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We predict quantum correlations between noninteracting particles evolving simultaneously in a

disordered medium. While the particle density follows the single-particle dynamics and exhibits

Anderson localization, the two-particle correlation develops unique features that depend on the quantum

statistics of the particles and their initial separation. On short time scales, the localization of one particle

becomes dependent on whether or not the other particle is localized. On long time scales, the localized

particles show oscillatory correlations within the localization length. These effects can be observed in

Anderson localization of nonclassical light and ultracold atoms.
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More than 50 years ago, P.W. Anderson predicted that a
single quantum particle released in a disordered lattice can
exhibit exponential localization in space [1], a phenome-
non termed Anderson Localization (AL). Since then there
has been an ongoing effort to observe the signature of AL
experimentally, for example, using light [2]. Recently a
novel approach enabled the direct observation in space
of AL for photons [3–6] and ultracold atoms [7]. These
experiments, reporting the exponential localization of the
particle-density distribution, agree with the predictions of
the single-particle model as long as no interactions are
involved.

The question arises, whether there are measurable phe-
nomena that are not described by the single-particle model
when considering the localization of a few photons or
atoms. It is known that when indistinguishable particles
propagate together, exchange terms can result in the for-
mation of correlations between their positions even in the
absence of interactions. This result, known as the Hanbury
Brown–Twiss (HBT) effect [8], was studied theoretically
and experimentally for particles propagating in free space.
It was observed that quantum statistics play a crucial role
in the formation of HBT correlations—bosons tend to
bunch, while fermions exhibit antibunching [8,9]. Yet, it
is not clear how HBT correlations evolve when the parti-
cles propagate through disordered media and become lo-
calized. While correlations were recently observed in the
multiple-scattering of nonclassical light [10], experiments
on AL focused on the particle-density distribution, and
therefore could not observe spatial correlations between
the localized particles. Now, experimental techniques that
allow a direct observation of localization [5–7] can provide
access to the study of HBT correlations between particles
exhibiting AL.

In this Letter we predict the correlations between two
indistinguishable quantum particles evolving simulta-
neously in disordered lattices. We consider noninteracting
particles, and therefore the particle-density follows the

single-particle dynamics: both particles undergo
Anderson localization. Nevertheless, we find that the two
particles develop nontrivial spatial correlations due to in-
terferences of all the scattering paths the two particles can
take as a pair. On short time scales, the localization of one
of the particles uniquely determineswhether or not the other
particle will be localized. On longer time scales, when both
particles localize, the particles exhibit oscillatory correla-
tions within the localization length. Remarkably, these
oscillatory correlations survive multiple scattering even
after very long evolution times. In addition, we show that
fermionic correlations can be reproduced by entangled
bosonic states.
To study two-particle localization, we follow the formal-

ism developed in [11] for periodic systems. We consider a
one-dimensional quantum tight-binding model, given by
Hamiltonian

H ¼ X

n

Wna
y
nan �

X

hn;mi
Tn;ma

y
nam; (1)

where ayn is the creation operator for a particle in site n,Wn

is the on-site energy, and Tn;m is the tunneling amplitude

between nearest neighbors. At time t the creation operator
at site r is given by

ayr ðtÞ ¼
X

r0
Urr0 ðtÞayr0 ðt ¼ 0Þ; (2)

where the time-evolution operator Urr0 ðtÞ ¼ ðeiĤtÞr;r0 is a

unitary transformation given by calculating the exponent

of the Hamiltonian matrix Ĥ, and describes the amplitude
for transition of a single particle located at site r0 at t ¼ 0,
to site r at time t. In the following, we study the evolution
of two indistinguishable particles in a disordered lattice,
where disorder is introduced by randomizing the tunneling

amplitudes. We focus on the particle-density nrðtÞ ¼
hayr ari and on the two-particle correlation �q;rðtÞ ¼
hayqayr araqi, highlighting the single-particle versus two-

particle features of the dynamics.
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We start by considering the evolution of a single particle,
described by the particle-density nrðtÞ ¼ jUrr0 ðtÞj2, where
r0 is the location of the particle at t ¼ 0. In Fig. 1 we plot
the evolution of the particle-density for an initial condition

ay0 j0i; i.e., a single particle at site number 0. Figure 1(a)

depicts the propagation of the particle in a periodic lattice,
which is given by nr ¼ J2r�r0 ð2TtÞ, where Jn is the Bessel

function of order n. This dynamics is known as a quantum
walk [11–14], in which the particle density expands bal-
listically (i.e., linearly in time), and the probability to find
the particle is highest at the edges of the distribution [see
Fig. 1(b)]. When disorder is introduced (here by random-
izing the tunneling amplitudes), the propagation changes
significantly, as shown in Figs. 1(c) and 1(d). A statistical
average of the probability distribution over many realiza-
tions of disorder [Figs. 1(e) and 1(f)] reveals a clear cross-
over from ballistic expansion at short times to exponential
localization at long times [blue arrow in Fig. 1(e)]. At
intermediate times [red arrow in Fig. 1(e)], the particle
can be either localized or ballistic [6].

We now consider two noninteracting particles which are
initially localized on sites r0 and q0, focusing on the corre-
lations between their locations at a later time t. The corre-
lation matrix is given by �q;r ¼ hhjUqr0Urq0 �Uqq0Urr0 j2ii
[11]. Here hh�ii signifies averaging over realizations of
disorder, and the upper and lower signs describe, respec-
tively, bosons and fermions of same spin. The depicted
matrices (for example in Fig. 2) represent the probability to
detect at time t exactly one particle at site q and one
particle at site r. As we show below, the density distribu-
tion is identical for bosons and for fermions [see Fig. 2(e)],

yet the emerging quantum correlations between the particle
pair depends on the initial position of each particle and on
their quantum statistics.
We first consider the case in which initially the two

particles are positioned at two adjacent sites in a separable

state; i.e., the initial condition is given by j�i ¼ ay1a
y
0 j0i.

We calculate the two-particle correlation function after a
relatively short evolution time, in which each particle has a
nonzero probability to be localized or to remain ballistic
(see Fig. 1). As shown by the correlation matrix in Fig. 2(a),
if the two particles are bosons they can both remain ballistic
(corners of the correlation matrix), or both become localized
(center of the correlation matrix). The possibility for one
boson to localize and the other to remain ballistic is also
nonzero. However, when both bosons exhibit ballistic

T
im

e 
[A

.U
]

0

5

10

15

20

25

−20 0 20
0

0.1

P
ar

tic
le

 D
en

si
ty

−20 0 20
Position

−20 0 20

(a) (c) (e)

(b) (d) (f)

FIG. 1 (color online). Dynamics of a single quantum particle
placed at t ¼ 0 on a single site. (a) In a periodic lattice, the
particle-density distribution expands ballistically, with high den-
sity at the edges of the distribution. (b) Cross section of the
density distribution after some evolution. (c),(d) In a disordered
lattice, the expansion is limited to a finite region. (e) The density
distribution, averaged over 1000 realizations of disorder. The
expansion starts ballistically. After some propagation a localized
component emerges around the initial position, [red arrow, red
cross section in (f)]. The ballistic component decays in time,
leaving the distribution exponentially localized [blue arrow, blue
cross section in (f)]. Inset shows the distribution in semilog
scale.
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FIG. 2 (color online). Two-particle correlation function in
disordered lattices. At t ¼ 0, two particles are placed at two
neighboring sites. The correlation function is calculated after a
short evolution, where remnants of the ballistic component are
still present [see Figs. 1(e) and 1(f)], averaged over a 1000
disorder realizations. The matrices represent the probability to
detect one particle at site q and one particle at site r. (a) Bosons
either scatter and become localized, or remain ballistic.
However, if they both remain ballistic, they bunch to the same
side of the distribution. (b) Magnification of the localized
component at the center of the correlation map. (c) Fermions
show similar behavior, only that if they both remain ballistic they
always separate to different sides of the distribution.
(d) Magnification of the correlation map, showing a checkered
pattern. (e) The particle-density distribution, which is identical
for fermions and for bosons, computed by tracing out the
position of one of the particles (summing over the columns of
the correlation matrix). (f) The interparticle distance probability
for bosons (blue) and fermions (red). Bosons tend to appear at
the same site, while fermions are more likely to be separated by
an odd number of sites.
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behavior, the probability for the two bosons to separate to
two different sides of the distribution vanishes (top left and
bottom right corners of the correlation matrix). This is the
signature of bosonic bunching in lattices [11]. In this case
then, the two-particle correlation has two components—a
ballistic component showing spatial bunching, and a local-
ized component without spatial correlations. A closeup
on the correlation in the localized component is given in
Fig. 2(b), also describing the correlation matrix at later
times, when the distribution is completely localized [15].

In the case of fermions, the correlation matrix of Fig. 2(c)
and 2(d) shows that if the two particles remain ballistic (i.e.
both particles did not localize yet), they will exhibit anti-
bunching and separate to opposite sides of the distribution.
A close-up of the correlations inside the localized compo-
nent reveals a checkered pattern, meaning that even when
both fermions are localized they are nontrivially arranged in
space. Most significantly, this checkered pattern survives the
random scattering process even after very long evolution
times [15].

To understand the significance of the checkered pattern
we extracted from the correlation matrix the interparticle
distance probability given by gð�Þ ¼ P

q�q;qþ�. Com-

parison between the results for bosons and fermions are
depicted in Fig. 2(f). Bosons (blue line) have the highest
probability to be at the same site, and the probability drops
monotonically with distance. In contrast, fermions have
zero probability to be on the same site (as expected due to
Pauli exclusion). Yet, interestingly, the correlation oscil-
lates: the two fermions tend to be separated by an odd
number of sites.

An even more dramatic effect takes place when the
initial condition is such that the two particles are placed
at nonadjacent sites. Consider the initial condition

j�i ¼ ay�1a
y
1 j0i—two particles at two sites separated by

an empty site. Again we calculate the correlation function
after a relatively short propagation, in which the dynamics
includes both a ballistic and a localized component. For
bosons [Fig. 3(a)] there are only two possibilities: either
the particles are both localized (center of the correlation
matrix) or they both remain freely propagating (corners of
the correlation matrix). The possibility for one particle to
be localized and the other one to be free is diminished to
nearly zero. A close-up on the correlation when both
particles are localized [Fig. 3(b)] shows that in this case
it is the bosons that exhibit the checkered pattern; they are
more likely to be separated by an even number of sites.

For this input state, fermions exhibit a different symme-
try in the correlations [Fig. 3(c)]. The two particles tend to
always occupy different components of the expanding
wave packet: one fermion becomes localized, while the
other fermion remains freely propagating in the ballistic
component. The close-up on the localized regime [Fig. 3(d)]
shows a flat distribution, except for the zero probability to be
at the same site. The interparticle distance for this case is
depicted in [Fig. 3(f)] [15].

Finally, it is of interest to consider the propagation in
disordered lattices of path-entangled input bosonic states,
which can be regularly generated in quantum-optics ex-
periments. In a lattice system, such a state is given by a
superposition of two bosons—placed together at one site or

another site j�i ¼ 1
2 ½ðayr0 Þ2 þ ei�ðay

q0 Þ2�j0i. Interestingly,

properly constructed entangled states reproduce some of
the features presented by fermions. In Fig. 4 we present the
calculated correlation matrices for two kinds of path-
entangled input states: In Fig. 4(a), we plot the correlation

matrix when the initial state is j�i ¼ 1
2 ½ðay0 Þ2 þ ðay1 Þ2�j0i.

The correlation matrix shows several features that are
similar to the ones exhibited by the fermions as seen in
Fig. 2(c): the two particles can both become localized, both
remain ballistic, or split—one localized and one ballistic.
However, they never end up on the same ballistic lobe. The
main difference is in the localized region: the checkered
pattern disappears, and the diagonal q ¼ r of the correla-
tion matrix now shows enhanced probability. In Fig. 4(c)
we plot the correlation matrix when the initial state is

j�i ¼ 1
2 ½ðay�1Þ2 þ ei�ðay1 Þ2�j0i; i.e., the two states are

separated by an empty site. This time the pair shows a
tendency to split—one boson is localized, while the other
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FIG. 3 (color online). The two-particle correlation function
when at t ¼ 0, the two particles are placed at two nonadjacent
sites. (a) Bosons show two possible effects—they are either both
localized, or both remain ballistic. (b) Close-up on the correlation
inside the localized component. (c) Fermions tend to split—one
fermion becomes localized and the other remains ballistic.
(d) Close-up on the correlation inside the localized component.
(e) The particle-density distribution, identical for fermions and
bosons. (f) The interparticle distance probability within the local-
ized regime for bosons (blue line) and fermions (red line). The
fermions exhibit a flat interparticle distance distribution (except at
zero separation), while the bosons show an oscillating probability.
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remains ballistic. The correlation matrix is similar to that
exhibited by the fermion pair in Fig. 3(c), except the
enhanced probability on the matrix diagonal q ¼ r.

The emergence of the checkered patterns in the correla-
tions can be explained in terms of the lattice eigenmodes
excited in each case. Disordered lattices support two kinds
of eigenmodes: flat-phased and staggered, in which adja-
cent sites are in phase=� out of phase, correspondingly [6].
Certain initial conditions, (depending on the initial distance
between the two particles and their quantum statistics)
involve the simultaneous excitations of both kinds of eigen-
modes, resulting in a density pattern that contains a com-
ponent with two-site periodicity. This effect is washed out
in the density distribution averaged over all realizations of
disorder, as in each realization the oscillations appear in a
different location. However, the fact that such oscillations
appears in each realization will be recorded in the averaged
correlation.

At higher dimensional disordered systems, the single-
particle dynamics can be qualitatively different. For ex-
ample, expanding wave packets can exhibit diffusive ex-
pansion before localization [5]. Nevertheless, we have
verified that the results described above appear also in two
dimensional lattices, including the checkered patterns.

In conclusion, we studied the evolution of two noninter-
acting quantum particles in disordered lattices exhibiting
Anderson localization. The two-particle correlation exhib-
its unique features that survive the random scattering, such
as oscillating correlations and correlated crossover from
ballistic propagation to localization. The correlations de-
pend on the initial separation between the particles and on
their quantum statistics. Experimentally, the bosonic
correlations can be observed by injecting photon pairs

generated using spontaneous parametric down conversion,
into disordered waveguide lattices. Such lattices were re-
cently used to observe Anderson localization of classical
light [5,6], and were shown to be feasible for observing
nonclassical correlations between photon pairs [11,13,16].
With atom-matter waves, correlations can be observed in
the quantum walks [14] of a pair of atoms in disordered
lattices, offering a possibility to study the effect of inter-
action [17] on correlations. Alternatively, density-density
correlations can be measured for expanding Bose-Einstein
condensates in disordered optical potentials [7,18].
This work was supported by the German-Israel
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FIG. 4 (color online). Correlation maps for path-entangled bo-
sons evolving in disordered lattices. (a) Correlation map for the
initial condition j�i ¼ 1

2 ½ðay0 Þ2 þ ðay1 Þ2�j0i. (b) Magnified view

of the localized component. (c) For j�i ¼ 1
2 ½ðay�1Þ2 � ðay1 Þ2�j0i.

(d)Magnified view. These correlations are similar to the fermionic
results in Figs. 2(c), 2(d), 3(c), and 3(d) (see text).

PRL 105, 163905 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

15 OCTOBER 2010

163905-4

http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRevLett.96.063904
http://dx.doi.org/10.1038/37757
http://dx.doi.org/10.1103/PhysRevLett.55.2692
http://dx.doi.org/10.1103/PhysRevLett.55.2692
http://dx.doi.org/10.1103/PhysRevLett.55.2696
http://dx.doi.org/10.1103/PhysRevLett.55.2696
http://dx.doi.org/10.1038/35009055
http://dx.doi.org/10.1103/PhysRevLett.62.47
http://dx.doi.org/10.1103/PhysRevLett.62.47
http://dx.doi.org/10.1103/PhysRevLett.93.053901
http://dx.doi.org/10.1038/nature05623
http://dx.doi.org/10.1103/PhysRevLett.100.013906
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1103/PhysRevLett.101.255702
http://dx.doi.org/10.1038/177027a0
http://dx.doi.org/10.1038/177027a0
http://dx.doi.org/10.1038/nature05513
http://dx.doi.org/10.1038/nature05319
http://dx.doi.org/10.1038/nature03500
http://dx.doi.org/10.1126/science.1118024
http://dx.doi.org/10.1126/science.284.5412.296
http://dx.doi.org/10.1126/science.284.5412.296
http://dx.doi.org/10.1038/nature05955
http://dx.doi.org/10.1038/nature05955
http://dx.doi.org/10.1038/nature00911
http://dx.doi.org/10.1103/PhysRevLett.102.193601
http://dx.doi.org/10.1103/PhysRevLett.102.193901
http://dx.doi.org/10.1103/PhysRevLett.105.090501
http://dx.doi.org/10.1103/PhysRevLett.104.173601
http://dx.doi.org/10.1103/PhysRevLett.104.173601
http://dx.doi.org/10.1103/PhysRevLett.102.253904
http://dx.doi.org/10.1080/00107151031000110776
http://dx.doi.org/10.1103/PhysRevLett.100.170506
http://dx.doi.org/10.1126/science.1174436
http://link.aps.org/supplemental/10.1103/PhysRevLett.105.163905
http://link.aps.org/supplemental/10.1103/PhysRevLett.105.163905
http://dx.doi.org/10.1126/science.1155441
http://dx.doi.org/10.1103/PhysRevA.78.042304
http://dx.doi.org/10.1103/PhysRevA.78.042304
http://dx.doi.org/10.1103/PhysRevA.81.023834
http://dx.doi.org/10.1126/science.1193515
http://dx.doi.org/10.1103/PhysRevLett.73.2607
http://dx.doi.org/10.1103/PhysRevA.70.013603
http://dx.doi.org/10.1103/PhysRevA.70.013603

