or tem-
poral solitons. In our case the latter solution seems un-
likely, and, although longer pulses may be appropriate to
reduce such problems, they imply higher energies per
pulse. Large walk-off effects will dramatically increase
the energy level required for switching, as we show in
Section 3.

3. SPATIAL NONLINEAR PROPAGATION
From Fig. 1, an immediate solution to the temporal walk-
off issues evoked in Section 2 would be to use longer
pulses at wavelengths at which the temporal walk-off
length is large. For example, at wavelengths near 1550
nm, the third telecommunication window, Fig. 1 seems to
indicate that temporal walk-off and dispersion would be
resolved. Unfortunately, as is well known, at wave-
lengths away from NCPM (1165 nm) short spatial walk-
off lengths are present in NPP. Figure 6 shows the walk-
off length, defined as the length for which a beam is
displaced by a full width. We used 100 mm as the initial
beam width (half-width at 1/e2). To model the nonlinear
propagation in the cw case we take the same numerical
approach used for the recent discovery of multidimen-
sional solitary waves in type II SHG in KTP.9 The equa-
tions of motion for the fundamental and the SHG fields
for type I phase matching are as follows:

]E1

]z
2

i
2k1

S ] 2E1

]x2
1

] 2E1

]y2
D 5 iGE2E1* exp~2iDkz !,

]E2

]z
2 r2v

]E2

]x
2

i
2k2

S ] 2E1

]x2
1

] 2E1

]y2
D

5 iGE1E1 exp~iDkz !,
(6)

where we have assumed the paraxial approximation and
cw operation. r 2v is the tangent of the walk-off angle.
We have assumed a close-to-phase-matching geometry at
1064 nm, which is obtained in an oo → e geometry. For
fundamental wavelengths longer than the NCPM wave-
length the walk-off will be seen by the fundamental beam
by an ee → o interaction.15 Note that at the fundamen-
tal of Nd:YAG the walk-off angle is approximately 14°,
which corresponds to a walk-off length of 800 mm with
Lw 5 2w0 /tan(r 2v) for a beam waist of 100 mm (Fig. 6).
For an efficient cascaded effect a good spatial overlap is
necessary between the fundamental and the second-
harmonic beams. Because of the lateral displacement
induced by walk-off, the effective interaction length at
which a nonlinear phase shift can be accumulated is con-
siderably reduced, even with as large a nonlinearity as
encountered in NPP. In as much as only large-diameter
beams can be used, in bulk materials the energy per pulse
necessary for switching is increased. On the other hand,
in strongly waveguided geometries the modes of propaga-
tion are hybrid in nature, rendering modeling difficult but
with only the temporal walk-off remaining a relevant
issue. In what follows we show our numerical and ex-
perimental results for a coherent switch in which type I
phase matching was used. In terms of switching ener-
gies our results are an order of magnitude better than
those obtained with KTP.10 However, an improvement of
3 orders of magnitude would be expected from the mate-
rial’s figure of merit alone.
Switching, or transistor action, can be seen in a SHG

process in which a weak coherent seed wave is input to a
crystal with a strong fundamental wave. The effect of
the seed wave is to alter the phase-matching conditions.
Hence the output fundamental can be changed from sub-
stantial depletion to almost no depletion by modulation of
either the phase or the amplitude of the weak seed. Such
behavior was recently theoretically predicted and experi-
mentally demonstrated in KTP.7,8,10 Following the same
approach used in our earlier KTP experiment,10 we gen-
erated 30-ps long (FWHM) pulses from a passively mode-
locked and Q-switched Nd:YAG laser. Single pulses
were extracted, extracavity, from the train of pulses with
an electro-optic pulse selector. We then collimated the



Wang et al. Vol. 14, No. 1 /January 1997 /J. Opt. Soc. Am. B 81
fundamental beam and sent it through a 3-cm-long KDP
crystal to generate a coherent second-harmonic beam to a
level of a few microjoules, making sure that no strong
depletion was present on the fundamental beam. We
verified that both beams were Gaussian in shape and
propagation, with an ellipticity of less than 10%. We
controlled the relative phase between the fundamental
and the second harmonic with a variable-pressure nitro-
gen cell, taking advantage of the small pressure depen-
dence of the dispersion between both wavelengths. Both
beams were collinearly focused onto the entrance face of
the 2-mm long NPP sample to a spot size w0 that varied
from 20 to 350 mm (half-width at 1/e2). Before measur-
ing switching action we studied the SHG properties of the
NPP crystal with those pulses. The depletion curves,
shown in Fig. 7, were in good agreement with expected

Fig. 6. Walk-off length, Lw 5 2v0 /tan(r2v), where v0 5 100
mm and r2v is calculated from the refractive-index dispersion.15

At 1.064 mm the walk-off length is ;800 mm.

Fig. 7. Experimentally measured depletion as a function of the
phase-matching angle u. Note that beyond 5 MW/cm2 little im-
provement is obtained because of the combined effects of walk-off
and linear absorption at the second harmonic. Nonlinear ab-
sorption at 532 nm at the phase-matching angle for a 1.064-mm
fundamental was measured to be less than 1 cm/GW.
calculations; however, increasing the intensity beyond 5
MW/cm2 did not increase the SHG efficiency. We believe
that the latter effect is due to the combined effects of
walk-off and linear loss at 532 nm. Nonlinear loss mea-
surements with Z scan showed a two-photon absorption
coefficient at 532 nm of less than 1 cm/GW at the phase-
matching angle for SHG of 1064-nm radiation. With the
same orientation no multiphoton absorption was measur-
able for the fundamental at the intensities used in our
experiments, up to 2 GW/cm2. The transmission of the
fundamental beam as a function of the relative phase or,
equivalently, of the pressure in the nitrogen cell was
monitored with a calibrated detector and a silicon cam-
era, which were both placed after the NPP sample. Fig-

Fig. 8. Experimentally obtained modulation of the transmission
with an input fundamental intensity of 1 GW/cm2. The pressure
was calibrated so that 6 psi corresponds to a relative phase dif-
ference of 2p between fundamental and SHG.

Fig. 9. Spatial evolution of the amplitude and the phase of the
fundamental field as it propagates through a 2-mm-long NPP
crystal for an input beam waist of 100 mm, for a 1-GW/cm2 input
intensity. In this geometry the largest effect is due to spatial
walk-off; beam diffraction can be neglected. The fundamental
wavelength is 1.064 mm.
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ure 8 shows such a modulation fraction as a function of
the gas cell pressure, where 6 psi (1 psi 5 ;52 Torr) cor-
responds to 2p from our previous experimental
calibration.10 We show measurements of modulation of
the total transmitted fundamental energy as well as of
the on-axis fluence of the fundamental. KTP provided us
with a slightly better contrast ratio; however, such modu-
lation was expected at lower peak intensities for NPP.
Indeed, the material figure of merit for NPP is almost 3
orders of magnitude higher than that of KTP. Only a
1-order-of-magnitude improvement was experimentally
measured. Figure 8 was obtained for an input intensity
of 1 GW/cm2 (an intensity of 20 GW/cm2 was used for KTP
with similar results) and an 8% or 80-MW/cm2 SHG
seeded at the entrance face of the NPP crystal.10 Even
though the SHG efficiency scales properly with the figure
of merit and large depletions are obtained for input inten-
sities as low as 5 MW/cm2, because the phase distortion
induced by cascaded effects is length dependent it is more
sensitive to walk-off effects. Whereas in standard SHG
walk-off reduces the efficiency but does not prevent the
generation, in the case of cascading backconversation is
required, and a portion of the field is lost: The overlap
between the fundamental and the second harmonic is re-
duced. An inspection of the equations of motion, Eqs. (2)
and (6), indicates that the presence of the second-
harmonic field plays an additive role in the second-
harmonic equation of motion and a multiplicative role in
the downconversion equation of motion. The latter effect
raises the switching intensity by as much as a factor of 50
from what was originally expected from the material fig-
ure of merit. We believe that most of the reduced switch-
ing efficiency is thus due to the presence of large spatial
walk-off effects at 1.064 mm.
To show the effects of spatial walk-off on such a switch-

ing experiment, we show the calculated spatial evolution
of the fundamental field in the presence of walk-off. We
do this by numerically integrating Eqs. (6), as a function
of propagation distance, with a fundamental input of 1
GW/cm2 and no second harmonic present at the entrance
face. The results are shown in Fig. 9. As can be seen,
not only is the amplitude of the fundamental redistrib-
uted during propagation, rendering switching incomplete,
but the fundamental phase front is aberrated, making a
coherent switch less efficient. For comparison the time-
averaged spatial profiles measured at the output of the
NPP crystal are shown in Fig. 10. The amplitude distor-
tion induced by the strong spatial walk-off is clear. As a
Fig. 10. Spatial profiles of the fundamental (FF) and the second harmonic (SH) at the output of a NPP crystal oriented for SHG phase
matching. For comparison we show the beam profile at the same location without the crystal’s being present.
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consequence we can estimate the modulation ratio as a
function of propagation, which compares reasonably well
with our experimental measurements, as shown in Fig.
11. Note that at this input intensity an optimized modu-
lation would have been found for a shorter crystal, for
which walk-off effects may be negligible. The maximum
modulation is in reasonable agreement with our experi-
mental data reported in Fig. 8. The doubled periodicity
was not reproduced experimentally because, we believe,
our model is cw and a numerical integration in time needs
to be performed for each phase condition as a result of the
strong fundamental beam aberration. Such doubled pe-
riodicity is another evidence of the presence of large walk-
off in NPP, which was not present in similar calculations
performed for KTP. Such calculations were in excellent
agreement with the KTP switching experiments.10

4. SPATIOTEMPORAL NONLINEAR
PROPAGATION
Recently there has been renewed interest in ultrafast
propagation in nonlinear materials26,27 because of the ap-
pearance of tunable ultrafast laser sources, which can be
amplified beyond terawatts.29–31 Numerical models have
shown the ability to predict adequately the mode locking
of Ti:Al2O3 lasers that is due to self-focusing in the laser
crystal.31 Such interest is also driven from a fundamen-
tal point of view; for instance, strong coupling of a
Maxwell–Bloch system can lead to new forms of electro-
magnetic radiation,32 and because of the large band-
widths obtained standard approximations such as the
slowly varying envelope approximation can be violated.33

Here we employ such approaches to predict accurately
and understand the propagation of an ultrafast pulse fo-
cused into a highly nonlinear and dispersive material
such as NPP. We specifically want to reproduce the tem-
poral modulation that is due to SPM measured near the
NCPM wavelength and the measured SHG efficiency.
We measured the SPM spectral broadening and modula-
tion by focusing the output of a commercial OPO, OPAL
from Spectra-Physics, Inc., onto the 2-mm-long crystal.
The OPO was synchronously pumped by a Kerr-lens

Fig. 11. Evolution of the transmission modulation ratio10 as a
function of the propagation length in NPP for an input intensity
of 1 GW/cm2 at 1.064 mm and a phase mismatch DkL 5 p/3.
Note that for this intensity the best length corresponds to a short
200-mm-thick crystal, for which walk-off effects may not be im-
portant.
mode-locked Ti:Al2O3 laser emitting 150-fs pulses at an
82-MHz repetition rate. The mirrors and the output cou-
pler of the OPO were chosen so that it was tunable on the
signal side from 1100 to 1300 nm and also produced 150-
fs-long pulses (FWHM), which our time–bandwidth prod-
uct measurements showed to be chirp free. To observe
the spectral broadening that is due to temporal SPM we
focused the output of the OPO into the same 2-mm-thick
NPP and optimized the focusing and the crystal orienta-
tion for maximum SHG efficiency. The focused beam
waist was 8 mm. The output spectrum was recorded with
a spectrometer at low and high powers. To model our ex-
perimental results accurately with such a strongly fo-
cused beam we developed a code with one transverse spa-
tial and one temporal dimension. Such an approach was
recently used to design and predict the behavior of a
mode-locked laser.31 In essence this approach embodies
the procedures described in the Sections 2 and 3. Be-
cause the group-velocity dispersion term is positive, no

Fig. 12. Spectral broadening at the NCPM wavelength for 8-
and 0.8-GW/cm2 peak intensities at the focus of an 8-mm waist in
NPP. We experimentally measured the NCPM to be located at
1150 nm rather than the 1165 nm obtained from the Sellmeier
equations.

Fig. 13. Spectrum of the second-harmonic beam at the NCPM
wavelength for intensities similar to those shown in Fig. 12.
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collapse is expected, as was recently reported.34 Indeed,
the spatiotemporal rays see not a parabolic potential but
a saddle-shaped one,35 as can be found from the governing
equations that model our experiments:
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Because we are operating near the NCPM wavelength,
spatial walk-off was neglected. In addition, all our obser-
vations show cylindrically symmetric behavior. We can
thus model the propagation by two-dimensional fast Fou-
rier transforms with one dimension in time and the other
in space while maintaining the correct dependence of the
diffracted field in three dimensions and maintaining a
reasonable and accessible computing time. It is clear
that the inclusion of a second spatial dimension is neces-
sary for a full analysis of the propagation in time and
space. However, the physical mechanisms accessible
with such a more accurate approach are beyond the scope
of this study. We assume that we are operating in a re-
gime where the slowly varying envelope approximation is
valid and no strong spatiotemporal focusing is present.33

As expected from the temporal propagation discussion,
we did not observe large spectral broadening at the
NCPM wavelength. However, at large peak intensities
sidelobes where observed, as shown in Fig. 12, which can
be attributed to the temporal walk-off between fundamen-
tal and harmonic waves. An initial shift of the funda-
mental peak wavelength can also be observed that is due
to pump depletion and strong temporal walk-off. Simi-
larly, the second-harmonic spectra were always narrow
compared with the fundamental input spectra, as ex-
pected and shown experimentally in Fig. 13. On the
other hand, away from NCPM, large intensity-dependent

Fig. 14. SPM spectral broadening away from NCPM. The nar-
row lines observed on the blue side of the spectra are spectral
ghosts of the second harmonic.
spectral broadening and modulation of the fundamental
beam are observed. An example is presented in Fig. 14.
Far away from the NCPM wavelength, 1200 nm for ex-
ample, such broadening is not seen. Although it can be
reproduced qualitatively with the temporal model dis-
cussed in Section 2, the intensity dependence is poorly re-
produced by such a simple model. This result can be ex-
pected, as we focused the output of the OPO at 8 mm,
which corresponds to a 350-mm depth of focus, almost an
order of magnitude smaller than the crystal length.
From our spatial modeling [Eqs. (6)] we could predict
strong spatial effects at large intensities in such a strong
focusing case. The model represented by Eqs. (7) was
thus implemented. The nonlinearly coupled equations
were integrated in time and space in the Fourier domain,
which made full use of two-dimensional fast Fourier
transforms, whereas the nonlinear coupling was inte-
grated with a second-order Runge–Kutta routine. This
procedure resembles the approach taken to model the
propagation of solitary waves in KTP, which resulted in

Fig. 15. Simulated evolution of (a) the fundamental and (b) the
second-harmonic spectra for an intensity at focus of 10 GW/cm2.
The spectra have all been normalized to unity; large broadening
owing to cascaded SPM and shifts owing to walk-off are ob-
served.
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good agreement between experiments and model.9 Here
this approach, in which in addition to the previously de-
scribed beam-propagation method the appropriate focus-
ing was assumed for the input fundamental, also shows
good agreement. We included linear absorption coeffi-
cients at both the fundamental, 2.5 cm21, and the second
harmonic, 8.5 cm21.
Because of the strong linear absorption the best SHG

efficiency was obtained when the beam was focused upon
a plane located slightly behind the sample. This optimi-
zation is easily understood: If the SHG is generated
close to the entrance face it will see a large absorption,
whereas when the fundamental is weakly focused it can
continue to generate the second harmonic without losing
its strength too quickly, rendering the effective length for
which a nonlinear phase can be accumulated comparable
with almost the full crystal length. In a sense we have a
tapered waveguide geometry. However, a significant dif-
ference exists in that the waveguide geometry is intensity
dependent because of the combined effects of self-focusing
and self-phase modulation. We show such evolution in
Figs. 15 and 16. Our modeling predicts that at peak in-
tensities of 8–10 GW/cm2 a SHG efficiency of 20% can be
reached with femtosecond pulses in a 2-mm-long NPP
crystal. Higher efficiencies could be obtained with a
shorter crystal with which the SHG would not suffer from
the strong linear absorption and temporal broadening
that are due to walk-off.

5. CONCLUSION
In conclusion, we have shown that the nonlinear propaga-
tion of collimated and strongly focused beams in NPP
close to SHG phase matching can be adequately under-
stood with our nonlinear propagation modeling even in
the case of ultrashort fundamental pulses when walk-off
in time, in space, or in both is properly taken into account.
Because of the large spatial walk-off encountered away
from the NCPM wavelength, leading to effective lengths
of the order of a few tens to hundreds of micrometers,
bulk NPP does not result in the expected enhancement or
lowering of the energy required for a coherent switch to

Fig. 16. Simulated evolution of the fundamental spatial profile
with the same conditions used for Fig. 15. The beam was ini-
tially focused 1 mm behind the sample. Because of cascaded
self-focusing the focused spot is now inside the NPP sample.
operate. Similarly, when NPP is operated near NCPM,
long pulses are still required if one is to avoid the detri-
mental effects of temporal walk-off. It is clear that the
nonlinearity is effectively large only when short samples
can be used, at the expense of higher pulse energies re-
quired for switching. In the case of harmonic or para-
metric generation or amplification such an implication
may not be so detrimental as it is for cascaded all-optical-
switching applications. Materials with QPM structures
are probably the answer to such problems. Indeed, no
spatial walk-off will be present in QPM structures, and
picosecond pulses with effective lengths of several milli-
meters can be used without temporal walk-off effects at
telecommunication wavelengths. Linear losses at those
wavelengths remain to be reduced as well. Fabricating
such an ideal material is still a challenging project for
materials scientists. With the recent advances in inor-
ganic bulk and waveguide QPM devices the advent of an
organic QPM structure with nonlinearities approaching
100 pm/V seems to be within reach.
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