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Introductory Comments

1.) The design and analysis of stray light rejection systems 
required by optical systems used  to  view  a  relatively  faint
target  in  the  vicinity  of  a  much  brighter  object.

2.) The fabrication of “super-smooth” surfaces for high resolution 
X-ray and extreme ultraviolet (EUV) imaging systems.  

3.) Determining whether diamond-turned metal mirrors need to be 
post-polished to satisfy image quality requirements.

4.) Inverse scattering applications where scattered light 
“signatures” are used to remotely infer target characteristics.

5.) The engineering of “enhanced roughness” to increase the 
efficiency of thin-film photo-voltaic solar cell applications.

Surface scatter phenomena continue to be an important issue 
in diverse areas of science and engineering in the 21st century.  
In many applications it is not only the amount of scattered light, 
but also the direction of the scattered radiation that is important.  
This is particularly true for the following applications:



Surface Scatter is a Diffraction Phenomena*
Surface scatter of electromagnetic radiation is not caused 

directly by surface roughness, but rather by the effect of the 
phase variation induced upon the transmitted or reflected 
wavefront as it propagates; i.e., surface scatter is a diffraction 
phenomena caused by the propagation process. As such, 
surface scatter behavior is strongly affected by:

● The propagating wavelength
● The statistical characteristics of the surface
● The angle of the incidence
● The refractive index of the media both before and

after the interface or surface encountered.

The smooth surface criterion for the Rayleigh-Rice theory 

could just as well be called the long wavelength criterion, or the 
large incident angle criterion.

1    /cos4   <<λθσπ irel

J. E. Harvey, et.al., “Diffracted Radiance: A Fundamental Quantity in Non-Paraxial Scalar Diff. Theory”, Appl. Opt. 38, 6469 (199*



● Historical Review  of  Surface  Scatter  Theory.
● Statement of the EUV Imaging Problem (Summary of Results).
● Non-paraxial Scalar Diffraction Theory.

o  Scalar Treatment of Sinusoidal Phase Grating,
o  Modified Beckmann-Kirchhoff Surface Scatter Model.

● Total Integrated Scatter (TIS) for Moderately Rough Surfaces. 
● Generalized Harvey-Shack (GHS) Scatter Theory.

o  Two-parameter Family of Surface Transfer Functions.
o  Very Computationally Intense Calculations.

● Example of Measured Metrology Data from an EUV Mirror.
o  Problem: Large dynamic Range of Relevant Spatial Frequencies.
o  Solution: FFTLog Numerical Hankel Transform Algorithm.

● BRDFs from Real Metrology Data from Moderately Rough Surfaces.
(that violate the smooth surface approximation).

● Generalized Peterson Analytical Scattering Model.
o Dealing with the “Scattered-Scattered” Light.
o Numerical Validation with ASAP and ZEMAX.

● Results and Conclusions.
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• Rayleigh (1896, 1907)
Investigated scattering of acoustic waves.
Developed vector perturbation theory for gratings.

• Fano (1941)
Expanded on the Rayleigh approach to explain                
anomalous grating behavior.

• Rice (1951)
Applied the Rayleigh perturbation approach to the 
problem of radar scatter from the sea.

• Brekhovskikh (1952)
Introduced use of the Kirchhoff Approximation (KA) 
in scattering problems.

• Isakovich (1952)
First to apply KA to scattering from rough surfaces.

• Beckmann (1963)
Published extensive monograph on scattering from 
rough surfaces using the KA.
Most widely used Western reference.

• Nicodemus (1970)
Introduced the Bidirectional Reflectance Distribution 
Function (BRDF).

• Church (1970’s)
Introduced the vector perturbation approach to the 
optics literature.

• Harvey and Shack (1976)
Developed a linear systems formulation of surface 
scatter theory.

Historical Review of Surface Scatter Theory
Recent Approximate Approaches

This is still a very active area of research (over 
200 references since 1980).

In 2004, Elfouhailey and Guerin* wrote a critical 
review including over thirty (30) different 
approximate approaches of predicting surface 
scatter behavior.  These were divided into three 
categories:

• Small Perturbation Methods

• Kirchhoff Approaches

• Unified Methods

They concluded that 

“there does not seem to be a universal method 
that is to be preferred systematically. All methods 
present a compromise between versatility, 
simplicity, numerical efficiency, accuracy and 
robustness, with a different weighting in these 
various fields...There is still room for 
improvement in the development of approximate 
scattering methods.”

T. M. Elfouhaily and C. A. Guerin, “A Critical Survey of approximate Scattering Wave Theories from Random Rough Surfaces”, Waves in Random Media 14, R1-R40 (2004).*
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● John C. Stover:  Scatter Measurements and Analysis.

● Bob Breault: Founder of Breault Research Org., Inc. 
and co-developer of ASAP optical engineering 
software.

● Angela Duparre and Sven Schroder: Surface Char-
acterization & Scatter Measurements

● Rich Pfisterer: President of Photon Engineering and 
co-developer of FRED optical engineering software.



● Historical Review  of  Surface  Scatter  Theory.
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o  Modified Beckmann-Kirchhoff Surface Scatter Model.

● Total Integrated Scatter (TIS) for Moderately Rough Surfaces. 
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o  Two-parameter Family of Surface Transfer Functions.
o  Very Computationally Intense Calculations.

● Example of Measured Metrology Data from an EUV Mirror.
o  Problem: Large dynamic Range of Relevant Spatial Frequencies.
o  Solution: FFTLog Numerical Hankel Transform Algorithm.

● BRDFs from Real Metrology Data from Moderately Rough Surfaces.
(that violate the smooth surface approximation).

● Generalized Peterson Analytical Scattering Model.
o Dealing with the “Scattered-Scattered” Light.
o Numerical Validation with ASAP and ZEMAX.

● Results and Conclusions.
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Statement of the Problem
For many applications, surface scatter effects from residual 

optical fabrication errors frequently limit the performance of 
imaging systems rather than geometrical aberrations or diffraction 
effects!  

● Optical fabrication tolerances necessary to satisfy specific image 
quality requirements must be derived:

о Calculate the BRDF from assumed metrology data.
о Calculate the image degradation caused by that BRDF.

● Optical surfaces aren't always "smooth“ relative to the 
operational wavelength; hence, surface scatter theories using 
smooth surface approximations or perturbation techniques 
(Rayleigh-Rice) are not valid.

● A new generalized surface scatter theory valid for moderately 
rough surfaces and non-paraxial incident and scattering angles 
has been developed.

● The large dynamic range in the relevant spatial frequencies of 
optically polished surfaces poses severe computational 
problems in implementing any new generalized scatter theory.

ZEMAX
ASAP
FRED



Objective/Technical Approach/Results
Objective:
● Advance the Linear Systems Formulation of Surface Scatter Theory.

o Valid for both smooth and rough surfaces. 
o Valid for both small and large incident and scattered angles.

Technical Approach:
● Surface Scatter is Merely a Diffraction Phenomenon.

o Random surfaces can be described as a superposition of sinusoidal
phase gratings.

o First develop a non-paraxial scalar diffraction model that accurately
predicts the diffraction efficiency of sinusoidal phase gratings.

Results:
● We have Developed  a  Linear  Systems  Formulation  of  Non-paraxial  

Scalar Diffraction Theory (Diffracted Radiance, Direction Cosine space).
● Empirically Modified Beckmann-Kirchhoff Scatter Model (non-paraxial).
● Rigorously Derived a New Unified Surface Scatter Theory.

o Valid for smooth and rough surfaces.
o Valid for both small and large incident and scattered angles.
o Smooth surface approx. leads to an improved inverse scattering solution.
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Diffracted Radiance: The Fundamental Quantity
Predicted by Scalar Theory *
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By formulating scalar diffraction theory in terms of the direction cosines of the propagation vectors of the 
angular spectrum of plane waves represented by the kernal of the Fourier transform integral, and incorporating 
sound radiometric principles, we obtained the following expression for diffracted radiance.
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For large incident and diffraction angles, a portion of the diffracted radiance distribution function will fall 
outside of the unit circle in direction space.  

Parseval’s theorem from Fourier transform theory then requires that a re-normalization constant be applied. 

J. E. Harvey, et.al., “Diffracted Radiance: A Fundamental Quantity in Non-Paraxial Scalar Diff. Theory”, Appl. Opt. 38, 6469 (1999).*
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Diffraction Efficiency of a Perfectly Conducting 
Sinusoidal Phase Grating*
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The diffraction efficiency for a perfectly 
conducting sinusoidal phase grating using our 
non-paraxial linear systems model of scalar 
diffraction theory is given by:

These figures show that using our non-paraxial scalar diffraction theory is able 
to accurately predict diffraction efficiencies over a much larger range than 
previously thought possible.

J. E. Harvey, A. Krywonos and D. Bogunovic, “Non-paraxial Scalar Treatment of Sinusoidal Phase Gratings”, JOSA A 23 (2006).*
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Empirically Modified Beckmann-Kirchhoff 
Scattering Model*

* J. E. Harvey, A. Krywonos, and C. Vernold, “Modified Beckmann-Kirchhoff Scattering Model”, Opt. Eng. 46, Art. No. 078002, 1-10 (July 2007).

Our new understanding of non-paraxial 
scalar diffraction theory, and our knowledge 
that diffracted radiance is shift-invariant in 
direction cosine space led us to make the 
following empirical modifications:

● Throw away the “F” factor.

● Equate to “Radiance”.

● Apply the re-normalization factor, K.

● Multiply by Lambert’s cosine function.

Experimental Validation

2
1 cos(1

cos cos cos
i

i i

s

s
F

θ θ
θ θ θ

⎡ ⎤⎛ ⎞ + +
= ⎢ ⎥⎜ ⎟ +⎢ ⎥⎝ ⎠⎣ ⎦

Illuminated Surface AreaA =

2 2sin sins ixy kν θ θ= +

Correlation Lengthc =l

Classical Beckmann-Kirchhoff Theory

{ }
  

2 22 2
cc

2 2 2 2

 exp
4

xy

s z s z s

vFD
A v v

πρ
σ σ

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦

ll

Modified Beckmann-Kirchhoff Theory

Re normalization Factor

               cos   

K

I L θ

= −

=

(Assures Conservation of Energy)

(Lambert’s Cosine Law)

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= 22

2
c

2

22

 
2
c

4
 

exp
cos

),(
 

sz

xy

sz v
v

v
KI

σσ
θπ

φθ
ll

-90 -80 -70 -60 -50 -40 -30 -20 -10 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scatter Angle (Degrees)

S
ca

tte
re

d 
In

te
ns

ity

Beckmann-Kirchhoff
Modified Beckmann-Kirchhoff
Experimental Data

σs = 2.27 μm
λ= 0.6328 μm
θi = 70 degrees 

σs/λ = 3.59 (very rough)

TIS = 1.000

-90 -80 -70 -60 -50 -40 -30 -20 -10 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scatter Angle (Degrees)

S
ca

tte
re

d 
In

te
ns

ity

Beckmann-Kirchhoff
Modified Beckmann-Kirchhoff
Experimental Data

σs = 2.27 μm
λ= 0.6328 μm
θi = 70 degrees 

σs/λ = 3.59 (very rough)

TIS = 1.000

(4)

(5)



● Historical Review  of  Surface  Scatter  Theory.
● Statement of the EUV Imaging Problem (Summary of Results).
● Non-paraxial Scalar Diffraction Theory.

o  Scalar Treatment of Sinusoidal Phase Grating,
o  Modified Beckmann-Kirchhoff Surface Scatter Model.

● Total Integrated Scatter (TIS) for Moderately Rough Surfaces. 
● Generalized Harvey-Shack (GHS) Scatter Theory.

o  Two-parameter Family of Surface Transfer Functions.
o  Very Computationally Intense Calculations.

● Example of Measured Metrology Data from an EUV Mirror.
o  Problem: Large dynamic Range of Relevant Spatial Frequencies.
o  Solution: FFTLog Numerical Hankel Transform Algorithm.

● BRDFs from Real Metrology Data from Moderately Rough Surfaces.
(that violate the smooth surface approximation).

● Generalized Peterson Analytical Scattering Model.
o Dealing with the “Scattered-Scattered” Light.
o Numerical Validation with ASAP and ZEMAX.

● Results and Conclusions.

Outline



Total Integrated Scatter *
The fraction of the total radiant power contained in the specular beam 

after reflection from a moderately rough surface is given by

and the fraction of the total reflected radiant power that is scattered out 
of the specular beam, or total integrated scatter (TIS) is defined as

where σrel is the bandlimited relevant roughness for 1.22/D < f <1/λ .

For smooth surfaces (σ << λ), the total integrated scatter (TISsmooth) can 
thus be approximated as

However, one needs to be careful in using this approximate expression 
as this quantity can quickly exceed unity for moderately rough 
surfaces.  

])/ cos4(exp[ 2λσθπ reliA −=

])/ cos4(exp[1 2λσθπ reliTISB −−==

(6)
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How Smooth is a Smooth Surface?
This graph shows how the smooth-surface approximation for TIS continues 

to grow exponentially for large σ/λ , providing an unrealistically large value for 
moderately rough surfaces. 
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How Smooth is a Smooth Surface?
The smooth-surface approximation is a very severe limitation in predicting the BRDF 

as illustrated below for a Gaussian surface PSD.  The percent error in the predicted 
peak value of the BRDF is illustrated below as a function of σ/λ.
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● Historical Review  of  Surface  Scatter  Theory.
● Statement of the EUV Imaging Problem (Summary of Results).
● Non-paraxial Scalar Diffraction Theory.

o  Scalar Treatment of Sinusoidal Phase Grating,
o  Modified Beckmann-Kirchhoff Surface Scatter Model.

● Total Integrated Scatter (TIS) for Moderately Rough Surfaces. 
● Generalized Harvey-Shack (GHS) Scatter Theory.

o  Two-parameter Family of Surface Transfer Functions.
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(that violate the smooth surface approximation).

● Generalized Peterson Analytical Scattering Model.
o Dealing with the “Scattered-Scattered” Light.
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Transfer Function Characterization of 
Surface Scatter*

In 1976 Harvey and Shack formulated a 
scattering theory in a linear systems format 
resulting in a surface transfer function (STF) 
that relates scattering behavior to surface 
topography. Surface scatter phenomena was 
modeled as a simple scalar diffraction 
process, where the diffracting “aperture” is a 
random phase “aperture” rather than the 
conventional binary amplitude aperture.  The 
rough surface merely imparts phase 
variations onto the incident wavefront upon 
reflection.  No explicit “smooth surface”
approximations were made.

Surface Transfer Function
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J. E. Harvey, “Light-Scattering Characteristics of Optical surfaces”, Ph.D. Dissertation, Univ. of Arizona (1976).*

Surface Characteristics

Experimental Scattered Data

ˆ ˆ( , )sC x y
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The Associated Angle Spread Function*
(Scattered Radiance)

Inverse Power Law Behavior

Insight into the scattering process was 
inferred by considering the nature of the 
surface transfer function, and its Fourier 
transform, the angle spread function (ASF). 
Note that this ASF is scattered radiance, not 
irradiance or intensity.  Of particular interest 
was the inverse scattering problem, and the 
wavelength dependence of the scattered light 
behavior.  It was also convenient that the 
scattering function for optical surfaces 
polished by conventional techniques upon 
ordinary materials exhibited an inverse power 
law (fractal) behavior.

The Associated Angle Spread Function

J. E. Harvey, “Light-Scattering Characteristics of Optical surfaces”, Ph.D. Dissertation, Univ. of Arizona (1976).*

Wavelength Dependence of Surface Scatter

F
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Harvey-Shack Surface Scatter Model*

R. P. Breault, “Users Manual for APART/PADE Version 6B”,Breault Research Organization, Tucson Arizona (1980).*



Modified Harvey-Shack Surface Scatter Theory*
Optical Path Difference (OPD) upon Reflection 

Modified Surface Transfer Function

J. E. Harvey, et. al., "Transfer Function Characterization of Grazing Incidence Optical Systems", Appl. Opt.  27, 1527-1533 (15 April 1988).*
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During the 1980’s the STF was generalized 
to include the extremely large incident angles 
inherent to grazing incidence Wolter Type I    
X-ray telescopes.  The optical path difference 
(OPD) due to reflection from an irregular 
surface is illustrated here, and the assumed 
phase variation in the plane of the surface 
when the Kirchhoff approximation is invoked 
is presented. We have still made no explicit 
smooth surface approximation! )(  ),(  )ˆ,ˆ( cos2cosˆ,ˆ2 s oo w)yxh(yxOPD θθ σσ ==

By Invoking the Kirchhoff Approximation

We can write the two-dimensional phase variation 
in the plane of the surface due to reflection from a 
rough surface at an arbitrary angle of incidence.

Of course, we must add to this the linear phase 
variation that results from the specularly reflected 
plane wavefront.

)cos()ˆ,ˆ()/(4     )/(2  )ˆ,ˆ( oyxhOPDyx θλπλπφ ==

ˆ2  yoo πβφ =

θο

)( ŷh
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Note that βo = sin θo and γo = cos θo.



Generalized Harvey-Shack Surface Scatter Theory1-3

(Arbitrarily Rough Surfaces, Large Incident and Scatter Angles)

2-parameter Family of Transfer Functions

Original Harvey-Shack Theory

The system is no longer shift invariant 
(requires a different transfer function for each 
incident and scattering angle).

This is similar to imaging systems with   
field-dependent aberrations, where a different 
MTF is necessary for each field angle.

This new surface scatter model has been 
quasi-vectorized by merely substituting the 
polarization reflectance factor, Q, for the 
reflectance, R, in the scalar treatment.

Phase Variation Depends on Scattering Angle

ˆˆ ˆ ˆ ˆ( , ) = 2 ( ) ( , )i sx y h x yφ π γ γ+

● Scalar theory (no polarization effects).
● BRDF shift-invariant in direction cosine 

space.
● Surface transfer function has inherent 

paraxial limitation.
● Does not account for redistribution of 

energy from evanescent to propagating 
waves.

Generalized Harvey-Shack Theory
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1.  A. Krywonos, Predicting Surface Scatter using a Linear Systems Formulation of Non-paraxial Scalar Diffraction, PhD Dissertation, UCF (2006).
2.  J. Harvey, et.al., “Unified Scatter Model for Rough Surfaces at Large Incident and Scattered Angles”, Proc. SPIE 6672-12 (2007).
3.  A. Krywonos, J. Harvey and N. Choi, “A Linear systems Formulation of Scattering Theory for Rough Surfaces with Arbitrary Incident and 

Scattering Angles”, in preparation for publication in JOSA A.
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The Relevant Surface PSD for Normal Incidence
(Band-limited rms Surface roughness)
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Generalized Harvey-Shack Theory Rayleigh-Rice

    

2
2

4
4 (cos cos ) ( , )o s x yBRDF Q PSD f fπ θ θ
λ

= +

λ
φθ

λ
θφθ ss

y
iss

x
s

ff
in sin

   ,
sincos sin

=
−

=

From the hemispherical grating equation

( ) ( )∫ ∫
= =

=
π

φ

λ

φλσ
2

0

/1

0

2
    

f
rel ddffPSD

For normal incidence spatial frequencies greater than 1/λ do not scatter light.

For isotropic roughness and normal 
incidence, the square of the relevant 
band-limited surface roughness is given 
by the following integral.

Surface roughness with spatial frequencies greater than 1/λ is irrelevant in that it 
does not result in scattered radiation.
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σrel for Arbitrary Incident Angle and Wavelength
Relevant Portion of Surface PSD

λ
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The grating equation for an arbitrary 
incident angle dictates that the relevant 
portion of the surface PSD with regard to 
surface scatter is a shifted circular portion 
with a radius of 1/λ cut out of the surface 
PSD with a cookie-cutter. 
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● Rms surface roughness is obtained by 
integrating surface PSD over this shifted 
circle of radius 1/λ.

● It is thus a function of both incident angle 
and wavelength.

Band-limited Relevant rms Surface Roughness
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Description of Generalized Harvey-Shack Calculations
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θi = 70° θs = - 90°- 80°

Description of Generalized Harvey-Shack Calculations
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- 80°θi = 70° θs = - 70°- 60°- 50°- 40°- 30°- 20°- 10°0°

Description of Generalized Harvey-Shack Calculations
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β = sin(θs)
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Description of Generalized Harvey-Shack Calculations

Intensity = Radiance  * cos(θs)

Beta = sin(θs)
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Description of Generalized Harvey-Shack Calculations
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Description of Generalized Harvey-Shack Calculations
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Generalized Harvey-Shack Scatter Theory
(Experimentally Validated by O’Donnell-Mendez Data) *

K. A. O’Donnell and E. R. Mendez, “Experimental study of scattering from 
characterized random surfaces”, J. Opt. Soc. Am. A, 4, 1194-1205 (1987).*
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Smooth-surface Approximation to GHS Theory* 
(Obliquity Factor Differs from Rayleigh-Rice Theory)
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The above two equations are equivalent for small incident and scattered angles; however, 
the Rayleigh-Rice expression drives the BRDF to zero at ± 90 degrees regardless of the form 
of the surface PSD.  In general, BRDF ’s do not go to zero at ± 90 degrees (a Lambertian
surface is an obvious counter-example).  Furthermore the Rayleigh-Rice expression results 
in undesirable artifact in the predicted PSD when solving the inverse scattering problem (the 
ubiquitous “hook” at high spatial frequencies).

(13) (14)

J. E. Harvey and A. Krywonos, “Improved Characterization of Optical Surfaces from Scattered Light Measurements”, 
presented at OSA Topical Meeting on Optical Interference Coatings, Tucson, AZ, June 4-7, 2007; Summary published in 
Conference Proceedings.

*
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Example of Measured Metrology Data
(Including the very real “Mid” Spatial Frequencies)

It often takes three, or even four different metrology instruments to 
measure the surface characteristics over the entire range of relevant 
spatial frequencies for a given application. 

This metrology data can then be fit with an appropriate fitting function that 
can be used for making BRDF predictions, and then calculating image 
degradation. Note 7 decades of dynamic range in spatial frequency for D = 100mm
and λ = 100 A.
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ABC, or K-Correlation Function Fit to Metrology Data*
Here we have fit the measured metrology data with an ABC or K-Correlation 

Function of the following form. The advantages of using a fitting function of 
this form is shown on the next slide.

0.25/mm 6/mm 700/mm 5x104/mm0.25/mm0.25/mm 6/mm6/mm 700/mm700/mm 5x104/mm5x104/mm

10
Spatial Frequency (mm-1)-

-1 1 20 3 4 510 10 10 10 10 10

Su
rf

ac
e 

PS
D

 (A
2

m
m

)
2

10

106

104

100

10-2

10-4

10-6
-2

102

AFM

Full-aperture
Interferometr

y μ PMI
(2.5X)

μ PMI
(50X)

1/λ1/D

( )[ ] 2/ 21
 1

  )( C

x

Dx
fB

AfPSD
+

=− (15)

E. L. Church and P. Z. Takacs, “The optimal estimation of finish parameters”, Proc. SPIE 1530, p. 71-78 (1991).*

Seven Decades of Dynamic Range in Spatial Frequency!!!



The ABC, or K-correlation function expressed by Eq.(12) has several very useful 
properties. The 2-D surface PSD (assuming isotropic roughness) can be obtained from 
the 1-D surface profile measurements by using Eq.(13).  The total volume under the 2-D 
surface PSD is given by Eq.(14), and the Fourier transform of the 2-D K-correlation 
function is given by Eq.(15).  

Properties of ABC or K-Correlation Functions*
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E. Church and P. Takacs, “The optimal estimation of finish parameters”, in Optical Scatter: Applications, Measurement, and Theory, J. C. Stover, Ed., Proc. SPIE 1530, p. 71-78 (1991).
J, M. Elson, J. M. Bennett, and J. C. Stover, “Wavelength and angular dependence of light scattering from beryllium: comparison of theory and experiment”, Appl. Opt. 32 (1993). 
M. Abramowittz and I. A. Stegun, Handbook of Mathematical Functions, New York: Dover (1965).

Surface Autocovariance Function.



The FFTLog Hankel Transform Algorithm*

● FFTLog is a set of subroutines that compute the fast Fourier or Hankel (i.e., 
Fourier-Bessel) transform of a periodic sequence of logarithmically spaced 
data points.

● FFTLog can be regarded as a natural analogue to the standard Fast Fourier 
Transform (FFT), in the sense that, just as the normal FFT gives the exact (to 
machine precision) Fourier transform of a linearly spaced periodic sequence 
of data points, so also FFTLog gives the exact Fourier or Hankel transform, 
of arbitrary order, of a logarithmically spaced periodic sequence of data
points.

● FFTLog shares with the normal FFT the problems of ringing (response to 
sudden steps) and aliasing (periodic folding of frequencies), but under 
appropriate circumstances FFTLog may approximate the results of a 
continuous Fourier or Hankel transform.

● The FFTLog algorithm is particularly useful for applications where the power 
spectrum extends over many orders of magnitude in wavenumber k, and 
varies smoothly in lnk.

* A. J. S. Hamilton, “Uncorrelated Modes of Nonlinear Power spectrum”, Mon.Not.Roy.Astron.Soc. 312 (2000) 257-284. 



Numerical Validation of the FFTLog Algorithm
For well-behaved functions, the FFTLog algorithm is accurate over 25 

decades of variation in spatial frequency (Note that the “ringing” and 
“aliasing” effects inherent to numerical Fourier transform calculations). 

A = 610.322 A2mm
B = 120 mm
C = 1.089.
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SUVI FP1 Metrology Data
(SUVI Primary Mirror)

Region # 2 Region # 3 Region # 4Region # 2 Region # 3 Region # 4Region # 2 Region # 3 Region # 4Region 1 Region 2 Region 3



1st Fitting Function to FP1 Metrology Data

Region # 2 Region # 3 Region # 4Region # 2 Region # 3 Region # 4Region # 2 Region # 3 Region # 4Region 1 Region 2 Region 3



2nd Fitting Function to FP1 Metrology Data

Region # 2 Region # 3 Region # 4Region # 2 Region # 3 Region # 4Region # 2 Region # 3 Region # 4Region 1 Region 2 Region 3



3rd Fitting Function to FP1 Metrology Data

Region # 2 Region # 3 Region # 4Region # 2 Region # 3 Region # 4Region 1 Region 2 Region 3



Sum of three Fitting Functions

Region # 2 Region # 3 Region # 4Region 1 Region 2 Region 3



FP1 2-D PSD Metrology Data
(With Band-limited Roughness Values)

λ(Ǻ) σrel TIS
303.8       33.4987      0.8534
284.2       33.4997      0.8885
195.1       33.5055      0.9905
171.1       33.5075      0.9977
131.2       33.5116      1.0000

93.9       33.5168      1.0000

λ(Ǻ) σrel TIS
303.8       33.4987      0.8534
284.2       33.4997      0.8885
195.1       33.5055      0.9905
171.1       33.5075      0.9977
131.2       33.5116      1.0000

93.9       33.5168      1.0000

λ(Ǻ) σrel TIS
303.8       33.4987      0.8534
284.2       33.4997      0.8885
195.1       33.5055      0.9905
171.1       33.5075      0.9977
131.2       33.5116      1.0000

93.9       33.5168      1.0000

λ(Ǻ) σrel TIS
303.8       33.4987      0.8534
284.2       33.4997      0.8885
195.1       33.5055      0.9905
171.1       33.5075      0.9977
131.2       33.5116      1.0000

93.9       33.5168      1.0000

One Gaussian + Two ABC Functions

Region 1 Region 2 Region 3



BRDF Predictions from FP1 Metrology Data 

Beta = sin θ

From SUVI Primary Mirror (FP1) Metrology Data

PSD Fitting Functions
A1 = 200000 A2 = 3300      A3 = 0.0027
B2 = 0.067       B2 = 25          B3 = 0.0026

C2 = 1.92       C3 = 1.001

λ(Ǻ) σrel TIS
1000          33.4704      0.1621
500          33.4811      0.5074
303.8       33.4888      0.8532
284.2       33.4899      0.8884
195.1       33.4957      0.9905
171.1       33.4977      0.9976
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BRDF Predictions from FP1 Metrology Data

Beta = sin θ
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● Historical Review  of  Surface  Scatter  Theory.
● Statement of the EUV Imaging Problem (Summary of Results).
● Non-paraxial Scalar Diffraction Theory.

o  Scalar Treatment of Sinusoidal Phase Grating,
o  Modified Beckmann-Kirchhoff Surface Scatter Model.

● Total Integrated Scatter (TIS) for Moderately Rough Surfaces. 
● Generalized Harvey-Shack (GHS) Scatter Theory.

o  Two-parameter Family of Surface Transfer Functions.
o  Very Computationally Intense Calculations.

● Example of Measured Metrology Data from an EUV Mirror.
o  Problem: Large dynamic Range of Relevant Spatial Frequencies.
o  Solution: FFTLog Numerical Hankel Transform Algorithm.

● BRDFs from Real Metrology Data from Moderately Rough Surfaces.
(that violate the smooth surface approximation).

● Generalized Peterson Analytical Scattering Model.
o Dealing with the “Scattered-Scattered” Light.
o Numerical Validation with ASAP and ZEMAX.

● Results and Conclusions.

Outline



Analytic Expression for In-field Scattered 
Irradiance in Imaging Systems*

Although optical systems are complex, the distribution of 
scattered light from their elements is not. The halo of scattered 
light that surrounds a bright source image is merely the sum of the 
contributions from each element. Furthermore, the scattered-light 
irradiance distribution from any one element has the form of that 
element’s BSDF, and its magnitude and scale depend only upon the 
size of the beam that passes through that element.

Most in-field scattered light distributions are obtained by very 
computationally-intensive calculations; i.e, by tracing millions of 
rays on a computer.  However, the analytic formulas presented in
Reference 1 makes all of this unnecessary. In addition, the analytic 
formulas provide insight and understanding that is totally absent 
from the conventional brute-force ray-tracing approaches.  Design 
trades can now be performed, and limits on system performance 
assessed, without the need for complex computer calculations.

Gary Peterson, “Analytic Expressions for In-field Scattered Light Distribution”, Proc SPIE 5178-01, 184-193 (2004).
Gary Peterson, Analytic Expressions for In-field Stray Light Irradiance in Imaging Systems, Master’s Report, OSC/UA (2003). 



Analytic Expression for In-field Scattered 
Irradiance in Imaging Systems*

where r is the distance from the point source image on the detector, na is the numerical 
aperture of the system, T is the system transmittance, sent is the radius of the entrance 
pupil, sj is the radius of the beam on the jth element, and Eent is the irradiance in the 
entrance pupil of the system.  This formulation is based upon both a smooth-surface and 
a paraxial assumption. For a two-mirror telescope, we can thus write
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Making use of the Lagrange invariant of 1st-order imaging systems and the brightness 
theorem (conservation of radiance), the scattered irradiance in the focal plane of an 
imaging system from the jth element for an in-field point source was derived by Peterson
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Generalized Peterson Analytical Scattering Model

Since Peterson’s elegant and insightful treatment is limited 
by both a paraxial and a smooth-surface assumption, it must 
be generalized to include scattering from moderately rough 
surfaces before applying to the NOAA Solar UV Imager (SUVI) 
Program. We have thus:

Gary Peterson, “Analytic Expressions for In-field Scattered Light Distribution”, Proc SPIE 5178-01, 184-193 (2004).
Gary Peterson, Analytic Expressions for In-field Stray Light Irradiance in Imaging Systems, Master’s Report, OSC/UA (2003). 

● Removed the “smooth-surface” limitation by including 
“scattered-scattered” radiation from the two-mirror SUVI 
telescope.

● Verified that the SUVI application is indeed paraxial. 

● The simple analytical model has then been numerically 
validated by comparing the results with the very 
computationally-intensive commercially-available ZEMAX 
and ASAP codes.



The SUVI Spec Surface PSD
(Scattered-Scattered Light will be Very Substantial)
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Scattering in a Two-mirror EUV Telescope
For a solar EUV telescope surface scatter from the primary and secondary 

mirrors sometimes dominates both geometrical aberrations and diffraction 
effects in the degradation of image quality.  
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The SUVI point spread function (PSF) consists of four components
with an energy distribution given by:

Direct-direct component (Specular) — Ap As

Scattered-direct component — Bp As

Direct-scattered component — Ap Bs

Scattered-scattered component — Bp Bs
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Energy Distribution between PSF Components
The radiant energy distribution between the four components of the PSF is shown 

below as a function of σ/λ.  The σ is the relevant rms roughness (PSD integrated from 
fmin < f < 1/λ) .  Note that for σ/λ > 0.066, the broad scattered-scattered component 
becomes dominant. 
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Since most EUV applications clearly do not satisfy the smooth surface 
assumption, but are perceived to satisfy the paraxial limitation, we merely 
construct an expression for each of the four components making up the PSF in the 
focal plane of the telescope, and substitute it into Eq.(18) of Peterson’s analytic 
treatment

Care is taken to normalize each component such that their respective volumes 
(fractional total reflected radiant power) will be given by ApAs, BpAs, ApBs, and BpBs.

We will assume a 175 cm focal length Ritchey-Chretien telescope design with an 
aperture diameter of 19 cm and an obscuration ratio of ε = 0.4.  There will thus be 
no geometrical aberrations on-axis; and the specular beam will be the well-known 
Fraunhofer diffraction pattern produced by the annular aperture of the telescope

where                      .

The above expression is normalized to a unit volume.  It will thus need to be 
multiplied by the coefficient ApAs in the following analysis.

Including the Scattered-Scattered Light
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BRDF Profiles Calculated from SPEC PSD with 
the GHS Scattering Theory

λ(Ǻ) σrel TIS
1000         6.5698     0.0068
500         6.6487     0.0275 
303.8      6.7020     0.0740
284.2      6.7089     0.0842
195.1      6.7470     0.1721
171.1      6.7600     0.2185
131.2      6.7857     0.3445

93.9      6.8171     0.5650

β = sin θ
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λ = 131.2 Å
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λ = 303.8 Å

λ = 500 Å
λ = 1000 Å

PSD Fitting Function
A1 = 610.322  Ǻ2mm
B1 = 120  mm-1

C1 = 1.089



Scattered-Scattered Light Dominates
(λ = 93.9 A)
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Radial Profiles of Four Components
(λ = 93 A)

Diffraction-limited Image Core
Scatter from Primary Mirror
Scatter from secondary Mirror
Scattered-Scattered Irradiance
Total Irradiance Distribution

λ = 93.9 Å



FEE Plots of the 4 Components of PSF
(λ = 93.9 A)

Diffraction-limited Image Core
Scatter from Primary Mirror
Scatter from secondary Mirror
Scattered-Scattered Irradiance

λ = 93.9 Å



Irradiance Profile in Telescope Focal Plane
(Predicted by Generalized Peterson Model)

λ(Ǻ) ΑpΑs TIS
1000         0.9864     0.0136
500         0.9458     0.0542 
303.8      0.8575     0.1425
284.2      0.8487     0.1513
195.1      0.6854     0.3146
171.1      0.6107     0.3893
131.2      0.4297     0.5703

93.9      0.1892     0.8108
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FEE Plots of the Total PSF Projected onto Sky

λ = 1000 Å
λ = 500 Å
λ = 303.4 Å
λ = 284.8 Å
λ = 195.1 Å
λ = 171.1 Å
λ = 131.2 Å
λ =   93.9 Å

λ(Å)        FEE
1000           0.99
500           0.98
303.8        0.93
284.2        0.94
195.1        0.84
171.1        0.81
132.2        0.70
93.9        0.51



Square 
Size 

(arcsec)

Wavelength
93.9 131.2 171.1 195.1 284.2 303.8

7x7 43 50 50 50 50 50
10x10 49 53 59 60 60 60
20x20 57 61 65 65 65 65
40x40 67 69 70 70 70 70
65x65 72 75 75 75 75 75

150x150 78 82 84 85 85 85

SUVI Image Quality Requirements
(Fractional Ensquared Energy: Expressed as %)



Numerical Validation by ASAP and ZEMAX*

Generalized Peterson Model
ZEMAX
ASAP
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J. E. Harvey, N. Choi, A. Krywonos, G. Peterson, and M. Bruner, “Image Degradation due to Scattering Effects in Two-mirror 
Telescopes”, Supmited for publication in Opt. Eng. (Mar 2010)*



Flow Chart of the “Just-Good-Enough”
Optical Fabrication Strategy*

* J. E. Harvey, J. Lentz, and J. B. Houston, Jr., “‘Just-Good-Enough’ Optical Fabrication”, presented
at the OSA Topical Meeting on Optical Fabrication and Testing, Rochester, NY (October 2008). 
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Summary, Results and Conclusions

● Stated a Need for Calculating Image Degradation from Measured 
Metrology Data.

● Reviewed a Generalized Surface Scatter (GHS) Theory valid for Rough 
Surfaces at Large Incident and Scattered Angles.

● Discussed Computational Problems for Surface PSDs with Large 
Dynamic Range in Spatial Frequency.

● Introduced the FFTLog Algorithm as a Solution to the computational 
Problem.

● Demonstrated BRDFs Calculated from Surface PSDs for increasingly 
short wavelengths (which violate the smooth-surface approximation).

● Generalized the Peterson Analytical Model for Calculating Image 
Degradation to include surface scatter from rough surfaces.

● Demonstrated a variety of useful parametric performance predictions 
provided by the Generalized Peterson Analytical Model.

● Numerically validated the Generalized the Peterson Analytical Model with 
both ASAP and ZEMAX.

● Showed Flow Chart of “Just-Good-Enough” Optical Fabrication Strategy.



The Inverse Scattering Problem

Recall that the smooth-surface criterion for the Rayleigh-Rice 
surface scatter theory is given by

This suggests that a large incident angle can compensate for 
a moderately rough surface.

1    /cos4   <<λθσπ irel

The smooth-surface criterion must be satisfied to perform the 
inverse scattering problem of predicting surface characteristics
from BRDF measurements
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BRDF Data from a Moderately Rough Surface at 
Different Incident Angles and Wavelengths*

Measurements made from the back side of a silicon wafer by John Stover of The Scatter 
Works in Tucson, AZ.

*



Surface PSD Calculated from the 80° BRDF
(Rayleigh-Rice Theory)
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Phase Variation Introduced by Scattering from an 
Interface between Two Arbitrary Media
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Surface Transfer Function Characterizing Scattering from a 
Rough Interface between Two Arbitrary Media
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Predicting both the BTDF and the BRDF

Surface Transfer Function of Moderately Rough Interface between Two 
Arbitrary Dielectric Media
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