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Abstract

Image degradation due to scattered radiation from residual optical 
fabrication errors is a serious problem in many short wavelength
(X-ray/EUV) imaging systems. Most currently-available image analysis 
codes (ZEMAX, ASAP, FRED, etc.) require the scatter behavior (BRDF 
data) as input in order to calculate the image quality from such systems. 
This BRDF data is difficult to measure and rarely available for the 
operational wavelengths of interest. Since the smooth-surface 
approximation is often not satisfied at these short wavelengths, the 
classical Rayleigh-Rice expression that indicates the BRDF is directly 
proportional to the surface PSD cannot be used to calculate BRDFs from 
surface metrology data for even slightly rough surfaces. An FFTLog
numerical Hankel transform algorithm enables the practical use of the 
computationally intensive Generalized Harvey-Shack (GHS) surface 
scatter theory to calculate BRDFs for increasingly short wavelengths that 
violate the smooth surface approximation implicit in the Rayleigh-Rice 
surface scatter theory.  A generalized Peterson analytical scatter model is 
then used to make accurate image quality predictions.  The generalized 
Peterson model is numerically validated by both ASAP and ZEMAX.
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Statement of the Problem
For short wavelength applications, surface scatter effects from

residual optical fabrication errors frequently limit the performance 
of imaging systems rather than geometrical aberrations or 
diffraction effects!  

J. Harvey, A. Krywonos, and J. Stover, Unified Scatter Model for Rough surfaces at Large Incident and Scattered Angles, Proc. SPIE 6672-12 (2007).* 3

● Optical fabrication tolerances necessary to satisfy specific image 
quality requirements must be derived:

о Calculate the BRDF from assumed metrology data.
о Calculate the image degradation caused by that BRDF.

● Optical surfaces aren't always "smooth“ relative to the 
operational wavelength; hence, surface scatter theories using 
smooth surface approximations or perturbation techniques 
(Rayleigh-Rice) are not valid.

● A new generalized surface scatter theory (GHS) is valid for both
rough surfaces and non-paraxial incident and scattering angles.*

● The large dynamic range in the relevant spatial frequencies has 
caused severe computational problems in implementing the new 
generalized scatter theory.

ZEMAX
ASAP
FRED



Outline

4

● Brief  Review  of  Surface  Scatter  Theory.

● Total Integrated Scatter (TIS) for Moderately Rough Surfaces. 

● Demonstration of the Generalized Harvey-Shack Scatter Theory.
o Very Computationally Intense Calculations.
o Problem: Large dynamic Range of Relevant Spatial Frequencies.
o Solution: FFTLog Numerical Hankel Transform Algorithm.

● Example of measured metrology data from optical surface.

● BRDFs from Surface PSDs for increasingly short wavelengths        
(that violate the smooth surface approximation). 

● Generalized Peterson Analytical Scattering Model.
o Dealing with the “Scattered-Scattered” Light.
o Numerical Validation with ASAP and ZEMAX.

● Results and Conclusions.
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Rayleigh-Rice Surface Scatter Theory*
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Q is the polarization dependent reflectance of the surface.  For TE polarization and 
measurements in the plane of incidence Q is given exactly by the geometric mean of 
the sample specular reflectances at θi and θs

S(fx,fy) is the two-sided, two-dimensional surface PSD function expressed in terms of the 
sample spatial frequencies

The Rayleigh-Rice scattering theory is based on the vector perturbation approach first 
done by Rayleigh for gratings.  Using a perturbation of the surface height and solving for 
the exact boundary conditions at the scattering surface leads to an infinite number of 
equations and unknowns which is only practically solved when the roughness is small.

The Rayleigh-Rice surface scatter theory agrees well with experimental wide angle 
scatter measurements with large incident angles for smooth surfaces, however not all 
surfaces of interest satisfy this smooth-surface requirement.

The scattered intensity (normalized by incident power) is given by

S. O. Rice, “Reflection of Electromagnetic Waves from Slightly Rough Surfaces”, Commun. Pure Appl. Math, 4, p 351 (1951). * 5
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Beckmann-Kirchhoff Scattering Theory*
Beckmann used a Kirchhoff diffraction approach to solving the surface scatter 

problem.  Instead of solving for the exact boundary conditions, he approximated the 
fields and normal derivatives at a point on the scattering surface with the fields and 
normal derivatives that would exist on a plane tangent to that point.  This allows the 
Beckmann-Kirchhoff theory to be used for rougher surfaces, however it also requires 
the radius of curvature of the surface features to be much larger than the wavelength.  In 
addition, the Beckmann-Kirchhoff theory contains a built-in paraxial limitation.

Beckmann only provides a closed-form solution for the case of moderately rough and 
very rough surfaces when the surface can be described by a Gaussian autocovariance
function.  In that case, the scattered intensity is given by
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where

P. Beckmann and A. Spizzichino, Scattering of Electromagnetic Waves from Rough Surfaces, Pergamon Press, New York, 1963. *
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Generalized Harvey-Shack Surface Scatter Theory*
(Arbitrarily Rough Surfaces, Large Incident and Scatter Angles)
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Limitations of Original Harvey-Shack Theory

The system is no longer shift invariant 
(requires a different transfer function for each 
incident and scattering angle).

This is similar to imaging systems with     
field-dependent aberrations, where a different 
MTF is necessary for each field angle.

This new surface scatter model has been 
quazi-vectorized by merely substituting the 
polarization reflectance factor, Q, for the 
reflectance, R, in the scalar treatment.

Phase Variation Depends on Scattering 
Angle

ˆˆ ˆ ˆ ˆ( , ) = 2 ( ) ( , )i sx y h x yφ π γ γ+

● Scalar theory (no polarization effects).

● Does not account for redistribution of 
energy from evanescent to propagating 
waves.

● Surface transfer function has a built-in 
paraxial limitation.

New Generalized Harvey-Shack Theory
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A. Krywonos, Predicting Surface Scatter using a Linear Systems Formulation of Non-paraxial Scalar diffraction, PhD Dissertation, UCF (2006).
J. Harvey, et.al., Unified Scatter Model for Rough surfaces at Large Incident and Scattered Angles, Proc. SPIE 6672-12 (2007).***
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Smooth-surface Approximation to GHS Theory 
(Obliquity Factor Differs from Rayleigh-Rice Theory)
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The above two equations are equivalent for small incident and scattered angles; however, 
the Rayleigh-Rice expression drives the BRDF to zero at ± 90 degrees regardless of the form 
of the surface PSD.  In general, BRDF ’s do not go to zero at ± 90 degrees (a Lambertian
surface is an obvious counter-example).  Furthermore the Rayleigh-Rice expression results 
in undesirable artifact in the predicted PSD when solving the inverse scattering problem (the 
ubiquitous “hook” at high spatial frequencies).
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Outline

● Brief  Review  of  Surface  Scatter  Theory.

● Total Integrated Scatter (TIS) for Moderately Rough Surfaces. 

● Demonstration of the Generalized Harvey-Shack Scatter Theory.
o Very Computationally Intense Calculations.
o Problem: Large dynamic Range of Relevant Spatial Frequencies.
o Solution: FFTLog Numerical Hankel Transform Algorithm.

● Example of measured metrology data from optical surface.

● BRDFs from Surface PSDs for increasingly short wavelengths        
(that violate the smooth surface approximation). 

● Generalized Peterson Analytical Scattering Model.
o Dealing with the “Scattered-Scattered” Light.
o Numerical Validation with ASAP and ZEMAX.

● Results and Conclusions.
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Total Integrated Scatter *

10

The fraction of the total radiant power contained in the specular beam 
after reflection from a moderately rough surface is given by

and the fraction of the total reflected radiant power that is scattered out 
of the specular beam, or total integrated scatter (TIS) is defined as

where σrel is the bandlimited relevant roughness for 1.22/D < f <1/λ .

For smooth surfaces (σ << λ), the total integrated scatter (TISsmooth) can 
thus be approximated as

However, one needs to be careful in using this approximate expression 
as this quantity can quickly exceed unity for moderately rough 
surfaces.  
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How Smooth is a Smooth Surface?
This graph shows how the smooth-surface approximation for TIS continues 

to grow exponentially for large σ/λ , providing an unrealistically large value for 
moderately rough surfaces. 
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How Smooth is a Smooth Surface?
The smooth-surface approximation is a very severe limitation in predicting the BRDF 

as illustrated below for a Gaussian surface PSD.  The percent error in the predicted 
peak value of the BRDF is illustrated below as a function of σ/λ.
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Description of Generalized Harvey-Shack Calculations
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θi = 70° θs = - 90°- 80°

Description of Generalized Harvey-Shack Calculations
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- 80°θi = 70° θs = - 70°- 60°- 50°- 40°- 30°- 20°- 10°0°

Description of Generalized Harvey-Shack Calculations
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Description of Generalized Harvey-Shack Calculations

Intensity = Radiance  * cos(θs)

Beta = sin(θs)
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Description of Generalized Harvey-Shack Calculations
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Description of Generalized Harvey-Shack Calculations
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Generalized Harvey-Shack Scatter Theory
(Experimentally Validated by O’Donnell-Mendez Data)*

18

K. A. O’Donnell and E. R. Mendez, “Experimental study of scattering from 
characterized random surfaces”, J. Opt. Soc. Am. A, 4, 1194-1205 (1987).*

Sc
at

te
re

d 
In

te
ns

ity

Scattering Angle (degrees)

2.27 m
0.6328 m
70 degrees

s

i

σ μ
λ μ
θ

=

=
=

3.5  sσ λ>

Very  rough  surface.
Large incident angle.

Beckmann-Kirchhoff
Generalized Harvey-Shack
Experimental Data



Outline

● Brief  Review  of  Surface  Scatter  Theory.

● Total Integrated Scatter (TIS) for Moderately Rough Surfaces. 

● Demonstration of the Generalized Harvey-Shack Scatter Theory.
o Very Computationally Intense Calculations.
o Problem: Large dynamic Range of Relevant Spatial Frequencies.
o Solution: FFTLog Numerical Hankel Transform Algorithm.

● Real Measured Metrology data from an EUV Telescope Mirror.

● BRDFs from Surface PSDs for increasingly short wavelengths        
(that violate the smooth surface approximation). 

● Generalized Peterson Analytical Scattering Model.
o Dealing with the “Scattered-Scattered” Light.
o Numerical Validation with ASAP and ZEMAX.

● Results and Conclusions.
19



Example of Measured Metrology Data
(Including the very real “Mid” Spatial Frequencies)

It often takes three, or even four different metrology instruments to 
measure the surface characteristics over the entire range of relevant 
spatial frequencies for a given application. 

This metrology data can then be fit with an appropriate fitting function that 
can be used for making BRDF predictions, and then calculating image 
degradation. Note 7 decades of dynamic range in spatial frequency for D = 100mm
and λ = 100 A.
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ABC, or K-Correlation Function Fit to Metrology Data*
Here we have fit the measured metrology data with an ABC or K-Correlation 

Function of the following form. The advantages of using a fitting function of 
this form is shown on the next slide.

0.25/mm 6/mm 700/mm 5x104/mm0.25/mm0.25/mm 6/mm6/mm 700/mm700/mm 5x104/mm5x104/mm

10
Spatial Frequency (mm-1)-

-1 1 20 3 4 510 10 10 10 10 10

Su
rf

ac
e 

PS
D

 (A
2

m
m

)
2

10

106

104

100

10-2

10-4

10-6
-2

102

AFM

Full-aperture
Interferometr

y μ PMI
(2.5X)

μ PMI
(50X)

1/λ1/D

21

( )[ ] 2/ 21
 1

  )( C

x

Dx
fB

AfPSD
+

=− (11)

E. L. Church and P. Z. Takacs, “The optimal estimation of finish parameters”, Proc. SPIE 1530, p. 71-78 (1991).*



The ABC, or K-correlation function expressed by Eq.(12) has several very useful 
properties. The 2-D surface PSD (assuming isotropic roughness) can be obtained from 
the 1-D surface profile measurements by using Eq.(13).  The total volume under the 2-D 
surface PSD is given by Eq.(14), and the Fourier transform of the 2-D K-correlation 
function is given by Eq.(15).  

Properties of ABC or K-Correlation Functions*
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The FFTLog Hankel Transform Algorithm*

23

● FFTLog is a set of subroutines that compute the fast Fourier or Hankel (i.e., 
Fourier-Bessel) transform of a periodic sequence of logarithmically spaced 
data points.

● FFTLog can be regarded as a natural analogue to the standard Fast Fourier 
Transform (FFT), in the sense that, just as the normal FFT gives the exact (to 
machine precision) Fourier transform of a linearly spaced periodic sequence 
of data points, so also FFTLog gives the exact Fourier or Hankel transform, 
of arbitrary order, of a logarithmically spaced periodic sequence of data
points.

● FFTLog shares with the normal FFT the problems of ringing (response to 
sudden steps) and aliasing (periodic folding of frequencies), but under 
appropriate circumstances FFTLog may approximate the results of a 
continuous Fourier or Hankel transform.

● The FFTLog algorithm is particularly useful for applications where the power 
spectrum extends over many orders of magnitude in wavenumber k, and 
varies smoothly in lnk.

* A. J. S. Hamilton, “Uncorrelated Modes of Nonlinear Power spectrum”, Mon.Not.Roy.Astron.Soc. 312 (2000) 257-284. 



Numerical Validation of the FFTLog Algorithm
For well-behaved ABC functions, the FFTLog algorithm is accurate over 

25 decades of variation in spatial frequency (Note that the “ringing” and 
“aliasing” effects inherent to numerical Fourier transform calculations). 
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SUVI FP1 Metrology Data
(SUVI Primary Mirror)

Region # 2 Region # 3 Region # 4Region # 2 Region # 3 Region # 4Region # 2 Region # 3 Region # 4Region 1 Region 2 Region 3
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1st Fitting Function to FP1 Metrology Data

Region # 2 Region # 3 Region # 4Region # 2 Region # 3 Region # 4Region # 2 Region # 3 Region # 4Region 1 Region 2 Region 3
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2nd Fitting Function to FP1 Metrology Data

Region # 2 Region # 3 Region # 4Region # 2 Region # 3 Region # 4Region # 2 Region # 3 Region # 4Region 1 Region 2 Region 3
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3rd Fitting Function to FP1 Metrology Data

Region # 2 Region # 3 Region # 4Region # 2 Region # 3 Region # 4Region 1 Region 2 Region 3
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Sum of three Fitting Functions

Region # 2 Region # 3 Region # 4Region 1 Region 2 Region 3
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FP1 2-D PSD Metrology Data
(With Band-limited Roughness Values)

λ(Ǻ) σrel TIS
303.8       33.4987      0.8534
284.2       33.4997      0.8885
195.1       33.5055      0.9905
171.1       33.5075      0.9977
131.2       33.5116      1.0000

93.9       33.5168      1.0000

λ(Ǻ) σrel TIS
303.8       33.4987      0.8534
284.2       33.4997      0.8885
195.1       33.5055      0.9905
171.1       33.5075      0.9977
131.2       33.5116      1.0000

93.9       33.5168      1.0000

λ(Ǻ) σrel TIS
303.8       33.4987      0.8534
284.2       33.4997      0.8885
195.1       33.5055      0.9905
171.1       33.5075      0.9977
131.2       33.5116      1.0000

93.9       33.5168      1.0000

λ(Ǻ) σrel TIS
303.8       33.4987      0.8534
284.2       33.4997      0.8885
195.1       33.5055      0.9905
171.1       33.5075      0.9977
131.2       33.5116      1.0000

93.9       33.5168      1.0000

One Gaussian + Two ABC Functions

Region 1 Region 2 Region 3
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BRDF Predictions from FP1 Metrology Data 

Beta = sin θ

From SUVI Primary Mirror (FP1) Metrology Data

PSD Fitting Functions
A1 = 200000 A2 = 3300      A3 = 0.0027
B2 = 0.067       B2 = 25          B3 = 0.0026

C2 = 1.92       C3 = 1.001

λ(Ǻ) σrel TIS
1000          33.4704      0.1621
500          33.4811      0.5074
303.8       33.4888      0.8532
284.2       33.4899      0.8884
195.1       33.4957      0.9905
171.1       33.4977      0.9976
131.2       33.5018      1.0000

93.9       33.5070      1.0000

λ = 93.9 Å

λ = 131.2 Å

λ = 171.1 Å

λ = 195.1 Å

λ = 284.2 Å
λ = 303.8 Å

λ = 500 Å
λ = 1000 Å
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BRDF Predictions from FP1 Metrology Data

Beta = sin θ

PSD Fitting Functions
A1 = 200000 A2 = 3300      A3 = 0.0027
B2 = 0.067     B2 = 25          B3 = 0.0026

C2 = 1.92 C3 = 1.001

λ(? ) σrel TIS
1000          33.4704      0.1621
500          33.4811      0.5074
303.8       33.4888      0.8532
284.2       33.4899      0.8884
195.1       33.4957      0.9905
171.1       33.4977      0.9976
131.2       33.5018      1.0000
93.9       33.5070      1.0000

Beta = sinθ

Beta = sin θ

PSD Fitting Functions
A1 = 200000 A2 = 3300      A3 = 0.0027
B2 = 0.067     B2 = 25          B3 = 0.0026

C2 = 1.92 C3 = 1.001

λ(Ǻ) σrel TIS
1000          33.4704      0.1621
500          33.4811      0.5074
303.8       33.4888      0.8532
284.2       33.4899      0.8884
195.1       33.4957      0.9905
171.1       33.4977      0.9976
131.2       33.5018      1.0000
93.9       33.5070      1.0000

Beta = sinθ
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Outline

● Brief  Review  of  Surface  Scatter  Theory.

● Total Integrated Scatter (TIS) for Moderately Rough Surfaces. 

● Demonstration of the Generalized Harvey-Shack Scatter Theory.
o Very Computationally Intense Calculations.
o Problem: Large dynamic Range of Relevant Spatial Frequencies.
o Solution: FFTLog Numerical Hankel Transform Algorithm.

● Real Measured Metrology data from an EUV Telescope Mirror.

● BRDFs from Surface PSDs for increasingly short wavelengths        
(that violate the smooth surface approximation). 

● Generalized Peterson Analytical Scattering Model.
o Dealing with the “Scattered-Scattered” Light.
o Numerical Validation with ASAP and ZEMAX.

● Results and Conclusions.
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Analytic Expression for In-field Scattered 
Irradiance in Imaging Systems*

Although optical systems are complex, the distribution of 
scattered light from their elements is not. The halo of scattered 
light that surrounds a bright source image is merely the sum of the 
contributions from each element. Furthermore, the scattered-light 
irradiance distribution from any one element has the form of that 
element’s BSDF, and its magnitude and scale depend only upon the 
size of the beam that passes through that element.

Most in-field scattered light distributions are obtained by very 
computationally-intensive calculations; i.e, by tracing millions of 
rays on a computer.  However, the analytic formulas presented in
Reference 1 makes all of this unnecessary.  In-field scattered light 
calculations are now accessible to anyone with a pocket calculator, 
spreadsheet, or mathematics program.  In addition, the analytic 
formulas provide insight and understanding that is totally absent 
from the conventional brute-force ray-tracing approaches.  Design 
trades can now be performed, and limits on system performance 
assessed, without the need for complex computer calculations.
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Analytic Expression for In-field Scattered 
Irradiance in Imaging Systems*

where r is the distance from the point source image on the detector, na is the numerical 
aperture of the system, T is the system transmittance, sent is the radius of the entrance 
pupil, sj is the radius of the beam on the jth element, and Eent is the irradiance in the 
entrance pupil of the system.  This formulation is based upon both a smooth-surface and 
a paraxial assumption. For a two-mirror telescope, we can thus write
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* G. Peterson, “Analytic expressions for in-field scattered light distributions”, Proc SPIE 5178 (2004).

Making use of the Lagrange invariant of 1st-order imaging systems and the brightness 
theorem (conservation of radiance), the scattered irradiance in the focal plane of an 
imaging system from the jth element for an in-field point source was derived by Peterson
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Generalized Peterson Analytical Scattering Model

Since Peterson’s elegant and insightful treatment is limited 
by both a paraxial and a smooth-surface assumption, it must 
be generalized to include scattering from moderately rough 
surfaces before applying to the NOAA Solar UV Imager (SUVI) 
Program. We have thus:

37
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● Removed the “smooth-surface” limitation by including 
“scattered-scattered” radiation from the two-mirror SUVI 
telescope.

● Verified that the SUVI application is indeed paraxial. 

● The simple analytical model has then been numerically 
validated by comparing the results with the very 
computationally-intensive commercially-available ZEMAX 
and ASAP codes.



The SUVI Spec Surface PSD
(Scattered-Scattered Light will be Very Substantial)
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Scattering in a Two-mirror EUV Telescope
For a solar EUV telescope surface scatter from the primary and secondary 

mirrors sometimes dominates both geometrical aberrations and diffraction 
effects in the degradation of image quality.  
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Classic PSF
(Image Core and Scattered Halo)

The SUVI point spread function (PSF) consists of four components
with an energy distribution given by:

Direct-direct component (Specular) — Ap As

Scattered-direct component — Bp As

Direct-scattered component — Ap Bs

Scattered-scattered component — Bp Bs
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Energy Distribution between PSF Components
The radiant energy distribution between the four components of the PSF is shown 

below as a function of σ/λ.  The σ is the relevant rms roughness (PSD integrated from 
fmin < f < 1/λ) .  Note that for σ/λ > 0.066, the broad scattered-scattered component 
becomes dominant. 
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Since most EUV applications clearly do not satisfy the smooth surface 
assumption, but are perceived to satisfy the paraxial limitation, we merely 
construct an expression for each of the four components making up the PSF in the 
focal plane of the telescope, and substitute it into Eq.(18) of Peterson’s analytic 
treatment

Care is taken to normalize each component such that their respective volumes 
(fractional total reflected radiant power) will be given by ApAs, BpAs, ApBs, and BpBs.

We will assume a 175 cm focal length Ritchey-Chretien telescope design with an 
aperture diameter of 19 cm and an obscuration ratio of ε = 0.4.  There will thus be 
no geometrical aberrations on-axis; and the specular beam will be the well-known 
Fraunhofer diffraction pattern produced by the annular aperture of the telescope

where                      .

The above expression is normalized to a unit volume.  It will thus need to be 
multiplied by the coefficient ApAs in the following analysis.

Including the Scattered-Scattered Light

(20)ssdssddd PSFPSFPSFPSFPSF +++=    
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BRDF Profiles Calculated from SPEC PSD with 
the GHS Scattering Theory

λ(Ǻ) σrel TIS
1000         6.5698     0.0068
500         6.6487     0.0275 
303.8      6.7020     0.0740
284.2      6.7089     0.0842
195.1      6.7470     0.1721
171.1      6.7600     0.2185
131.2      6.7857     0.3445

93.9      6.8171     0.5650

β = sin θ

λ = 93.9 Å

λ = 131.2 Å

λ = 171.1 Å

λ = 195.1 Å

λ = 284.2 Å
λ = 303.8 Å

λ = 500 Å
λ = 1000 Å

PSD Fitting Function
A1 = 610.322  Ǻ2mm
B1 = 120  mm-1

C1 = 1.089
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Scattered-Scattered Light Dominates
(λ = 93.9 A)
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Radial Profiles of Four Components
(λ = 93 A)

Diffraction-limited Image Core
Scatter from Primary Mirror
Scatter from secondary Mirror
Scattered-Scattered Irradiance
Total Irradiance Distribution

λ = 93.9 Å
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FEE Plots of the 4 Components of PSF
(λ = 93.9 A)

Diffraction-limited Image Core
Scatter from Primary Mirror
Scatter from secondary Mirror
Scattered-Scattered Irradiance

λ = 93.9 Å

45



Irradiance Profile in Telescope Focal Plane
(Predicted by Generalized Peterson Model)

λ(Ǻ) ΑpΑs TIS
1000         0.9864     0.0136
500         0.9458     0.0542 
303.8      0.8575     0.1425
284.2      0.8487     0.1513
195.1      0.6854     0.3146
171.1      0.6107     0.3893
131.2      0.4297     0.5703

93.9      0.1892     0.8108

λ = 93.9 Å

λ = 131.2 Å

λ = 171.1 Å

λ = 195.1 Å

λ = 284.2 Å
λ = 303.8 Å

λ = 500 Å
λ = 1000 Å
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FEE Plots of the Total PSF Projected onto Sky

λ = 1000 Å
λ = 500 Å
λ = 303.4 Å
λ = 284.8 Å
λ = 195.1 Å
λ = 171.1 Å
λ = 131.2 Å
λ =   93.9 Å

λ(Å)        FEE
1000           0.99
500           0.98
303.8        0.93
284.2        0.94
195.1        0.84
171.1        0.81
132.2        0.70
93.9        0.51
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Square 
Size 

(arcsec)

Wavelength
93.9 131.2 171.1 195.1 284.2 303.8

7x7 43 50 50 50 50 50
10x10 49 53 59 60 60 60
20x20 57 61 65 65 65 65
40x40 67 69 70 70 70 70
65x65 72 75 75 75 75 75

150x150 78 82 84 85 85 85

SUVI Image Quality Requirements
(Fractional Ensquared Energy: Expressed as %)
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Numerical Validation by ASAP and ZEMAX

λ = 93.9 Å
λ = 131.2 Å

λ = 171.1 Å

λ = 195.1 Å

λ = 284.2 Å
λ = 303.8 Å

λ = 500 Å
λ = 1000 Å
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Summary, Results and Conclusions

● Stated a Need for Calculating Image Degradation from Measured 
Metrology Data.

● Review a Generalized Surface Scatter (GHS) Theory valid for 
Rough Surfaces at Large Incident and Scattered Angles.

● Discussed Computational Problems for Surface PSDs with Large 
Dynamic Range in Spatial Frequency. 

● Introduced the FFTLog Algorithm as a Solution to the 
computational Problem. 

● Demonstrated BRDFs Calculated from Surface PSDs for 
increasingly short wavelengths (which violate the smooth-surface 
approximation).

● Generalized the Peterson Analytical Model for Calculating Image 
Degradation to include surface scatter from rough surfaces.

● Demonstratedavarietyofusefulparametricperformancepredictions 
provided by the Generalized Peterson Analytical Model.

● Numerically validated the Generalized the Peterson Analytical 
Model with both ASAP and ZEMAX. 50


