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Abstract

Radiometry is a neglected stepchild in the physics curriculum at most 
universities, and electrical engineers learn even less about radiometry as 
there is not even a quantity analogous to radiance in classical electrical 
engineering fields.  The fact that electrical engineers have been writing 
most of our optics textbooks for the last few decades has thus done little 
to advance the understanding of radiometric nomenclature and principles. 
The recent revelation that diffracted radiance is the fundamental quantity 
predicted by scalar diffraction theory, and is shift-invariant in direction 
cosine space, has lead to the development of a generalized linear systems 
formulation of non-paraxial scalar diffraction phenomena. Thus simple 
Fourier techniques can now be used to predict a variety of wide-angle 
diffraction phenomena. These include: (1) the redistribution of radiant 
energy from evanescent diffracted waves into propagating ones, (2) the 
angular broadening (and apparent shifting) of wide-angle diffracted 
orders, and (3) diffraction efficiencies predicted with an accuracy usually 
thought to require rigorous electromagnetic theory. In addition, a unified 
surface scatter theory has been shown to be more accurate than the 
classical Beckmann-Kirchhoff theory in predicting non-intuitive scatter 
effects at large incident and scattered angles, without the smooth-surface 
limitation of the Rayleigh-Rice scattering theory. This new understanding 
of non-paraxial diffraction phenomena is becoming increasingly important 
in the design and analysis of optical systems, particularly those dealing 
with nano-structures or the increasingly popular field of nano-photonics.



Understanding Natural Phenomena requires 
Simple Mathematical Models

The true nature of most physical phenomena becomes 
evident when simple elegant theories and mathematical 
models conform with experimental observations.

Geocentric Universe Heliocentric Universe
A complex theory, with epicycles upon 
epicycles, was required to describe 
observed retro-grade planetary motion 
when the earth was thought to be the 
center of the universe.

The concept of a heliocentric universe, 
with the planets revolving around the 
sun, allowed a simple and elegant 
theory of planetary motion governed by 
Kepler’s Law’s. 

Planetary Motion

Electromagnetic Theory Quantum Theory
Electromagnetic theory failed to 
explain the emission of electrons 
from metal surfaces under the action 
of radiant energy.

Quantum Theory elegantly accounts for 
the photoelectric threshold frequencies 
and work functions associated with the 
photoelectric effect. 

Photoelectric Effect



Simple Transformations can often make the Nature 
of Physical Phenomena Evident

Simple transformations can often make the math easy—
and provide insight—without changing the physics.  

Examples:
Transforming from Cartesian to spherical coordinates greatly 

simplifies solving Schrodinger’s equation for the hydrogen atom.

Transforming to cylindrical polar coordinates simplifies the 
description of transverse propagating modes in optical fibers

High-energy physicists always transform into the center-of-mass 
coordinate system when performing atomic collision, or radioactive 
decay calculations.  They then apply the laws of conservation of
linear and angular momentum, and finally transform back and 
express the results in the laboratory coordinate system. 



Natural Phenomena Exhibiting Linear, Shift-invariant 
Behavior are Readily Understood

Even complicated natural phenomena can often be 
approximated, over a limited range of some relevant 
parameter, as a linear, shift-invariant process.  It can 
then be characterized by a system transfer function, and 
be more readily understood. 
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Imaging systems with field-dependent aberrations are 
routinely characterized by their modulation transfer function 
(MTF) curves; albeit a separate one for each field angle.

(1)



The Development of Scalar Diffraction Theory did 
not end with Sommerfeld in 1896

● Grimaldi Discovers Diffraction (1665)

● Huygens’ Wavefront Construction (1678)

● Young’s Interference Experiment (1802)

● Huygens-Fresnel Principle (1818)

● Fresnel-Kirchhoff Formulation (1882)

● Rayleigh-Sommerfeld Theory (1896)

● Linear Systems Formulation of Diffraction (1960’s)

● A Global View of Diffraction (Shack, 1972)

● Aberrations of Diffracted Wave Fields (Harvey, 1978)

● Diffracted Radiance: A Fundamental Quantity • • • (1999)

● Non-paraxial Scalar • • • Sinusoidal Phase Gratings (2006)

Historical
Development

Not so
Recent

Very
Recent



• Paraxial Limitation in Conventional Fourier Optics
– Fraunhofer Diffraction and the Paraxial Limitation
– Diffraction Grating Behavior in Cartesian Space

• A Global View of Diffraction (1973-1979)
– Aberrations of Diffracted Wave Fields
– Non-paraxial Shift-invariance in Direction Cosine Space

• Radiometry/Scalar Diffraction (1999)
– Diffracted Radiance: The Fundamental Quantity
– Re-normalization in the Presence of Evanescent waves

• Examples
– Non-paraxial Behavior of Sinusoidal Phase Gratings
– Surface Scatter Behavior for Large Incident and Scattered Angles

• Summary and Conclusions

Outline



It is well known that the irradiance distribution on a plane in the far field 
(Fraunhofer region) of a diffracting aperture is given by the squared 
modulus of the Fourier transform of the complex amplitude distribution 
emerging from the diffracting aperture.1,2
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The Fraunhofer Approximation, and even Fresnel 
Approximation, Implicitly Contain a Paraxial Limitation!

1.  J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York (1968).
2.  J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics, John Wiley & Sons, New York, (1978).
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However, not all Diffraction Phenomena of Interest 
are limited to the Paraxial Regime

Diffraction gratings are inherently wide-angle devices. 

Only for very coarse gratings, exhibiting paraxial diffraction angles, does the simple Fourier 
treatment describe the diffraction pattern projected onto a plane screen (Cartesian coordinates).

• • •••••

Course
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The Fresnel Approximation

•
•

y1 y2

x2

z

x1
l =  z2 + (x2 - x1)2 + (y2 - y1)2

Diffracting
Aperture

Σ

Observation
Region

Z = 0

Rayleigh-Sommerfeld Diffraction Formula for arbitrary illumination.
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If one makes a binomial expansion of the quantity     in the exponent and throws away all 
but the first two terms (which is valid if                      ), then we obtain

which we recognize as the following Fourier Transform integral.
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The Fraunhofer Approximation

•
•
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Σ
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Rayleigh-Sommerfeld Diffraction Formula for arbitrary illumination.

If the more stringent Fraunhofer criterion (                      ) is satisfied, then the quadratic 
phase factor in the argument of the Fourier Transform operation is approximately unity 
over the entire aperture, and the complex amplitude distribution on the observation plane 
can be found directly from the Fourier Transform of the complex amplitude distribution 
emerging from the diffracting aperture.
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Fresnel and Fraunhofer Criteria*
(and Regions of Validity)
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The Fraunhofer criterion imposes very severe restrictions upon the 
observation distance.  For example, a circular diffracting aperture 4 cm (1.6 
inches) in diameter and a wavelength λ = 0.5 μm requires that z >> 2.5 km.  Or 
alternatively, for a 2.5 cm wide square aperture, the Fraunhofer diffraction 
integral is valid only if the observation distance  z >> 1.6 km.



• Paraxial Limitation in Conventional Fourier Optics
– Fraunhofer Diffraction and the Paraxial Limitation
– Diffraction Grating Behavior in Cartesian Space

• A Global View of Diffraction (1973-1979)
– Aberrations of Diffracted Wave Fields
– Non-paraxial Shift-invariance in Direction Cosine Space

• Radiometry/Scalar Diffraction (1999)
– Diffracted Radiance: The Fundamental Quantity
– Re-normalization in the Presence of Evanescent waves

• Examples
– Non-paraxial Behavior of Sinusoidal Phase Gratings
– Surface Scatter Behavior for Large Incident and Scattered Angles

• Summary and Conclusions
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Linear Systems Formulation of Near-field
Scalar Diffraction Theory*
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A very simple and elegant derivation of the Rayleigh-Sommerfeld diffraction integral can be 
obtained by the direct application of Fourier transform theory. Let us first scale the spatial 
variables by the wavelength of light                            and,             .  The reciprocal variables 
in Fourier transform space are then the direction cosines of the propagation vectors of the 
resulting angular spectrum of plane waves.

,/ˆ λxx =  ,/ˆ λyy = λ/ˆ zz =

We now assume that the Fourier transform of the complex amplitude distribution emerging 
from the diffracting aperture exists; and likewise for the complex amplitude distribution in 
the observation plane. We can thus write the following Fourier transform pairs.

The diffracted wave field as a superposition of plane waves.*
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Transfer Function of Free Space

1    )(for            is    

1    )(for                      is    
22

22

≥+=

≤+=

βαγ

βαγ

imaginary

real

)ˆ;,( zH βα

)ˆ2exp(
)ˆ;,(
)ˆ;,()ˆ;,(   zi
zA
zAzH

o
γπ

βα
βαβα ==

)ˆ2exp( )0 ;,)ˆ;,(   ( ziAzA o γπβαβα =

)(1 22 βαγ +−=
where

Since Eq.(11) relates the Fourier transforms of the scalar fields in planes Po and P, it can be 
rewritten in terms of a transfer function of free space, 

where
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In the scaled coordinate system                 , and           ; hence, the Helmholtz 
wave equation becomes

By requiring the individual plane wave components to satisfy the Helmholz wave equation, 
we obtain
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Plane Wave Components in Direction 
Cosine Space
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Consider a unit circle in direction cosine space as illustrated 
below.  Inside the circle γ is real and the corresponding part of the 
optical disturbance will propagate and contribute to the field in 
plane P.  However those components of the direction cosine 
spectrum which lie outside of the unit circle have imaginary values 
of γ and represent that part of the optical disturbance which 
experiences a rapid exponential decay.  These are referred to as
evanescent waves.

This linear systems formulation provides considerable insight 
into diffraction phenomena (i.e., the Fresnel fringes) not provided 
by the historical treatment. 



The Huygens’ Wavelett as an Impulse Response
(Superposition of Spherical Waves)

The convolution theorem of Fourier transform theory requires that a convolution operation 
exists in the domain of real space that is equivalent to Eq.(11).  We thus have an alternative 
method of expressing the complex amplitude distribution in the observation plane by 
convolving the disturbance emerging from the aperture with the impulse response of free 
space.

This impulse response is obtained by inverse Fourier transforming the transfer function of 
free space expressed in Eq.(12).  Starting with the well-known Wehl expansion formula,* and 
following Lalor,** we obtain

The above equation is an exact mathematical expression for a Huygens’ wavelett that is 
valid right down to the actual disturbance emerging from the diffracting aperture; however, for

, it reduces to the familiar expression for a spherical wave with a cosine obliquity 
factor,         ,  and a π/2 phase delay. 
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Impulse Response of Free Space ≡ Huygens’ Wavelett

* H. Wehl, Ann. Phys. 60, 481 (1919).                          E. Lalor, J. Opt. Sci. Am. 58, 1235 (1968).**



The Rayleigh-Sommerfeld Diffraction Integral
(Superposition of Spherical Waves)
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No approximations have been made in deriving Eq.(15); hence, this expression for the 
diffracted wave field is valid throughout the entire space in which the diffraction occurs---right 
down to the aperture.  This equation reduces to the less general but more familiar form of the 
Rayleigh-Sommerfeld diffraction formula when 1ˆ >>z

We have thus derived the general form of the Rayleigh-Sommerfeld diffraction integral from 
two basic assumptions; (i) that the Fourier transform of the optical disturbance exists, and  
(ii) that in propagating, each of the plane wave components obeys the Helmholz wave equation.
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If we write down the convolution integral for the disturbance in the observation plane, using 
the expression in Eq.(13) for           , we obtain the general Rayleigh-Sommerfeld Diffraction 
Formula 
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Aberrations of Diffracted Wave Fields*

J. E. Harvey and R. V. Shack, “Aberrations of Diffracted Wave Fields”, Appl. Opt. 17 (18), 3003-3009, Sept 1978.  

We have previously seen that performing a binomial expansion of the quantity  , and 
retaining only the first two terms results in the Fresnel diffraction formula, which is invalid in 
the near field and also suffers from a paraxial limitation.  In order not to impose these 
restrictions, all terms of the binomial expansion must be retained.  This can be accomplished 
by re-writing the Rayleigh-Sommerfeld diffraction integral as the following Fourier transform 
integral 

Where the complex quantity

can be regarded as a generalized pupil function that contains phase variations (wavefront
aberrations). These aberrations are precisely the effects ignored when making the usual 
Fresnel and Fraunhofer approximations. 
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Thus near-field diffraction patterns are merely aberrated Fraunhofer diffraction 
patterns, and those aberrations are our old friends: spherical aberration, coma, 
astigmatism, etc.

*
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Aberration Coefficients for Different Configurations
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2
2
max

22
max

22
max

ˆ2

ˆ

2
r̂-

ˆ2

ˆ

ˆ

ˆ

2
ẑ-
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The individual terms of the binomial expansion are identical in form to the terms of the 
conventional wavefront aberration function, we can thus merely equate coefficients of like 
terms and obtain analytic expressions for the aberration coefficients. 



Tolerance on Defocus Precisely Locates the Far Field*
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Optical engineers performing field tests or experiments can thus place a 
tolerance on the amount of defocus they are willing to allow (such as    
W020 ≤ λ/4), and calculate precisely where the boundary between the Fresnel 
Region and the Far Field is located.

J. E. Harvey, A. Krywonos, and D. Bogunovic, “Tolerance on Defocus precisely Locates the Far Field”, Appl. Opt. 41, 2586-2588 (2002).  *

Fresnel diffraction patterns are merely defocused Fraunhofer
diffraction patterns.  



Coma and Astigmatism*
It is well known that coma and astigmatism are frequently present in 

diffracted orders produced when converging beams with a small focal 
ratio are incident upon a diffraction grating (such as in many grating 
spectrographs).

These aberrations are not; however, due to any “flaw” in the grating.  
They are inherent to the diffraction process.  The grating merely 
concentrates light at field positions where the aberrations can manifest 
themselves. 

J. E. Harvey and R. V. Shack, “Aberrations of Diffracted Wave Fields”, Appl. Opt. 17 (18), 3003-3009, Sept 1978.  *
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Normal Incidence

Arbitrary Angle of Incidence

When a spherical wave is incident upon the diffracting 
aperture and the observation space is a hemisphere, the 
phase variations (coma and astigmatism) are frequently 
negligible and the diffracted wave field on the hemisphere 
is merely the Fourier transform of the aperture function 
multiplied by a spherical Huygen’s wavelet.  Furthermore, 
this Fourier transform relationship is valid not merely 
over a small region about the optical axis, but over the 
entire hemisphere.  Adding a linear phase variation 
causes the spherical incident wavefront to strike the 
diffracting aperture at an arbitrary angle θo.  Application 
of the shift theorem thus indicates that the scalar 
diffraction process is shift-invariant with respect to 
incident angle when formulated in direction cosine space.

J. E. Harvey, “Fourier Treatment of Near-field Scalar Diffraction Theory”, Am. J. Phys. 47 (11), 974-980, Nov 1979.  *

Summary

• Transfer Function of Free Space is Derived

• Huygens’ Wavelet is the Impulse Response

• Convolution Yields Rayleigh-Sommerfeld Eq.

• Aberrations of Diffracted Wave Fields

• Aberrations Depend upon Geo. Configuration

• Shift-invariance in Direction Cosine Space

Shift-invariance in Direction Cosine Space*

(19)

(18)



ˆ ˆ ˆ ˆ ˆ( ) exp( 2 ) /( )]  { ( , ;0)}oU r i r ir U x yα β γ, ; = [ π F

ˆ ˆ ˆ ˆ ˆ ˆ( ; ) exp( 2 ) /( )]  { ( , ;0)exp( 2 )}o o oU r i r ir U x y i yα β β γ β, − = [ π πF

Normal Incidence

Arbitrary Angle of Incidence

When a spherical wave is incident upon the diffracting 
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phase variations (coma and astigmatism) are frequently 
negligible and the diffracted wave field on the hemisphere 
is merely the Fourier transform of the aperture function 
multiplied by a spherical Huygen’s wavelet.  Furthermore, 
this Fourier transform relationship is valid not merely 
over a small region about the optical axis, but over the 
entire hemisphere.  Adding a linear phase variation 
causes the spherical incident wavefront to strike the 
diffracting aperture at an arbitrary angle θo.  Application 
of the shift theorem thus indicates that the scalar 
diffraction process is shift-invariant with respect to 
incident angle when formulated in direction cosine space.

J. E. Harvey, “Fourier Treatment of Near-field Scalar Diffraction Theory”, Am. J. Phys. 47 (11), 974-980, Nov 1979.  *

Summary

• Transfer Function of Free Space is Derived

• Huygens’ Wavelet is the Impulse Response

• Convolution Yields Rayleigh-Sommerfeld Eq.

• Aberrations of Diffracted Wave Fields

• Aberrations Depend upon Geo. Configuration

• Shift-invariance in Direction Cosine Space

Shift-invariance in Direction Cosine Space*

(19)
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Fourier treatment
no longer paraxial!

Diffraction Process
is shift-invariant in

direction cosine space!



Shift-Invariance in Direction Cosine Space*
Global View of Diffraction Direction Cosine Diagram

Illustration of the evanescent and propagating
orders. Diffraction angles are readily calculated 
from transformation equations.

J. E. Harvey and C. L. Vernold, “Description of Diffraction Grating Behavior in Direction Cosine Space”, Appl. Opt. 37, 8158-8160 (Dec. 1, 1998).*

Illustration of the position of the diffracted 
orders in real space and direction cosine 
space for an arbitrary obliquely incident 
beam (conical diffraction).
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Arbitrary Incident Angle and Orientation of Grating
(number and position of propagating orders)

Position of Diffracted Orders in Direction Cosine Space

- 1

ψ = 30°

- 4 - 3 - 2 - 1 0 1 2

- 3

- 2

- 1

0

1

2

3

4

- 3
- 2

0
1

2
3

- 2

-1

0

1

2

3

4

5

ψ = 0°

ψ = 60°ψ = 90°
α

β

α

β

α

β

α

β

incident

incident incident

incident

ψ

a.)

d.)c.)

b.)

The direction cosine diagram is thus a simple graphical tool 
for determining precisely which orders are propagating and 
which ones are evanescent for an arbitrary incident angle and 
grating orientation.
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H. A. Rowland, “Gratings in Theory and Practice”, Phil. Mag., S.5. Vol. 35, No. 216, 397- 419 (May 1893). *
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Classroom Prop used to Observe “Shift-invariance”
in Direction Cosine Space

A plastic dome serves as a convenient observation hemisphere to help 
students observe the “shift-invariant” behavior in direction cosine space. 
Graph paper is placed on its base and latitude lines marked on the 
observation hemisphere.  A transmission grating is located at its center, 
and with a laser beam incident from 
the back, the diffracted orders are 
observed where they strike the  
hemisphere. 



Quantitative Distribution of Radiant Power 
among the Diffracted Orders

We now know the number and angular distribution of propagating diffracted 
orders; however, suppose we want to know the quantitative distribution of radiant 
power among the propagating diffracting orders.  

● It is widely believed, even among diffraction experts, 
that scalar theory is incapable of accurately predicting 
the diffraction efficiencies for non-paraxial diffracted 
orders, and that a rigorous electromagnetic (vector) 
theory is required!

● In fact, it is widely (and erroneously) believed that 
scalar diffraction theory is synonymous with paraxial 
theory; i.e., scalar diffraction theory is inherently 
limited to making predictions in the paraxial regime!

Of course, what I am about to show you is that, if you make the transformation 
into direction cosine space, and if you choose the proper radiometric quantity, 
even non-paraxial diffraction efficiencies can be predicted (and intuitively 
understood) using simple scalar diffraction theory.  



• Paraxial Limitation in Conventional Fourier Optics
– Fraunhofer Diffraction and the Paraxial Limitation
– Diffraction Grating Behavior in Cartesian Space

• A Global View of Diffraction (1973-1979)
– Aberrations of Diffracted Wave Fields
– Non-paraxial Shift-invariance in Direction Cosine Space

• Radiometry/Scalar Diffraction (1999)
– Diffracted Radiance: The Fundamental Quantity
– Re-normalization in the Presence of Evanescent waves

• Examples
– Non-paraxial Behavior of Sinusoidal Phase Gratings
– Surface Scatter Behavior for Large Incident and Scattered Angles

• Summary and Conclusions

Outline



Radiometry: The Neglected Stepchild of Physics

Let us briefly review the definitions of a few radiometric quantities.  In the past 
physicists have frequently used the word intensity to mean the flow of energy per 
unit area per unit time.  However, by international, if not universal agreement, that 
term is slowly being replaced by the word irradiance.

Radiance, the radiometric analog to the more familiar photometric term brightness,
is defined as radiant power per unit solid angle per unit projected source area.

area) projectedradian (watts/ste

radian)(watts/ste

a)(watts/are

a)(watts/are

       cos         Radiance

                IntensityRadiant 

                ExitanceRadiant 

                Irradiance

2
   

ssc

c

s

c

A
PL

PI

A
PM

A
PE

θω

ω

∂∂
∂=≡

∂
∂=≡

∂
∂=≡

∂
∂=≡

(23)



Getting Intense about Intensity*

James M. Palmer, “Getting Intense about Intensity”, Optics & Photonics News, (Feb 1995). *

Jim Palmer has stated that: “The term intensity is probably the most misused and 
abused word in the technical literature.  It can be found to be used in at least six (6) 
contexts: (1) watts per steradian, (2) watts per unit area, (3) watts per unit area per 
steradian, (4) just plain watts, and most bizarre (5) cm-1/molecule-cm-2, and finally 
(6) cm-2-amagat-1.  These last two are used to describe spectral line strengths.”

Intensity is an International System of Units (SI) Base Quantity!

As an SI Base Quantity, it has the same stature as the other six SI Base 
Quantities: length (meter), mass (kilogram), time (second), electric current 
(ampere), thermodynamic temperature (Kelvin), and amount of substance (mole), 
and finally, intensity carries the units of watts per steradian! All other 
physical quantities are derived from these seven SI Base Quantities.

Intensity is properly used when describing the radiation emanating from a point 
source, or a source small compared to the distance between the source and the 
collector.  For extended sources, one must use the radiometric quantity radiance.

And most diffracting apertures should be considered to be extended sources!



The Fundamental Theorem of Radiometry 
(Derived from the Definition of Radiance)

211221
2 cos cos dΩdALdAdΩLPd θθ ==

Assuming small angles, we can group the r2 with either the source or the receiver 
projected area and obtain two equivalent expressions

Dropping the differentials, the radiant power transmitted to the collector from the source 
is given by the product of the source radiance and either of the two projected area, solid 
angle “ApΩ ” products.

Either ApΩ product can be used. This is often a convenient flexibility in making calculations.
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Diffracted Radiance is the Quantity that is   
Shift-invariant in Direction Cosine Space*

The direction cosines α, β, and γ are related to the angular variables θ and φ in conventional 
spherical coordinates by the following expressions, where we have dropped the subscript s on the 
angles associated with the source

  sin  cos ,       sin  sin ,        cos   .α θ ϕ β θ ϕ γ θ= = =

For this coordinate transformation, the Jacobian determinant in the well-known change of variables 
theorem is given by sinθ cosθ and the differential solid angle can be expressed as 

γβαφθθω /   sin   ddddd c ==
Applying the change of variables theorem for an arbitrary solid angle, we find that, if the source is a 

uniformly illuminated diffracted aperture, the diffracted radiance distribution in direction cosine space 
is given by * 22  0ˆˆ     ),(
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We have thus shown that the squared modulus of the Fourier transform of the complex amplitude 
distribution emerging from the diffracting aperture yields diffracted radiance, not irradiance or intensity. 
This realization greatly extends the range of parameters over which simple Fourier techniques can be 
used to make accurate calculations of wide-angle diffraction phenomena.
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From the shift theorem of Fourier Transform theory, we have

J. E. Harvey, et.al., “Diffracted Radiance: A Fundamental Quantity in Non-Paraxial Scalar Diff. Theory”, Appl. Opt. 38, 6469 (1999).*
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Re-Normalization Conserves Energy in the 
Presence of Evanescent Waves
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In extreme non-paraxial applications, the diffracted radiance distribution function will extend beyond the unit 
circle in direction cosine space.  This can occur due to high spatial frequency content in the diffracting 
aperture resulting in very large diffracted angles, or due to large incident angles that shifts a radiance 
distribution function of modest width such that it extends beyond the unit circle.  In either case, evanescent 
waves are produced and the above equations for radiance must be re-normalized.  This is not done in a 
heuristic manner to conserve energy, but is a direct result of Parseval’s theorem from Fourier transform theory.
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The well-known Wood’s anomalies that occur in diffraction grating efficiency measurements are 
entirely  consistent  with  this  predicted  re-normalization  in  the presence  of  evanescent  waves.
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Diffracted Intensity is Definitely not Shift-Invariant
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In order to calculate radiant intensity to compare with experimental measurements (radiance is not a 
directly measurable quantity), one needs only to apply Lambert’s cosine law (i.e., multiply the radiance 
by γ = cos θs) and integrate over the source area

Again, if the source is a uniformly illuminated diffracting aperture, we obtain diffracted intensity by 
multiplying by As cos θs

Although diffracted radiance can exhibit a discontinuity at the edge of the unit circle (for a 
Lambertian emitter the radiance is constant and drops discontinuously to zero at the edge of the unit 
circle), Lambert’s Cosine Law assures that diffracted intensity never exhibits such discontinuities.  
The figure below illustrates the diffracted intensity profile of the current example in direction cosine 
space.  Note the asymmetry in this intensity profile that is characteristic of diffraction patterns at large 
incident angles. 

{ }
 22

222

1  for                                                                  0  ),(

  1  for      
2

 )ˆ2exp( 0ˆˆ     ),(

>+=−

≤+;,=−

βαββα

βαπβλγγββα

o

oooo

I

yi)yx(UKI F

∫ ∂= ss ALI  cos ),(),( θβαβα
As

(28)



Radiance  as  a  Fundamental  Quantity
(Should we be Surprised?)

In geometrical optics we have the “Brightness Theorem” which states that 
the brightness of an image can never exceed the brightness of the object.  
Brightness is merely the photometric analog of the radiometric quantity 
radiance.  Stated another way, if the radiant power transmitted through an 
optical system is constant (no losses), then

Also, the bidirectional reflectance distribution 
function (BRDF) is a fundamental quantity that 
completely describes the scattering properties of 
a surface.  It is defined as the reflected radiance
(radiant power per unit solid angle per unit 
projected area) in a given direction divided by the 
incident irradiance (radiant power per unit area)
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Scalar diffraction theory is frequently considered inadequate for predicting 
diffraction efficiencies for grating applications where λ/d > 0.1.  It has also been 
stated that scalar theory imposes energy upon the evanescent diffracted orders.  

Paraxial textbook treatment of a sinusoidal 
phase grating of period d and peak to peak 
phase excursion of a. 

Example # 1:  Non-paraxial Behavior of
Sinusoidal Phase Gratings
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This leads to the common misconception that it is impossible to get more than 
33.86% of the total reflected energy into the +1 diffracted order. 
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Diffraction Efficiency of a Perfectly Conducting 
Sinusoidal Phase Grating*
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The diffraction efficiency for a perfectly 
conducting sinusoidal phase grating using our 
non-paraxial linear systems model of scalar 
diffraction theory is given by:

These figures show that using our non-paraxial scalar diffraction theory is able 
to accurately predict diffraction efficiencies over a much larger range than 
previously thought possible.

J. E. Harvey, A. Krywonos and D. Bogunovic, “Non-paraxial Scalar Treatment of Sinusoidal Phase Gratings”, JOSA A 23 (2006).*
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Grating Characterization using Scatterometry*
Harvey’s renormalized scalar diffraction theory makes it possible to extend the 

useful range of scalar diffraction theory from  0.1 < λ/Λ < 1.0  and for  λ/Λ > 1.0.

Using the SDT as a seed function for grating characterization results in a fast and 
robust two-step hybrid method that is a factor of eight (8) faster than a pure vector 
calculation code.

P.- E. Hansen and L. Neilsen, “Combined optimization and hybrid scalar-vector diffraction method for grating topography 
parameters determination”, Materials Science and Engineering B 165, 165-168 (December 2009).*

Grating Period = Λ = 480 nm 

λ/Λ = 1

λ/Λ = 1.46



Example # 2: Surface Scatter Behavior

• Diffraction Effects (Fundamental Physics)

• Geometrical Aberrations (Optical Design Errors)

• Surface Scatter Effects (Optical Fabrication Errors)

• Detector Effects (Film Grain Size, Finite Pixel Size, etc.)

• Plus many other potential error sources
(Provided by Error Budget Tree)

In the Optical Design and Image Analysis Laboratory we must be able to 
perform a complete systems engineering analysis of image quality as 
degraded not only by diffraction and aberrations but surface scatter 
effects from residual optical fabrication errors as well.



Optical Design and Analysis Codes

Commercially-available optical design and analysis codes 
model image degradation due to geometrical aberrations 
very well as they are based upon geometrical ray trace 
techniques. 

And most of those codes have an adequate diffraction 
analysis capability; however, none of them have an 
adequate surface scatter analysis capability. 

ZEMAX, Code V, ASAP, and FRED all claim to be able to 
model image degradation due to surface scatter effects. 
However, you must provide the scatter behavior (BRDF) as 
input; i.e., they cannot predict image degradation from 
optical surface metrology data.

The problem is further compounded by the fact that 
wide-angle surface scatter behavior resulting from 
obliquely-incident beams is often rather complicated and 
non-intuitive.



* O’Donnell and Mendez, “Experimental Study of Scattering from Characterized Random Surfaces”, J. Opt. Soc. Am. A 4, 1194-1205 (1987).

1.) A persistent tendency for experimental data to be narrower 
than  that  predicted  by  the  Beckmann-Kirchhoff  theory.

2.) Experimental data highly asymmetrical about the specular 
beam.   B-K theory symmetrical but discontinuous at -90°.

3.) They also observed that the scattering function does not 
peak  in  the  specular direction.   Again,  no explanation.

A detailed experimental investigation of light 
scattering from well-characterized random rough 
surfaces was reported by O’Donnell and Mendez in 
1987. Several non-intuitive experimental results 
involving large scattering angles and large incident 
angles departed drastically from predictions using 
classical B-K scattering theory. These results were 
presented without adequate explanation, and the 
authors stated that “as far as we know, there is no 
theory available to compare with the results”. These 
non-intuitive experimental results became the basis 
for a significant advancement in our understanding of 
non-paraxial surface scatter (diffraction) behavior.

Non-Intuitive  Surface Scatter  Behavior*
Intensity
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• Rayleigh (1896, 1907)
Investigated scattering of acoustic waves.
Developed vector perturbation theory for gratings.

• Fano (1941)
Expanded on the Rayleigh approach to explain                
anomalous grating behavior.

• Rice (1951)
Applied the Rayleigh perturbation approach to the 
problem of radar scatter from the sea.

• Brekhovskikh (1952)
Introduced use of the Kirchhoff Approximation (KA) 
in scattering problems.

• Isakovich (1952)
First to apply KA to scattering from rough surfaces.

• Beckmann (1963)
Published extensive monograph on scattering from 
rough surfaces using the KA.
Most widely used Western reference.

• Nicodemus (1970)
Introduced the Bidirectional Reflectance Distribution 
Function (BRDF).

• Church (1970’s)
Introduced the vector perturbation approach to the 
optics literature.

• Harvey and Shack (1976)
Developed a linear systems formulation of surface 
scatter theory.

Historical Review of Surface Scatter Theory
Recent Approximate Approaches

This is still a very active area of research (over 
200 references since 1980).

In 2004, Elfouhailey and Guerin* wrote a critical 
review including over thirty (30) different 
approximate approaches of predicting surface 
scatter behavior.  These were divided into three 
categories:

• Small Perturbation Methods

• Kirchhoff Approaches

• Unified Methods

They concluded that 

“there does not seem to be a universal method 
that is to be preferred systematically. All methods 
present a compromise between versatility, 
simplicity, numerical efficiency, accuracy and 
robustness, with a different weighting in these 
various fields...There is still room for 
improvement in the development of approximate 
scattering methods.”

T. M. Elfouhaily and C. A. Guerin, “A Critical Survey of approximate Scattering Wave Theories from Random Rough Surfaces”, Waves in Random Media 14, R1-R40 (2004).*



• Rayleigh (1896, 1907)
Investigated scattering of acoustic waves.
Developed vector perturbation theory for gratings.

• Fano (1941)
Expanded on the Rayleigh approach to explain                
anomalous grating behavior.

• Rice (1951)
Applied the Rayleigh perturbation approach to the 
problem of radar scatter from the sea.

• Brekhovskikh (1952)
Introduced use of the Kirchhoff Approximation (KA) 
in scattering problems.

• Isakovich (1952)
First to apply KA to scattering from rough surfaces.

• Beckmann (1963)
Published extensive monograph on scattering from 
rough surfaces using the KA.
Most widely used Western reference.

• Nicodemus (1970)
Introduced the Bidirectional Reflectance Distribution 
Function (BRDF).

• Church (1970’s)
Introduced the vector perturbation approach to the 
optics literature.

• Harvey and Shack (1976)
Developed a linear systems formulation of surface 
scatter theory.

Historical Review of Surface Scatter Theory
Recent Approximate Approaches

This is still a very active area of research (over 
200 references since 1980).

In 2004, Elfouhailey and Guerin* wrote a critical 
review including over thirty (30) different 
approximate approaches of predicting surface 
scatter behavior.  These were divided into three 
categories:

• Small Perturbation Methods

• Kirchhoff Approaches

• Unified Methods

They concluded that 

“there does not seem to be a universal method 
that is to be preferred systematically. All methods 
present a compromise between versatility, 
simplicity, numerical efficiency, accuracy and 
robustness, with a different weighting in these 
various fields...There is still room for 
improvement in the development of approximate 
scattering methods.”

T. M. Elfouhaily and C. A. Guerin, “A Critical Survey of approximate Scattering Wave Theories from Random Rough Surfaces”, Waves in Random Media 14, R1-R40 (2004).*



Rayleigh-Rice Surface Scatter Theory*
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Q is the polarization dependent reflectance of the surface.  For TE polarization and 
measurements in the plane of incidence Q is given exactly by the geometric mean of 
the sample specular reflectances at θi and θs

S(fx,fy) is the two-sided, two-dimensional surface PSD function expressed in terms of the 
sample spatial frequencies

The Rayleigh-Rice scattering theory is based on the vector perturbation approach first 
done by Rayleigh for gratings.  Using a perturbation of the surface height and solving for 
the exact boundary conditions at the scattering surface leads to an infinite number of 
equations and unknowns which is only practically solved when the roughness is small.

The Rayleigh-Rice surface scatter theory agrees well with experimental wide angle 
scatter measurements and large incident angles for smooth surfaces, however not all 
surfaces of interest satisfy this requirement.

The scattered intensity (normalized by incident power) is given by

S. O. Rice, “Reflection of Electromagnetic Waves from Slightly Rough Surfaces”, Commun. Pure Appl. Math, 4, p 351 (1951). *
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Beckmann-Kirchhoff Scattering Theory*
Beckmann used a Kirchhoff diffraction approach to solving the surface scatter 
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• Fano (1941)
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Applied the Rayleigh perturbation approach to the 
problem of radar scatter from the sea.

• Brekhovskikh (1952)
Introduced use of the Kirchhoff Approximation (KA) 
in scattering problems.

• Isakovich (1952)
First to apply KA to scattering from rough surfaces.

• Beckmann (1963)
Published extensive monograph on scattering from 
rough surfaces using the KA.
Most widely used Western reference.

• Nicodemus (1970)
Introduced the Bidirectional Reflectance Distribution 
Function (BRDF).

• Church (1970’s)
Introduced the vector perturbation approach to the 
optics literature.

• Harvey and Shack (1976)
Developed a linear systems formulation of surface 
scatter theory.

Historical Review of Surface Scatter Theory
Recent Approximate Approaches

This is still a very active area of research (over 
200 references since 1980).

In 2004, Elfouhailey and Guerin* wrote a critical 
review including over thirty (30) different 
approximate approaches of predicting surface 
scatter behavior.  These were divided into three 
categories:

• Small Perturbation Methods

• Kirchhoff Approaches

• Unified Methods

They concluded that 

“there does not seem to be a universal method 
that is to be preferred systematically. All methods 
present a compromise between versatility, 
simplicity, numerical efficiency, accuracy and 
robustness, with a different weighting in these 
various fields...There is still room for 
improvement in the development of approximate 
scattering methods.”
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Transfer Function Characterization of 
Surface Scatter*

In 1976 Harvey and Shack formulated a 
scattering theory in a linear systems format 
resulting in a surface transfer function (STF) 
that relates scattering behavior to surface 
topography. Surface scatter phenomena was 
modeled as a simple scalar diffraction 
process, where the diffracting “aperture” is a 
random phase “aperture” rather than the 
conventional binary amplitude aperture. The 
rough surface merely imparts phase 
variations onto the incident wavefront upon 
reflection.  No explicit “smooth surface”
approximations were made.

Surface Transfer Function
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J. E. Harvey, “Light-Scattering Characteristics of Optical surfaces”, Ph.D. Dissertation, Univ. of Arizona (1976).*

Surface Characteristics

Experimental Scattered Data

ˆ ˆ( , )sC x y
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Harvey-Shack BRDF Model*

R. P. Breault, “Users Manual for APART/PADE Version 6B”,Breault Research Organization, Tucson Arizona (1980).*
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Scattered Intensity Distribution

Angle Spread Function for Normal Incidence● For an isotropically rough surface, the scattered 
radiance function is rotationally symmetric for 
normal incidence. 

● In accordance with our non-paraxial scalar 
diffraction theory, it is shift-invariant with respect 
to incident angle.  

● For large incident angles it is truncated by the unit 
circle and re-normalized (conserves energy).  

● Finally, the scattered intensity distribution is 
obtained by applying Lambert’s Cosine Law 
(makes asymmetrical and shifts peak from 
specular beam).  

Angle Spread Function for Large Incident Angle
(Truncated and re-normalized)

The Angle Spread Function
(Scattered Radiance)



Comparison of Intensity with Experimental Data

● Compare scattered radiance and intensity 
predictions for the O’Donnell-Mendez surface.

● The O’Donnell-Mendez non-intuitive results are 
obviously the result of comparing different 
radiometric quantities! 

● Finally, we compare the Harvey-Shack prediction 
for scattered intensity with the O’Donnell-Mendez 
experimental data.  Excellent agreement is 
indicated except at the knee of the curve. 

J. E. Harvey, C. L. Vernold, A. Krywonos, and P. L. Thompson, “Diffracted Radiance:  A Fundamental Quantity  in Non-paraxial Scalar Diffraction 
Theory”, Appl. Opt. 38, 6469-6481 (1 Nov 1999).*

Radiometry Matters—O’Donnell and Mendez 
were Comparing Apples and Oranges*

Comparison of Predicted Radiance and Intensity
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* J. E. Harvey, A. Krywonos, and C. Vernold, “Modified Beckmann-Kirchhoff Scattering Theory”, submitted to Opt. Eng.

Our new understanding of non-paraxial 
scalar diffraction theory, and our knowledge 
that diffracted radiance is shift-invariant in 
direction cosine space leads us to make the 
following empirical modifications:

● Throw away the “F” factor.

● Equate to “Radiance”.

● Apply the re-normalization factor, K.

● Multiply by Lambert’s cosine function.

Empirically Modified Beckmann-Kirchhoff
Surface Scatter Theory*

Experimental Validation
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Development of a Unified Surface Scatter Theory*
(Arbitrarily Rough Surfaces, Large Incident and Scatter Angles)
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New Surface Transfer Function
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Limitations of the Original Harvey-Shack

The system is no longer shift invariant 
(requires a different transfer function for each 
incident and scattering angle).

This is similar to imaging systems with     
field-dependent aberrations, where a different 
MTF is used for each field angle.

This new surface scatter model has been 
quazi-vectorized by merely substituting 
Stover’s polarization reflectance factor, Q, for 
the reflectance, R, in the scalar treatment.

Phase Variation Depends on Scattering Angle

ˆˆ ˆ ˆ ˆ( , ) = 2 ( ) ( , )i sx y h x yφ π γ γ+

● Scalar theory (no polarization effects).

● Does not account for redistribution of 
energy from evanescent to propagating 
waves.

● Surface transfer function has a built-in 
paraxial limitation.

New Generalized Harvey-Shack Theory
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A. Krywonos, Predicting Surface Scatter using a Linear Systems Formulation of Non-paraxial Scalar diffraction, PhD Dissertation, UCF (2006).*
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Description of Unified Surface Scatter Calculations
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θi = 70° θs = - 90°- 80°

Description of Unified Surface Scatter Calculations
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- 80°θi = 70° θs = - 70°- 60°- 50°- 40°- 30°- 20°- 10°0°

Description of Unified Surface Scatter Calculations
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Description of Unified Surface Scatter Calculations

Intensity = Radiance  * cos(θs)

Beta = sin(θs)
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Unified Surface Scatter Theory
(Experimentally Validated by O’Donnell-Mendez Data)*

K. A. O’Donnell and E. R. Mendez, “Experimental study of scattering from 
characterized random surfaces”, J. Opt. Soc. Am. A, 4, 1194-1205 (1987).*
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Summary and Conclusions

● Reviewed the historical development of scalar diffraction theory.

● Emphasized the paraxial limitation of the conventional linear 
systems formulation of scalar diffraction theory.

● Demonstrated that diffraction phenomena is shift-invariant in 
direction cosine space.

● Discussed the importance of using proper radiometric 
terminology and nomenclature.

● Showed that radiance is the fundamental quantity for describing 
the diffraction and propagation of radiation; i.e., diffracted 
radiance is  shift-invariant in direction cosine space, even for 
non-paraxial diffraction from nanostructures.

● Provided two examples that back up the above claims.
1. The sinusoidal phase grating.
2. Wide-angle scatter from rough surfaces at large incident angles.


