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Abstract

Image degradation due to scattered radiation from residual optical
fabrication errors is a serious problem in many short wavelength
(X-ray/EUV) imaging systems. Most currently-available image analysis
codes (ZEMAX, ASAP, FRED, etc.) require the scatter behavior (BRDF
data) as input in order to calculate the image quality from such systems.
This BRDF data is difficult to measure and rarely available for the
operational wavelengths of interest. Since the smooth-surface
approximation is often not satisfied at these short wavelengths, the
classical Rayleigh-Rice expression that indicates the BRDF is directly
proportional to the surface PSD cannot be used to calculate BRDFs from
surface metrology data for even slightly rough surfaces. An FFTLog
numerical Hankel transform algorithm enables the practical use of the
computationally intensive Generalized Harvey-Shack (GHS) surface
scatter theory to calculate BRDFs for increasingly short wavelengths that
violate the smooth surface approximation implicit in the Rayleigh-Rice
surface scatter theory. A generalized Peterson analytical scatter model is
then used to make accurate image quality predictions. The generalized
Peterson model is numerically validated by both ASAP and ZEMAX.



Applications with Moderately Rough Surfaces

e Imaging with very Short Wavelengths (X-ray/EUV).

o

Predicting BRDFs from Measured or Assumed Surface Metrology
Data

Predicting Image Quality from known Scatter Behavior.

Deriving Optical Fabrication Tolerances necessary to meet Specific
Image Quality Requirements.

e Increasing the Efficiency of Thin-film Photovoltaic
Solar Cells

o

(0

o

Engineering Enhanced Roughness TCO/Si Interfaces.
Inducing “light trapping” for Better Absorption of Incident Light.

Develop a “forward modeling” Capability to Optimize Surface
Characteristics.



Outline

Historical Review of Surface Scatter Theory.

Statement of the EUV Imaging Problem (Summary of Results).

Non-paraxial Scalar Diffraction Theory.
o Scalar Treatment of Sinusoidal Phase Grating,
o Modified Beckmann-Kirchhoff Surface Scatter Model.

Total Integrated Scatter (TIS) for Moderately Rough Surfaces.
Generalized Harvey-Shack (GHS) Scatter Theory.

o Two-parameter Family of Surface Transfer Functions.
o Very Computationally Intense Calculations.

Example of Measured Metrology Data from an EUV Mirror.
o Problem: Large dynamic Range of Relevant Spatial Frequencies.
o Solution: FFTLog Numerical Hankel Transform Algorithm.

BRDFs from Real Metrology Data from Moderately Rough Surfaces.
(that violate the smooth surface approximation).

Generalized Peterson Analytical Scattering Model.

o Dealing with the “Scattered-Scattered” Light.
o Numerical Validation with ASAP and ZEMAX.

Results and Conclusions.



Historical Review of Surface Scatter Theory

Rayleigh (1896, 1907)
Investigated scattering of acoustic waves.
Developed vector perturbation theory for gratings

Fano

7
Expanded on the Rayleigh approach to explain
anomalous grating behavior.

Rice (1951)

Applied the Rayleigh perturbation approach to the
problem of radar scatter from the sea.

Brekhovskikh (1952)

Introduced use of the Kirchhoff Approximation (KA)
in scattering problems.

Isakovich (1952)
First to apply KA to scattering from rough surfaces.

Beckmann (1963)

Published extensive monograph on scattering from
rough surfaces using the KA.

Most widely used Western reference.

Nicodemus (1970)

Introduced the Bidirectional Reflectance Distribution
Function (BRDF).

Church (1970’s)

Introduced the vector perturbation approach to the
optics literature.

Harvey and Shack (1976)

Developed a linear systems formulation of surface
scatter theory.

Recent Approximate Approaches

This is still a very active area of research (over
200 references since 1980).

In 2004, Elfouhailey and Guerin* wrote a critical
review including over thirty (30) different
approximate approaches of predicting surface
scatter behavior. These were divided into three
categories:

 Small Perturbation Methods
* Kirchhoff Approaches
* Unified Methods

They concluded that

“there does not seem to be a universal method
that is to be preferred systematically. All methods
present a compromise between versatility,
simplicity, numerical efficiency, accuracy and
robustness, with a different weighting in these

various fields...There is still room for
improvement in the development of approximate
scattering methods.”

T. M. Elfouhaily and C. A. Guerin, “A Critical Survey of approximate Scattering Wave Theories from Random Rough Surfaces”, Waves in Random Media 14, R1-R40 (2004).
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Other Major Contributor’s

e J. M. Elson (1970s): Vector Surface Scatter Theory.

e Bennett & Mattson: Surface Characterization.

e John C. Stover: Scatter Measurements and Analysis.

e Angela Duparre and Sven Schroder: Surface Char-
acterization & Scatter Measurements
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Statement of the Problem

For short wavelength applications, surface scatter effects from
residual optical fabrication errors frequently limit the performance

of imaging systems rather than geometrical aberrations or
diffraction effects!

e Optical fabrication tolerances necessary to satisfy specific image
quality requirements must be derived:
ZEMAX

o Calculate the BRDF from assumed metrology data. ASAP
o Calculate the image degradation caused by that BRDF. FRED

e Optical surfaces aren't always "smooth“ relative to the
operational wavelength; hence, surface scatter theories using
smooth surface approximations or perturbation techniques
(Rayleigh-Rice) are not valid.

e A new generalized surface scatter theory valid for moderately
rough surfaces and non-paraxial incident and scattering angles
must be developed.

e The large dynamic range in the relevant spatial frequencies of
optically polished surfaces poses severe computational
problems in implementing any new generalized scatter theory.



Objective/Technical Approach/Results
Objective:

e Advance the Linear Systems Formulation of Surface Scatter Theory.

o Valid for both smooth and rough surfaces.
o Valid for both small and large incident and scattered angles.

Technical Approach:

e Surface Scatter is Merely a Diffraction Phenomenon.

o Random surfaces can be described as a superposition of sinusoidal
phase gratings.

o First develop a non-paraxial scalar diffraction model that accurately
predicts the diffraction efficiency of sinusoidal phase gratings.

Results:

e Developed a Linear Systems Formulation of Non-paraxial Scalar
Diffraction Theory (Diffracted Radiance, Direction Cosine space).

e Empirically Modified Beckmann-Kirchhoff Scatter Theory (non-paraxial).

e Rigorously Derived a New Unified Surface Scatter Model.
o Valid for smooth and rough surfaces.
o Valid for both small and large incident and scattered angles.
o Smooth surface approx. leads to an improved inverse scattering solution.
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Diffracted Radiance: The Fundamental Quantity
Predicted by Scalar Theory*

By formulating scalar diffraction theory in terms of the direction cosines of the propagation vectors of the
angular spectrum of plane waves represented by the kernal of the Fourier transform integral, and incorporating
sound radiometric principles, we obtained the following expression for diffracted radiance.

L@p-p) = K 7, |F| U,G.550) exp@1B,9)| | for a?+f< 1
L'(a,f-p) = 0 for a>+p%> 1

‘2

(1)

For large incident and diffraction angles, a portion of the diffracted radiance distribution function will fall
outside of the unit circle in direction space.
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Parseval’s theorem from Fourier transform theory then requires that a re-normalization constant be applied.
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*% J. E. Harvey, et.al., “Diffracted Radiance: A Fundamental Quantity in Non-Paraxial Scalar Diff. Theory”, Appl. Opt. 38, 6469 (1999).



Diffraction Efficiency of a Perfectly
Sinusoidal Phase Grating®

The diffraction efficiency for a perfectly
conducting sinusoidal phase grating using our

non-paraxial linear systems model
diffraction theory is given by:
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These figures show that using our non-paraxial scalar diffraction theory is able
to predict efficiencies over a much larger range than previously thought possible.

* J. E. Harvey, A. Krywonos and D. Bogunovic, “Non-paraxial Scalar Treatment of Sinusoidal Phase Gratings”, JOSA A 23 (2006).



Empirically Modified Beckmann-Kirchhoff
Scattering Model*

Our new understanding of non-paraxial Classical Beckmann-Kirchhoff Theory

scalar diffraction theory, and our knowledge . o
that diffracted radiance is shift-invariant in D nl F Vi, L (4)
direction cosine space led us to make the {p}="—"—S7exp| -2
: . by Avio v o
following empirical modifications: sz z7s
e Throw away the “F” factor. - H 1 )HCOS(@. +6, T
e Equate to “Radiance”. cos 6, ) cos 6; +cos O

e Apply the re-normalization factor, K. Vo =k \/sinz 0, +sin’ 0

e Multiply by Lambert’s cosine function.
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% J. E. Harvey, A. Krywonos, and C. Vernold, “Modified Beckmann-Kirchhoff Scattering Model”, Opt. Eng. 46, Art. No. 078002, 1-10 (July 2007).
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Total Integrated Scatter *

The fraction of the total radiant power contained in the specular beam
after reflection from a moderately rough surface is given by

/ ,1)2] (6)

A=exp[—(4rcosb o

rel

and the fraction of the total reflected radiant power that is scattered out
of the specular beam, or total integrated scatter (TIS) is defined as

B=TIS =1—exp[—(4zcosb. o, ,/1)] (7)

rel

where o, is the bandlimited relevant roughness for 1.22/D < f <1/A.

For smooth surfaces (o, << A), the total integrated scatter (TIS,, )
can thus be approximated as

11§

smooth

= (4 cosb o, /1) (8)

rel

However, one needs to be careful in using this approximate expression
as this quantity can quickly exceed unity for moderately rough
surfaces.



How Smooth is a Smooth Surface?

This graph shows how the smooth-surface approximation for TIS continues
to grow exponentially for large o/A, providing an unrealistically large value for
moderately rough surfaces.
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* J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering, Opt. Soc. of Am., Washington D.C. (1989).



How Smooth is a Smooth Surface?

The smooth-surface approximation is a very severe limitation in predicting the BRDF
as illustrated below for a Gaussian surface PSD. The percent error in the predicted

peak value of the BRDF is illustrated below as a function of o/A.
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Transfer Function Characterization of
Surface Scatter”

Experimental Scattered Data

In 1976 Harvey and Shack formulated a

scattering theory in a linear systems format
resulting in a surface transfer function (STF)
that relates scattering behavior to surface
topography. Surface scatter phenomena was
modeled as a simple scalar diffraction
process, where the diffracting “aperture” is a
random phase “aperture” rather than the
conventional binary amplitude aperture. The
rough surface merely imparts phase
variations onto the incident wavefront upon
reflection. No explicit “smooth surface”
approximations were made.

RELATIVE
INTENSITY

SCATTERED

SAMPLE *200 RADIANCE

Ot 60: 00
000 fy = 15°
At 00 = 30“
— = 45°

Surface Characteristics

C,(x,9)
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e
\ 4

* J. E. Harvey, “Light-Scattering Characteristics of Optical surfaces”, Ph.D. Dissertation, Univ. of Arizona (1976).

Surface Transfer Function

HS (£,9)= exp{—(47f5's)2 [1 — CS (3?,)7)/0}2}}

H (%,y)=A+BQ(%.y) (9)
A=exp[—(4n &S)z]

B=1-exp[—(4n &S)z]




The Associated Angle Spread Function*
(Scattered Radiance)

The Associated Angle Spread Function

Insight into the scattering process was
inferred by considering the nature of the
surface transfer function, and its Fourier
transform, the angle spread function (ASF).
Note that this ASF is scattered radiance, not
irradiance or intensity. Of particular interest
was the inverse scattering problem, and the
wavelength dependence of the scattered light
behavior. It was also convenient that the
scattering function for optical surfaces
polished by conventional techniques upon
ordinary materials exhibited an inverse power
law (fractal) behavior.

HE&,9)=A+B Q,)

1.0

A

A
SCATTERED

F
g <>

A
SPECULAR A

Y

A
y

Y

SURFACE TRANSFER
FUNCTION

b.)

ASF(? ﬁ) =4 5(0!,ﬂ)+S(05,ﬂ)

A SPECULAR

/ BEAM

SCATTERING
FUNCTION

> B

ANGLE SPREAD
FUNCTION

Wavelength Dependence of Surface Scatter

Z
O . .
= -1 g(a B,
(;3 s@Bah = 37 S(G 51
S5 10-2 WAVELENGTH SCALING LAW
L FOR SMOOTH SURFACES
O
=
= I
W 4073k
b=
<€
8 ! A=0.4579 um
10-4 . | e A=0.6328 um
0 0.4 0.8 1.2
ﬂ_:BO

Inverse Power Law Behavior

10'1I- s ')
°& SAMPLE #200 a
[0}
Z %
o] %
= 10-2}
[&] Kna‘ﬂ
=
=) 5
L %a
S 103} h
= m  0°incidence ‘o
m o Kﬂ
L & 15° incldence ‘B\a
': 4 30° Incldence @,
< 10-4} p-
O © 45° Incidence
7] N
@ §0° Incldence $‘§o
4
10-5 i s L L L L L
0.01 0.02 0.05 0.10 0.20 .50 1.00
ﬁ_ﬁo

* J. E. Harvey, “Light-Scattering Characteristics of Optical surfaces”, Ph.D. Dissertation, Univ. of Arizona (1976).



Harvey-Shack Surface Scatter Model*

ASAP Feature Note
B

'a
RO-FN1407(02/00)

Harvey-Shack Overview
Bidirectional Scattering Distribution Function (BSDF)

This ASAP Feature Note briefly discusses the Harvey-Shack model and its use for illumination
applications in ASAP™ optical modeling software.

3085 » Outside U.S/Canada 1-

* R. P. Breault, “Users Manual for APART/PADE Version 6B”,Breault Research Organization, Tucson Arizona (1980).



Modified Harvey-Shack Surface Scatter Theory*

During the 1980’s the STF was generalized
to include the extremely large incident angles
inherent to grazing incidence Wolter Type |
X-ray telescopes. The optical path difference
(OPD) due to reflection from an irregular
surface is illustrated here, and the assumed
phase variation in the plane of the surface
when the Kirchhoff approximation is invoked
is presented. We have still made no explicit
smooth surface approximation!

Optical Path Difference (OPD) upon Reflection
h(y)

N
N

OPD(x,7)=2 h(x,y) cos(8), 0,,=2 0, cos(b)

7 >y

By Invoking the Kirchhoff Approximation

We can write the two-dimensional phase variation
in the plane of the surface due to reflection from a
rough surface at an arbitrary angle of incidence.

#(%,9) = 2 2) OPD = (4712) h(,$) cos(6).)

Of course, we must add to this the linear phase
variation that results from the specularly reflected

plane wavefront. .
¢, =270y

Note that g = sin §, and y, = cos 6..

HS()?,)?) = exp{— (4 ]/oé's)z{l—cs(%c, (10)

<*\>|‘<)

Modified Surface Transfer Function
H (%,3) = A+BO(%,)

]/GS2:|}
where

A=exp[—(4mn 7O&S)2] , B=1-exp[-(4n 706S)2]

and o
A 2 Xy 2
exp{(4n ]/OGS) {CS(%,A/O'S } -1

(x,0) = <
Oy exp(4m ]/OO'S)2 — 1

%k J. E. Harvey, et. al., "Transfer Function Characterization of Grazing Incidence Optical Systems", Appl. Opt. 27, 1527-1533 (15 April 1988).



Generalized Harvey-Shack Surface Scatter Theory*
(Arbitrarily Rough Surfaces, Large Incident and Scatter Angles)

Limitations of Original Harvey-Shack Theory

e Scalar theory (no polarization effects).

e Does not account for redistribution of
energy from evanescent to propagating
waves.

e Surface transfer function has a built-in
paraxial limitation.

Phase Variation Depends on Scattering Angle

Surface Height

H(%,9) =272(y, + 7 (3, 3)

New Surface Transfer Function
Hs()%aj};yiays) = exp{—[27z&s (7/1 +7/s)i|2[1_cs ()’ea)’})/asz}}

(11)

y; =cos,

=\/1—a32 _ﬁsz

C,(x, ) = Surface Autocovariance Function

T1S = l—exp{—[2ﬂ5rez(7/i +7/s)]2}

=cos 0,

BRDF =Q F{H(%,9;7,,7.)}

(12)

New Generalized Harvey-Shack Theory

The system is no longer shift invariant
(requires a different transfer function for each
incident and scattering angle).

This is similar to imaging systems with
field-dependent aberrations, where a different
MTF is necessary for each field angle.

This new surface scatter model has been
quazi-vectorized by merely substituting the
polarization reflectance factor, Q, for the
scalar reflectance, R.

A. Krywonos, Predicting Surface Scatter usmg a Linear Systems Formulation of Non-paraxial Scalar diffraction, PhD Dissertation, UCF (2006).
** A. Krywonos J. E. Harvey and N, Choi, “A Linear Systems Formulation of Scattering Theory for Rough Surfaces with Large Inmdent and Scattering

Angles”, to be submitted to JOSA A (Mar 2010).



Description of Generalized Harvey-Shack Calculations
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Description of Generalized Harvey-Shack Calculations
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Description of Generalized Harvey-Shack Calculations
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Description of Generalized Harvey-Shack Calculations
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Description of Generalized Harvey-Shack Calculations

Intensity = Radiance * cos(0,)
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Description of Generalized Harvey-Shack Calculations

Scattered Intensity
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Description of Generalized Harvey-Shack Calculations

— — — Beckmann-Kirchhoff
Generalized Harvey-Shack |

Scattered Intensity
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Generalized Harvey-Shack Scatter Theory

(Experimentally Validated by O’Donnell-Mendez Data)*

* K. A. O’'Donnell and E. R. Mendez, “Experimental study of scattering from
characterized random surfaces”, J. Opt. Soc. Am. A, 4, 1194-1205 (1987).

1
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0.5 Generalized Harvey-Shack |7
* Experimental Data
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Smooth-surface Approximation to GHS Theory*

(Obliquity Factor Differs from Rayleigh-Rice Theory)
Generalized Harvey-Shack Rayleigh-Rice

2 2
BRDF = 4; (cosb, +cosHs)2QPSD(fx,fy) (13) | BRDF = 1374[ cosd,cosb, O PSD(f,, f,) | (14)
The above two equations are equivalent for small incident and scattered angles; however,
the Rayleigh-Rice expression drives the BRDF to zero at * 90 degrees regardless of the form
of the surface PSD. In general, BRDF ’s do not go to zero at * 90 degrees (a Lambertian
surface is an obvious counter-example). Furthermore the Rayleigh-Rice expression results
in undesirable artifact in the predicted PSD when solving the inverse scattering problem (the
ubiquitous “hook” at high spatial frequencies).

<103 Gaussian PSD K-correlation PSD (inverse power law)
\ RaylelghR|ce 101 T OO SO PP OO PP R NS NUPODPRTOTOS FOPPPTOPOPTOTL O e ----Harvc-:.y—She.zlck .
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1 Connimininnnn R LoLnnimninmnnniinn s :;:::: FE R e
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=57 l =
° l £
T4l ! ~
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Q y Beam o
3 4 | m
m / 1
,I ]
- ’ 1
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/’, !
14 '
[}
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* J. E. Harvey and A. Krywonos, “Improved Characterization of Optical Surfaces from Scattered Light Measurements”,
presented at OSA Topical Meeting on Optical Interference Coatings, Tucson, AZ, June 4-7, 2007; Summary published in
Conference Proceedings.



PSD Predicted from BRDF for MS1 @ 488 nm

Surface PSD (A2 um?)

Rayleigh-Rice | PSD(f.. f,) =

A*  BRDF
167* cos@ cosd O
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We know these “hooks” are not real
because they shift locations with
incident angle and wavelength; hence,

they are typically ignored.
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PSD Predicted from BRDF for MS1 @ 488 nm

At BRDF
47" (cos@, +cosd, )2 0,

Generalized Harvey-Shack | PSD(/..f,) =

1.E+06 E
- = 5deg(+)
== 5deg(-)
1.E+05 [ == 45deg(+)
; == 45deg(-)
&g = T75deg(+)
o 1E+04 | —_ 75deg()
s L
]
N
Q. 1.E+03
Q o
S
=
& 1E+02 |
The “hooks” not only vanish, but the
1.E+01 E | curves fall in line better with the new
- | obliquity factor of the Generalized
Harvey-Shack surface scatter theory.
1.E+00
0.01 0.1 1 10

Spatial Frequency (1/mm)



BRDF Measurements by John Stover

Below are the meticulous, closely-spaced, BRDF measurements made by John
Stover on a clean, smooth, gold-coated surface to examine what happens as we
approach a scattering angle of 90 degrees.

1.E-02 p
== Relative Intensity (CCBRDF)
== BRDF
1.E-03 E
1.E-04 E
~—
U2
—
A
1.E-05 E
1.E-06 3
1.E-07
10 20 30 40 50 60 70 80 90

Scattered angle (degrees) 38



Surface PSD Predicted by BRDF Data

39

The Generalized Harvey-Shack (GHS) obliquity factor does not produce the prominent
“hooks” that are always when using the Rayliegh-Rice surface scatter theory!!!

500

At BRDF
167* cos@, cosf. O

PSD(fx»fy) -

Rayleigh-Rice

\

30

Surface PSD (A2 pm2)
~

20 A* BRDF
PSD(f, f,)= —— 3
47" (cos@, +cosb.) O

10 Generalized Harvey-Shack =

0.3 04 05 0.6 0.7 08 09 1.0 2.0
Spatial Frequency (1/um)

Incidentally Eugene Church obtained this this same obliquity factor in his 1989 SPIE Proc. 1165-04.



Outline

Historical Review of Surface Scatter Theory.

Statement of the EUV Imaging Problem (Summary of Results).

Non-paraxial Scalar Diffraction Theory.
o Scalar Treatment of Sinusoidal Phase Grating,
o Modified Beckmann-Kirchhoff Surface Scatter Model.

Total Integrated Scatter (TIS) for Moderately Rough Surfaces.
Generalized Harvey-Shack (GHS) Scatter Theory.

o Two-parameter Family of Surface Transfer Functions.
o Very Computationally Intense Calculations.

Example of Measured Metrology Data from an EUV Mirror.
o Problem: Large dynamic Range of Relevant Spatial Frequencies.
o Solution: FFTLog Numerical Hankel Transform Algorithm,. =———>

BRDFs from Real Metrology Data from Moderately Rough Surfaces.
(that violate the smooth surface approximation).

Generalized Peterson Analytical Scattering Model.

o Dealing with the “Scattered-Scattered” Light.
o Numerical Validation with ASAP and ZEMAX.

Results and Conclusions.



Example of Measured Metrology Data

(Including the very real “Mid” Spatial Frequencies)
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ABC, or K-Correlation Function Fit to Metrology Data

This metrology data can then be fit with an appropriate fitting function that
can be used for making BRDF predictions, and then calculating image
degradation. Note 7 decades of dynamic range in spatial frequency for D=100mm
and A=100 A.
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1+(B £.) C = 1.089.
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Properties of ABC or K-Correlation Functions*

The ABC, or K-correlation function expressed by Eq.(12) has several very useful
properties. The 2-D surface PSD (assuming isotropic roughness) can be obtained from
the 1-D surface profile measurements by using Eq.(13). The total volume under the 2-D
surface PSD is given by Eq.(14), and the Fourier transform of the 2-D K-correlation
function is given by Eq.(15).

PSD(f.), , = 4 3-parameter K-correlation function or 4BC function. (16)

i+ 2] "

PSD(f), , =K A5 K 1_T((C+D/2) 2-D surface PSD. (17)

[1+(Bf)z](C+1)/2 ’ :2\/; F(C/Z) f=\/ff+7

Tl = TN Total volume under 2-D surface PSD. (18)
(C-1)B
A 2—C/2 o) (C-1)/2 )
ACV (r) = ZEEF(C/Z)( er ﬂ(cn/{%) Surface Autocovariance Function. (19)

Where .7{((3_1),2 is the modified Bessel function of the 2" kind andr = /x” + y°

E. Church and P. Takacs, “The optimal estimation of finish parameters”, in Optical Scatter: Applications, Measurement, and Theory, J. C. Stover, Ed., Proc. SPIE 1530, p. 71-78 (1991).
J, M. Elson, J. M. Bennett, and J. C. Stover, “Wavelength and angular dependence of light scattering from beryllium: comparison of theory and experiment”, Appl. Opt. 32 (1993).
M. Abramowittz and I. A. Stegun, Handbook of Mathematical Functions, New York: Dover (1965).



The FFTLog Hankel Transform Algorithm*

e FFTLog is a set of subroutines that compute the fast Fourier or Hankel (i.e.,
Fourier-Bessel) transform of a periodic sequence of logarithmically spaced
data points.

e FFTLog can be regarded as a natural analogue to the standard Fast Fourier
Transform (FFT), in the sense that, just as the normal FFT gives the exact (to
machine precision) Fourier transform of a linearly spaced periodic sequence
of data points, so also FFTLog gives the exact Fourier or Hankel transform,
of arbitrary order, of a logarithmically spaced periodic sequence of data
points.

e FFTLog shares with the normal FFT the problems of ringing (response to
sudden steps) and aliasing (periodic folding of frequencies), but under
appropriate circumstances FFTLog may approximate the results of a
continuous Fourier or Hankel transform.

e The FFTLog algorithm is particularly useful for applications where the power
spectrum extends over many orders of magnitude in wavenumber k, and
varies smoothly in Ink.

* A. J. S. Hamilton, “Uncorrelated Modes of Nonlinear Power spectrum”, Mon.Not.Roy.Astron.Soc. 312 (2000) 257-284.



Numerical Validation of the FFTLog Algorithm

For well-behaved ABC functions, the FFTLog algorithm is accurate over
25 decades of variation in spatial frequency (Note that the “ringing” and
“aliasing” effects inherent to numerical Fourier transform calculations).

5 1i I I

10° | | N
""""""""""""""""""""""""""""""""""" A =610.322 A2mm
N\ B =120 mm
10° | FFTLog AN C =1.089. -
---------- Analytical “\\

10° | . -
OE ‘\‘\
E 10'10 B t“‘OUQ“ \'\ _
% ak
o N
7] \
% _“].15 B \\ s _
3 N\
5 (C-1)/2 ) \\
B 402| A 27 2rr Tr N\ |

ACV.(r)=A~27 J ==
((r)= 1 . B F(C/Z)( 40—1)/2 B \
25 J \‘\,‘
0T AB I T((C+1)/2) o
PSD(f),.p= K S ez 2 K= \‘\
[1+(B 7) ] 2wz T(C/2) N
10°°1 N
| | | ] ] ] ] b
10°° 10" 10" 10° 10° 10° 10" 10"

Spatial Frequency (1/mm)



Outline

Historical Review of Surface Scatter Theory.

Statement of the EUV Imaging Problem (Summary of Results).

Non-paraxial Scalar Diffraction Theory.
o Scalar Treatment of Sinusoidal Phase Grating,
o Modified Beckmann-Kirchhoff Surface Scatter Model.

Total Integrated Scatter (TIS) for Moderately Rough Surfaces.
Generalized Harvey-Shack (GHS) Scatter Theory.

o Two-parameter Family of Surface Transfer Functions.
o Very Computationally Intense Calculations.

Example of Measured Metrology Data from an EUV Mirror.
o Problem: Large dynamic Range of Relevant Spatial Frequencies.
o Solution: FFTLog Numerical Hankel Transform Algorithm.

BRDFs from Real Metrology Data from Moderately Rough Surfaces.
(that violate the smooth surface approximation).

Generalized Peterson Analytical Scattering Model.

o Dealing with the “Scattered-Scattered” Light.
o Numerical Validation with ASAP and ZEMAX.

Results and Conclusions.



SUVI FP1 Metrology Data
(SUVI Primary Mirror)
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A1=200000
B1=0.067

H
Gaussian Function

FIPI‘I 'I"uflletrolbglly 'I'Data

—_— — — ——_——_——_——_——_———_——_——_——_——_—_——_——_——_——_——_——_———_—— ]

10°

10

10°

10° 10" 10°
Spatial Frequency (1/mm)

10"

107?

1st Fitting Function to FP1 Metrology Data

—

(;ww-.7) asd a-z

10° |

10

107"



2"d Fitting Function to FP1 Metrology Data
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3rd Fitting Function to FP1 Metrology Data
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Sum of three Fitting Functions
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FP1 2-D PSD Metrology Data

(With Band-limited Roughness Values)

OneﬂGaussmn + Two ABC Functlons
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BRDF Predictions from FP1 Metrology Data

.0 From SUVI Primary Mirror (FP1) Metrology Data
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BRDF Predictions from FP1 Metrology Data

To observe small-angle scatter behavior, plot in a log-log format!
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These BRDF curves can now be interpolated and sampled then input into
various commercially-available image analysis codes (such as ASAP or
ZEMAX) to calculate image degradation from multi-element imaging systems.



Outline

Historical Review of Surface Scatter Theory.

Statement of the EUV Imaging Problem (Summary of Results).

Non-paraxial Scalar Diffraction Theory.
o Scalar Treatment of Sinusoidal Phase Grating,
o Modified Beckmann-Kirchhoff Surface Scatter Model.

Total Integrated Scatter (TIS) for Moderately Rough Surfaces.
Generalized Harvey-Shack (GHS) Scatter Theory.

o Two-parameter Family of Surface Transfer Functions.
o Very Computationally Intense Calculations.

Example of Measured Metrology Data from an EUV Mirror.
o Problem: Large dynamic Range of Relevant Spatial Frequencies.
o Solution: FFTLog Numerical Hankel Transform Algorithm.

BRDFs from Real Metrology Data from Moderately Rough Surfaces.
(that violate the smooth surface approximation).

Generalized Peterson Analytical Scattering Model.

o Dealing with the “Scattered-Scattered” Light.
o Numerical Validation with ASAP and ZEMAX.

Results and Conclusions.



Analytic Expression for In-field Scattered
Irradiance in Imaging Systems*

Most analyses of image degradation from in-field scattered
light are obtained from very computationally-intensive
calculations; i.e, by tracing millions of rays on a computer.

However, Peterson has developed an analytic treatment
that makes all of this unnecessary (for smooth-surface and
paraxial applications). These analytic formulas provide
insight and understanding that is totally absent from the
conventional brute-force ray-tracing approaches.

Design trades can thus be performed, and limits on system
performance assessed, without the need for complex
computer calculations.

Gary Peterson, “Analytic Expressions for In-field Scattered Light Distribution”, Proc SPIE 5178-01, 184-193 (2004).
Gary Peterson, Analytic Expressions for In-field Stray Light Irradiance in Imaging Systems, Master’s Report, OSC/UA (2003).



Analytic Expression for In-field Scattered
Irradiance in Imaging Systems*

Making use of the Lagrange invariant of 1st-order imaging systems and the brightness
theorem (conservation of radiance), the scattered irradiance in the focal plane of an
imaging system from the jt" element for an in-field point source was derived by Peterson

2
_ 2 Sen r 20
E (r)=E,,x(na)"T —%-BRDF| (na)— (20)

j S

where r is the distance from the point source image on the detector, na is the numerical
aperture of the system, T is the system transmittance, s is the radius of the entrance
pupil, s; is the radius of the beam on the j* element, and E,; is the irradiance in the
entrance pupil of the system. This formulation is based upon both a smooth-surface and
a paraxial assumption. For a two-mirror telescope, we can thus write

BRDF,((na)r/s,)  BRDF,((na)r!s,)

S S
p N
] _ _ 1 _ S_p . 2 r_
Since s, = 5, , na——zF# =7 and P =E 7s,"T (f —systemfocallength)
E})(’”) _ (fij [BRDF (r/f) + [ j BRDF (s, /s,)(r/ f’))} (22)
T Ss

* G. Peterson, “Analytic expressions for in-field scattered light distributions”, Proc SPIE 5178 (2004).



Generalized Peterson Analytical Scattering Model*

Since Peterson’s elegant and insightful treatment is limited
by both a paraxial and a smooth-surface assumption, it must
be generalized to include scattering from moderately rough
surfaces before applying to the NOAA Solar UV Imager (SUVI)
Program. We have thus:

¢ Removed the “smooth-surface” limitation by including
‘“scattered-scattered” radiation from the two-mirror SUVI
telescope.

e Verified that the SUVI application is indeed paraxial.

e The simple analytical model has then been numerically
validated by comparing the results with the very
computationally-intensive commercially-available ZEMAX
and ASAP codes.

% J. E. Harvey, Narak Choi, Andrey Krywonos and Jesus Marcen, “Calculating BRDFs from Surface PSDs for Moderately
Rough Surfaces”, Proc. SPIE 7426-42 (August 2009).



The SUVI Spec Surface PSD

(Scattered-Scattered Light will be Very Substantial)
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Scattering in a Two-mirror EUV Telescope

For a solar EUV telescope surface scatter from the primary and secondary
mirrors sometimes dominates both geometrical aberrations and diffraction

effects in the degradation of image quality.

Direct (A,)

direct scattered
(ABs)

......................... dir?ﬁied\“ \
i Adhs
e T > - l
scattered scattered Scattered direct | Y -
(B.B,)

(BpAs)

Classic PSF
(Image Core and Scattered Halo)

A= expl— (47[0;61 / /1)2J = Fraction of total reflected energy in specular beam. (23)
B

TIS = 1- A = Fraction of total reflected energy in scattered halo.

The SUVI point spread function (PSF) consists of four components
with an energy distribution given by:

Direct-direct component (Specular) — A A
Scattered-direct component — B, A,

Direct-scattered component — A, B,
Scattered-scattered component — B B,



Energy Distribution between PSF Components

The radiant energy distribution between the four components of the PSF is shown
below as a function of /L. The o is the relevant rms roughness (PSD integrated from

foin < T < 1/A) .
becomes dominant.

Note that for o/A > 0.066, the broad scattered-scattered component
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Including the Scattered-Scattered Light

Since most EUV applications clearly do not satisfy the smooth surface
assumption, but are perceived to satisfy the paraxial limitation, we merely
construct an expression for each of the four components making up the PSF in the
focal plane of the telescope, and substitute it into Eq.(18) of Peterson’s analytic
treatment

PSF = PSF,, + PSF_, + PSF . + PSF (24)

Care is taken to normalize each component such that their respective volumes

(fractional total reflected radiant power) will be given by A A , B A, A B, and B B..

We will assume a 175 cm focal length Ritchey-Chretien telescope design with an
aperture diameter of 19 cm and an obscuration ratio of € = 0.4. There will thus be
no geometrical aberrations on-axis; and the specular beam will be the well-known
Fraunhofer diffraction pattern produced by the annular aperture of the telescope

2
1 2J, (x) 22 (gx) h __

The above expression is normalized to a unit volume. It will thus need to be
multiplied by the coefficient A A in the following analysis.



BRDF Profiles Calculated from SPEC PSD with
the GHS Scattering Theory
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Normalized Irradiance

Scattered-Scattered Light Dominates

(A =93.9 A)
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Normalized Irradiance
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Fractional Encircled Energy

FEE Plots of the 4 Components of PSF

(L =93.9 A)
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Irradiance Profile in Telescope Focal Plane
(Predicted by Generalized Peterson Model)
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FEE Plots of the Total PSF Projected onto Sky
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SUVI Image Quality Requirements

(Fractional Ensquared Energy: Expressed as %)

Square Wavelength

Size

(arcsec) 93.9 131.2 171.1 195.1 284.2 303.8
7x7 43 50 50 50 50 50

10x10 49 53 59 60 60 60
20x20 57 61 65 65 65 65
40x40 67 69 70 70 70 70
65x65 72 75 75 75 75 75
150x150 78 82 84 85 85 85




Numerical Validation by ASAP and ZEMAX*
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* J. E. Harvey, N. Choi, A. Krywonos, G. Peterson, and M. Bruner, “Image Degradation due to Scattering Effects in Two-mirror
Telescopes”, Submitted for publication in Opt. Eng. (Mar 2010)



Summary, Results and Conclusions

Stated a Need for Calculating Image Degradation from Measured
Metrology Data.

Reviewed a Generalized Surface Scatter (GHS) Theory valid for
Rough Surfaces at Large Incident and Scattered Angles.

Discussed Computational Problems for Surface PSDs with Large
Dynamic Range in Spatial Frequency.

Introduced the FFTLog Algorithm as a Solution to the
computational Problem.

Demonstrated BRDFs Calculated from Surface PSDs for
increasingly short wavelengths (which violate the smooth-surface
approximation).

Generalized the Peterson Analytical Model for Calculating Image
Degradation to include surface scatter from rough surfaces.

Demonstrated avariety of useful parametric performance predictions
provided by the Generalized Peterson Analytical Model.

Numerically validated the Generalized the Peterson Analytical
Model with both ASAP and ZEMAX.



