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Z scan using circularly symmetric beams
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We report general characteristics of on-axis Z-scan transmittance for arbitrary circularly symmetric beams.
Some experimental results are presented for a nearly top-hat-shaped beam and for a trimmed Airy beam
whose electric field profile is the central portion of an Airy function inside its first zero. The sensitivity of
Z-scan method with a trimmed Airy beam for measuring an induced index-of-refraction change is a factor of 1.5
greater than that of a Gaussian beam. Also, it is found that there are some advantages of experimental align-
ment and numerical convergence for a Z-scan measurement that uses a trimmed Airy beam over one that uses
a top-hat beam. © 1996 Optical Society of America.
Since the Z-scan method1,2 was developed, it has been
widely applied to measure optically induced phase distor-
tion in x(3) for various materials because of its simplicity
and accuracy.3–5 In 1993 Zhao and Palffy-Muhoray6 ex-
tended its application to top-hat beams, whereas most
Z-scan experiments and their analyses were performed
for Gaussian beams.
We report some general characteristics of on-axis

transmittance when a Z scan is carried out with
circularly symmetric beams and present the correspond-
ing experimental results for laser beams of spatially
nearly top-hat and trimmed Airy profiles. Throughout
this study, only on-axis Z-scan transmittance will be con-
sidered, which we have experimentally approximated by
using a small aperture placed in the far field. First we
derive the on-axis Z-scan transmittance formally for an
arbitrary circularly symmetric beam and describe the cor-
responding Z-scan experiments with CS2 in detail. Then
we compare the experimental results with numerical pre-
dictions and discuss some advantages of Z-scan measure-
ment using a trimmed Airy beam compared with one us-
ing a top-hat beam.
For the Z-scan experiment a well-collimated beam (in-

put beam) propagating in the z direction, with the known
electric field E in(ri) 5 Ei

0g(ri), is used for focusing with
a convex lens. Here, Ei

0, ri , and g(ri) are the peak elec-
tric field, the radial distance on the lens plane perpen-
dicular to the z axis, and the normalized function, so
g(0) 5 1 for the electric field profile of the input beam.
Under the Fresnel condition it is possible to evaluate

the electric field E(x, y, z) near the focal region from the
given input beam,7 where the plane perpendicular to the
z axis is denoted by x, y in a Cartesian coordinate sys-
tem, i.e.,
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where l, f, and J0 are the wavelength of the laser, the fo-
cal length of the lens, and the zeroth order of Bessel func-
tion, respectively. This electric field can be also ex-
pressed as

E~r, z ! 5 E0@ fr~r, z ! 1 ifi~r, z !#, (2)

where E0 denotes the electric field strength at the focal
point, fr and fi are the real and the imaginary parts, re-
spectively of the electric field profile, and fr(0, 0) is set to
1 for normalization.
The general expression for the electric field, Ee , at the

exit of a sample of thickness L, linear refractive index n0 ,
linear absorption a, and third-order nonlinear susceptibil-
ity x (3) 5 xR

(3) 1 ixI
(3) was derived, which is Eq. (26) of

Ref. 2. By considering only the low-irradiance limit so
that both the nonlinear phase shift DF 5 kg I0Le and the
nonlinear absorption DC 5 (b/2)I0Le ! 1, one can ap-
proximate Eq. (26) of Ref. 2 as

Ee~r, z ! 5 E~r, z !exp~2aL/2 !~1 1 iFDF 2 FDC!,
(3)

where I0 is the irradiance of the laser beam at the
focal point, F 5 fr

2 1 fi
2, Le 5 @1 2 exp(2aL)# /a, g

5 xR
(3)/2n0

2e0c, and b 5 kxI
(3)/n0

2e0c. Here k, e0 and c
are the wave number of the light, a dielectric constant of
vacuum, and the speed of light, respectively. From Eqs.
(2) and (3) one can rewrite the complex field at the exit of
the sample as
© 1996 Optical Society of America
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Ee~r, z ! 5 E0 exp~2aL/2 !@~ fr 2 fr FDC 2 fiFDF!

1 i~ fi 2 fiFDC 1 fr FDF!#. (4)

Because the transmitted electric field is detected at a
long distance d from the sample, one can obtain the elec-
tric field Ed at the detector simply from the Fourier trans-
formation of Ee(r, z). Therefore the on-axis electric field
Ed(z 5 d @ f ) at the detector can be written as the sur-
face integral of Ee , i.e.,

Ed~z 5 d ! 5
1

ld E Eeds. (5)

where ds 5 dxdy. By using Eqs. (4) and (5) one can de-
rive the normalized on-axis transmittance T(z):

T~z ! 5 1 1

2S E fidsE frFds 2 E frdsE fiFds D
S E frds D 2 1 S E fids D 2

DF

2

2S E frdsE frFds 1 E fidsE fiFds D
S E frds D 2 1 S E fids D 2

DC.

(6)

This result permits a straightforward evaluation of T(z)
for an arbitrary spatial input beam with circular symme-
try. In particular, one can prove that * fids 5 0 for an
input beam whose electric field profile has an expansion
of only even powers of ri , i.e., g(ri) 5 1 1 (n51

` cnri
2n

such as a top-hat, Airy, or Gaussian beam, where cn and
n denote the corresponding coefficient and positive inte-
ger, respectively. The detailed proof is shown in Appen-
dix A. In this case * frds becomes a constant because
(* frds)

2 1 (* fids)
2 is a constant, independently of z.

Furthermore, Eq. (6) is simplified to

T~z ! 5 1 2

2E fiFds

E frds

DF 2

2E fr Fds

E frds

DC, (7)

permitting calculation of T(z) with ease. If we define a
sensitivity factor S Z [ DTpv /DF as the ratio of the dif-
ference between the normalized peak-and-valley Z-scan
transmittance DTpv and DF at the low irradiance for a
nonzero xR

(3), it can be understood that S Z is only a func-
tion of the electric field profile of the input beam. It is
found that S Z 5 0.406 and S Z 5 1.02 for Gaussian and
top-hat beams, respectively, as reported previously.2,6

We carried out all Z-scan experiments by using a
Q-switched Nd:YAG laser (Lumonics HY-750) of 8-ns
pulse duration (FWHM) operating at a 10-Hz repetition
rate. The spatial irradiance profile and the beam diver-
gence of the output beam from the HY 750 laser were of
an approximately top-hat shape, 8 mm in diameter and,
0.8 mrad. We obtained the nearly top-hat beam by pass-
ing the output of the laser beam through a circular aper-
ture of 2.14-mm diameter. The measured irradiance pro-
file is shown as open circles in Fig. 1. This beam was
focused with a convex lens of focal length 10.5 cm. We
measured the on-axis Z-scan transmittance by scanning a
1-mm quartz cuvette filled with CS2. To satisfy the cri-
teria for the on-axis detection we inserted the circular
1-mm-diameter aperture in front of a photodiode located
0.7 m from the lens, which corresponds to a linear trans-
mittance of 1.2% when there is no sample. One of the ex-
perimental results for the normalized Z-scan transmit-
tance for CS2 with an on-axis irradiance at the focal point
I0 5 1.3 GW/cm2 is shown as open circles in Fig. 2. We
found that it is not trivial to get a symmetric pattern of
the peak and valley experimentally because the pattern
depends sensitively on the position of the pinhole for the
on-axis detection. Note should be taken that the symme-
try of the peak and valley is important for estimation of
the complex nature of x (3). The cause of this disadvan-

Fig. 1. Measured irradiance profile of a nearly top-hat-shaped
beam (open circles). The solid curve is a best-fit function to the
experimental data.

Fig. 2. Normalized on-axis Z-scan transmittance for the nearly
top-hat beam with I0 5 1.3 GW/cm2. The solid curve is a nu-
merical fit with DF 5 0.25.
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tage can easily be understood from the overall irradiance
profile of the focused, nearly top-hat beam in the far field
(0.7 m away from the lens), which is shown in Fig. 3. As
can be seen, there are several sharp peaks, so it is not
easy to find the center experimentally for on-axis detec-
tion. This makes it difficult to measure an unknown
complex x (3) of a given material. The complicated image
in the far field arises from the fact that this irradiance
pattern is the Fourier integral of the Airy function within
a finite area because of experimental restriction such as
limitations of the sample holder rather than the complete
Airy function.
To obtain an Airy profile for the input beam we passed

the output beam of the same laser through the 1-mm-
diameter circular aperture (the input pinhole), followed
by free-space propagation of 1.5 m. Then we used the
central, intense part of this Airy beam (trimmed Airy
beam) for the Z-scan experiment by locating another cir-
cular aperture of the correct radius (2.2 mm in our experi-
ment) that corresponded to the first zero of the irradiance
profile at a distance of 1.5 m from the input pinhole. The
measured irradiance profile of this trimmed Airy beam is
shown as open squares in Fig. 4. The solid curve is the
theoretically fitted function of [2J1(x)/x]

2. Note that the
square of the Airy function shows almost perfect agree-
ment with the corresponding experimental data. In Fig.
5, a typical on-axis Z-scan measurement made with a
trimmed Airy beam is shown as open squares. Here the
on-axis irradiance of the laser at the focal point is esti-
mated to be I0 5 1.2 GW/cm2. It is easy to locate the de-
tecting pinhole at the center of the far-field pattern of the
trimmed Airy beam because the irradiance profile of the
beam is observed to be the square of a trimmed Airy func-
tion within experimental error, as it should be, resulting
in the definite symmetric nature of the peak and the val-
ley experimentally. This should be an experimental ad-
vantage when one is using a trimmed Airy beam rather
than a top-hat beam in Z-scan measurements of complex
x (3).

Fig. 3. Irradiance profile of the focused nearly top-hat beam
measured 0.7 m from the lens.
For numerical analysis of Z-scan transmittance, to take
into account that the irradiance profile of our input beam
is slightly different from that of a top-hat, we use the fol-
lowing function g(ri) for the nearly top-hat beam:

g~ri! 5 H 1 1 0.3@~ri /a !2 2 ~ri /a !4# uriu < a

0 uriu . a
, (8)

where a 5 1.07 mm. The square of Eq. (8), shown as the
solid curve in Fig. 1, yields a close approximation of the
corresponding experimental irradiance profile. By using
Eqs. (1), (7), and (8) and the known value of x (3) of CS2
(3.3 3 10212 esu2), we can obtain a consistent numerical
result (with DF50.25), shown as the solid curve in Fig. 2,

Fig. 4. Measured diffraction pattern for a circular aperture of
0.5-mm radius (open squares). The measurements were made
1.5 m from the aperture (input pinhole). The solid curve is the
best fit to a square of the trimmed Airy function.

Fig. 5. Normalized on-axis Z-scan transmittance for the
trimmed Airy beam with I0 5 1.2 GW/cm2. The solid curve is
the numerical fit with DF 5 0.23.
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with the experimental data for the Z-scan transmittance.
We also found that S Z 5 0.94 for our nearly top-hat
beam, which is slightly less than that for the perfect top-
hat shape. Finally, we evaluated the numerical Z-scan
transmittance for a trimmed Airy beam by the same
method. The result (with DF 5 0.23) is drawn as the
solid curve in Fig. 5, which again shows good agreement
with the experimental data. S Z is found to be 0.61,
which is 1.5 times larger than that for a Gaussian beam.
Furthermore, the convergence in the numerical evalua-
tion of the Z-scan transmittance is remarkably faster
than that for a top-hat beam, leading to accurate and fast
numerical results.
In summary, we have developed a systematic method

for the numerical evaluation of on-axis Z-scan transmit-
tance with an arbitrary circularly symmetric input beam.
We found that a trimmed Airy beam is practically advan-
tageous over a top-hat beam for Z-scan experiments, not
only because it has the symmetric nature of an irradiance
profile but also because it has a fast convergence nature
for the numerical evaluation of Z-scan transmittance.

APPENDIX A: PROOF OF * fids 5 0
Here we show that *0

` fids 5 0 for g(r) 5 1
1 (n51

` cnr2n and the finite a, where a is the radial dis-
tance for the input beam beyond which the irradiance of
the input beam does not exist. From Eq. (1), the electric
field profile near the focal region can be rewritten as

E~r, z ! 5
Ei

0

lf
2pa2E

0

1

g~r! J0~vr!exp~2iqr2!rdr,

(A1)

where r 5 ri /a, v 5 (2pa/lf )r and q 5 p(z/l)(a/f )2.
Therefore one can prove that *0

` fids 5 0 by showing
that the integral IIm f vanishes, i.e.,

IIm f 5 lim
b→`

E
0

bF E
0

1

g~r!sin~qr2!J0~vr!rdrGvdv.
(A2)

This integral can be carried out with respect to v first.
Then one can find that

IIm f 5 lim
b→`

bE
0

1

g~r!sin~qr2!J1~br!dr. (A3)

Using the facts that g(r) 5 1 1 (n51
` cnr2n and

sin(qr2) 5 (n51
` (21)n21@(qr2)2n21/(2n 2 1)!#, one can find

that g(r)sin(qr2) can be expanded in the even powers of r,
i.e.,
g~r!sin~qr2! 5 (
n51

`

dnr2n, (A4)

where dn is the relevant coefficient.
By substituting Eq. (A4) into Eq. (A3), one can also find

that the integral IIm f is a linear combination of the follow-
ing integrals:

In 5 lim
b→`

bE
0

1

r2nJ1~br!dr. (A5)

Integrating by parts, one can show that Eq. (A5) has the
analytical expression

In 5 lim
b→`

(
s51

n S 2
2
b D s21 ~n 2 1 !!

~n 2 s !!
Js11~b !, (A6)

which is zero for any positive integer n.
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