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Unidirectional nonlinear PT -symmetric optical structures
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We show that nonlinear optical structures involving a balanced gain-loss profile can act as unidirectional optical
valves. This is made possible by exploiting the interplay between the fundamental symmetries of parity (P) and
time (T ), with optical nonlinear effects. This unidirectional dynamics is specifically demonstrated for the case
of an integrable PT -symmetric nonlinear system.
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I. INTRODUCTION

Transport phenomena and in particular directed transport
are at the heart of many fundamental problems in physics,
chemistry, and biology [1]. At the same time they are
also of great relevance to technological applications based
on a variety of transport-based devices such as rectifiers,
pumps, particle separators, molecular switches, and electronic
diodes and transistors. Of special interest is the realization
of novel classes of integrated photonic devices that allow
one-directional flow of information, e.g., optical isolators [2].
Currently, such unidirectional elements rely mainly on the
Faraday effect, where external magnetic fields are used to break
the space-time symmetry. This in general requires materials
with appreciable Verdet constants—typically noncompatible
with light-emitting wafers [2]. To anticipate these problems,
alternative proposals for the creation of optical diodes and
isolators have been suggested in recent years. Some represen-
tative examples include the creation of optical diodes based
on asymmetric nonlinear absorption [3], second harmonic
generation in asymmetric waveguides [4], nonlinear photonic
crystals [5], and photonic quasicrystals and molecules [6].

In this article, we propose a mechanism for unidirectional
optical transport based on configurations involving nonlinear
optical materials with parity (P) and time (T ) reflection. This
is possible by judiciously interleaving gain and loss regions, in
such a way that the (complex) refractive index n(x) = nR(x) +
iγ nI (x) profile satisfies the condition n∗(−x) = n(x). A first
experimental realization of such (linear) arrangements has
been recently reported in Refs. [7,8] where a PT dual
coupled structure was fabricated and the beam dynamics was
investigated. Here we show that the interplay of nonreciprocal
dynamics arising from PT symmetry [8], and self-trapping
phenomena associated with Kerr nonlinearities [9], can mold
the flow of light in a surprising way. Such directed dynamics
can be exploited in the realization of a new generation of
optical isolators or diodes.

Even though the validity of our arguments can be demon-
strated for a variety of nonlinear PT configurations below,
we will highlight its basic principles, using the simplest pos-
sible arrangement, consisting of two PT -coupled waveguide
elements with Kerr nonlinearity of strength χ . Each of the
waveguides is single moded—one providing gain and the other

an equal amount of loss. We have obtained the phase diagram in
the χ -γ plane for which our system acts as an optical diode, and
we have identified the minimum propagation length needed,
in order to achieve this unidirectional functionality. Detail
numerical simulations support our theoretical predictions.

This article is structured as follows. In Sec. II an overview
of the linear PT -symmetric dimer is presented. The nonlinear
PT -symmetric dimer will be introduced in Sec. III, where the
equations of motion are given in terms of Stokes parameters. In
subsection III A, we present both our theoretical and numerical
results on the dynamics of the nonlinearPT -symmetric dimer.
In Sec. III B we calculate the critical value of the nonlinearity
for which diode action is possible. Finally we will draw our
conclusions in Sec. IV.

II. LINEAR PT -SYMMETRIC DIMER: AN OVERVIEW

In this section we will briefly review the basic properties of
the linear PT -symmetric dimer [7,8,10]. In integrated optics
this simple PT element can be realized in the form of a
coupled system, with only one of the two parallel channels
being optically pumped to provide gain γ for the guided
light, whereas the neighbor arm experiences equal amount
of loss (see Fig. 1). Under these conditions, and by using
the coupled-mode approach, the optical-field dynamics in the
two coupled waveguides are described by the following set of
equations:

i
dψ1

dz
+ ψ2 − iγψ1 = 0; (1a)

i
dψ2

dz
+ ψ1 + iγψ2 = 0; (1b)

where ψ1,2 are modal electric field amplitudes in the ampli-
fying [Eq. (1a)] and lossy [Eq. (1b)] waveguide channels, z

represents a dimensionless propagation distance, normalized
in units of coupling lengths, and γ is a scaled gain(loss)
coefficient, also normalized to the coupling strength.

The Hamiltonian corresponding to the linear problem of
Eq. (1), is written as:

H =
(

iγ −1

−1 −iγ

)
(2)
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FIG. 1. (Color online) Beam propagation in two coupled linear
waveguides. For the parameters of the simulation (we use normalized
coupling units), the spontaneous PT -breaking take place at γPT = 1.
In all cases, left (right) panels correspond to an initial excitation at the
left (right) channel. (a),(b) A passive system corresponding to γ = 0.
The propagation is reciprocal; (c),(d) γ = 0.4γPT corresponding
to the exact PT phase. A nonreciprocal beam propagation is
evident. Although the dynamics is non-Hermitian, the evolution
is “pseudounitary” and the total beam power remains bounded.
(e),(f) For γ = 1.5γPT , the beam power grows exponentially (vertical
scale is logarithmic) in both waveguides, while the beam propagation
is again nonreciprocal with respect to the mirror axis of the two
waveguides. Waveguides are color-coded, indicating balanced gain
(red, left) and loss (green, right) regions. Gray waveguides indicate a
passive (γ = 0) system.

and commutes with the combined PT operator. A surprising
result associated with this class of problems is the possibility
that such aPT -symmetric HamiltonianH can have an entirely
real energy spectrum, despite the fact that, in general, they are
non-Hermitian [7,8,10–19]. For the specific example of the
non-Hermitian Hamiltonian of Eq. (2), a direct diagonalization
gives the following set of eigenvalues:

λ± = ±
√

1 − γ 2, (3)

which are real as long as the gain (loss) parameter γ is smaller
than some critical value, γPT = 1 (exact PT -symmetric
phase). As the gain (loss) parameter γ increases above γPT , the
eigenvalues becomes complex (broken PT -symmetric phase).
The corresponding eigenvectors of the Hamiltonian Eq. (2) are

|+〉 =
(

ei α
2

e−i α
2

)
, |−〉 =

(
ie−i α

2

−iei α
2

)
; sin α = γ. (4)

In the exact PT -symmetric phase, both the H and PT
operators share the same set of eigenvectors. In this regime,
the mode intensity is symmetric with respect to the mirror
axis of the two waveguides. As γ increases above γPT the

FIG. 2. (Color online) Beam propagation in two coupled non-
linear waveguides with nonlinearity strength χ and a complex
PT -symmetric refractive index profile. Waveguides are color coded,
indicating balanced gain (red, left) and loss (green, right) regions
(γ = 0.1). Left columns correspond to an initial excitation at the
gain waveguide port, while right columns correspond to an initial
excitation at the lossy waveguide. (a),(b) The nonlinearity χ = 1.9
is below the critical value χd ≈ 3.37 while for (c) and (d) the
nonlinearity strength χ = 8 is above.

eigenfunctions of H cease to be eigenfunctions of the PT
operator, despite the fact that H and the PT operator still
commute. This happens because the PT operator is antilinear,
and thus the eigenstates of H may or may not be eigenstates
of PT . In the broken PT -symmetric phase, the spacial
distribution of the modes is asymmetric, one of them living
predominantly in the amplifying waveguide and the other in
the lossy one. At the phase-transition point γ = γPT the two
eigenfunctions and their corresponding eigenvalues coalesce
leading to an “exceptional” point singularity [20].

The beam dynamics associated with Eq. (1) were in-
vestigated theoretically in Refs. [7,10,11] while direct mea-
surements were performed in Refs. [7,8]. These authors
recognized that as the gain (loss) parameter γ reaches γPT ,
the total beam power starts growing exponentially, while
for γ < γPT power oscillations are observed [see Figs. 1(b)
and 1(c)]. The most dramatic effect in the beam evolution
is the appearance of nonreciprocal wave propagation [see
Figs. 1(c)–1(f)]. Specifically, the beam propagation pattern
differs depending on whether the initial excitation is on the
left or right waveguide. This is contrasted with the γ = 0 case
[Figs. 1(a) and 1(b)], where the beam propagation is insensitive
to the initial condition.

III. NONLINEAR PT -SYMMETRIC DIMER

We begin our analysis by providing the mathematical model
that describes optical wave propagation in a Kerr nonlinear
PT -symmetric coupled dual waveguide arrangement (see
Fig. 2). The two modal field amplitudes are governed by the
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evolution equations:

i
dψ1

dz
+ ψ2 − iγψ1 + χ |ψ1|2ψ1 = 0; (5a)

i
dψ2

dz
+ ψ1 + iγψ2 + χ |ψ2|2ψ2 = 0; (5b)

where χ is the strength of the Kerr nonlinearity.
Equations (5) can be rewritten in terms of the (real) Stokes

parameters Si = ψ†σ̂iψ , where σ̂i(i = 0,1,2,3) denote the
Pauli spin matrices [21]. In this representation, the total field
intensity is given by S0 = |ψ1|2 + |ψ2|2, S3 = |ψ1|2 − |ψ2|2
is the intensity imbalance between the two waveguides,
while S1 = ψ∗

1 ψ2 + ψ1ψ
∗
2 and S2 = i(ψ1ψ

∗
2 − ψ∗

1 ψ2). In this
representation Eqs. (5) take the form:

dS0

dz
= →

E · →
S ;

d
→
S

dz
= S0

→
E + →

S × →
B, (6)

where we have introduced the two real vectors
→
E= (0,0,2γ )

and
→
B = (2,0,χS3), and the three-dimensional Stokes vector→

S ≡ (S1,S2,S3). We note that the condition S2
0 − →

S · →
S = 0

is always satisfied. It is worth mentioning that Eqs. (6) are
identical to the equation of motion of a relativistic negatively
charged particle with zero mass, in a pseudoelectromagnetic

field (
→
E,

→
B ), where (S0,

→
S ) represents the energy and three-

dimensional momentum of the particle, while the propagation
distance z has the role of the time.

Nonlinear PT -symmetric optical coupled systems can be
realistically synthesized on semiconductor wafers known for
their high Kerr-like nonlinearities [22]. As in Ref. [8], coupling
lengths as low as Lc = 1 mm can be obtained, in which case
a gain (loss) level below ±30 cm−1 (readily available in such
materials) will suffice to keep the arrangement in the PT
phase. In addition, critical switching (χ ∼ 1) can also occur at
milliwatt power levels in multiquantum well configurations.

A. Dynamics

For γ = 0, Eqs. (6) admits two constants of motion: the
total input power S0 and the total energy H = (χ/2)S2

3 + 2S1.
These two constants allow for an analytic solution of the Stokes
vector

→
S in terms of elliptic functions [9]. Depending on the

initial preparation and strength of nonlinearity χ , we observe
two distinct dynamical behaviors. For example, if the initial
beam of total input power S0(0) = 1, is prepared in one of
the two waveguides [i.e., S3(0) = ±1], we observe either Rabi
oscillations or self-trapping dynamics [9]. The former case
corresponds to χ < 4 and results in beam oscillations between
the two waveguides, while the latter case occurs for χ > 4
and leads to localization of the field (for all times) at the
waveguide that was initially placed. In both cases, symmetric
initial preparation will result in a dynamics which is reciprocal
with respect to the axis of symmetry of the two coupled
waveguides.

For γ �= 0, the energy H and the beam power S0 are
no longer conserved quantities. Nevertheless, PT symmetry

enforces two other constants of motion C,J :

C2 = (χS1 − 2)2 + (χS2)2, (7a)

J = S0 + 2γ

χ
sin−1

(
χS1 − 2

C

)
, (7b)

thus indicating that the system of Eqs. (5) is fully integrable.
Below we will consider the case where initially S0(0) =
1, S3(0) = ±1, while S1(0) = S2(0) = 0. In this case, the
constants of motion, as defined in Eqs. (7), take the values
C± = ±2 and J± = 1 ∓ γπ/χ .

Using C and J , in this particular case we can express
the components of the Stokes vector in terms of S0(z) in the
following way

χS1 = 2

{
1 − cos

[
χ

1 − S0(z)

2γ

]}
, (8a)

χS2 = 2 sin

[
χ

1 − S0(z)

2γ

]
, (8b)

χS3 = ±
√

[χS0(z)]2 −
(

4 sin

{
χ

4γ
[1 − S0(z)]

})2

. (8c)

Substituting the expression for S3 from Eq. (8c), to the first of
the Eqs. (6), we get that

±
∫ S0(z)

S0=1

dS0√
(χS0)2 − {

4 sin
[

χ

4γ
(1 − S0)

]}2
= 2γ

χ
z. (9)

Even though the problem is soluble by quadratures, the integral
in Eq. (9) cannot be evaluated further and thus a closed
expression for S0(z) is not possible. It is therefore instructive
at this point to gain insight on the properties of the dynamics
of this PT nonlinear coupler by numerically solving Eqs. (5)
and (6). The accuracy of the numerical integration was checked
via the conservation laws Eq. (7), which were satisfied up to
10−10.

Examples of the resulting beam dynamics for γ = 0.1
and two representative nonlinearity strengths χ = 1.9 and
χ = 8 are reported in Figs. 2(a) and 2(b) and then 2(c)
and 2(d) respectively. In contrast to the γ = 0 case [9], now
the dynamics is nonreciprocal with respect to the axis of
symmetry of the system. While this is true for both values
of nonlinearity strength χ , it is much more pronounced
for the case of Figs. 2(c) and 2(d). In this latter case, the
output field always leaves the sample from the waveguide
with gain (red-colored) irrespective of the preparation of the
input beam. At the same time the output beam intensity at
the lossy waveguide approaches zero for longer waveguides.
It is important to stress that in the case of the linear PT
dimer [see Figs. 1(e) and 1(f)] the beam intensity at the
lossy waveguide never goes to zero. Instead, it increases
exponentially, albeit with a smaller prefactor with respect
to the one of the gain waveguide. This novel unidirectional
propagation of the PT -symmetric nonlinear dimer is the key
mechanism for establishing optical isolators (diodes). It has to
be contrasted with the corresponding cases shown in Figs. 2(a)
and 2(b) where the output beam depends on the input state,
i.e., an initial excitation at the gain waveguide results in an
output field at the lossy guide and vice versa.
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To quantify the ability of our setup to act as an optical
nonreciprocal device, we have defined the efficiency factor Q

of unidirectional propagation as

Q(z) = 1 − |T+,+(z) − T−,+(z)|, (10)

where T±,+(z) ≡ |ψ1(z)|2/S0(z) is the normalized transmis-
sion coefficient associated with the gain (+) waveguide of
length z. In our definition we have always assumed that the
initial input beam has total power S0(z = 0) = 1, while the
beam is launched either in the gain (+) or in the loss (−) waveg-
uide. The efficiency factor takes values from 0 � Q � 1:
a perfect diode corresponds to Q = 1 [since the term inside
the absolute value in Eq. (10) will be zero], while the opposite
limit of Q = 0 indicates total revival of the field. In the inset
of Fig. 3 we report our numerical findings for the efficiency
factor Q as a function of the nonlinearity strength χ for three
different waveguide lengths z = 10, 20, and 30, and for a fixed
value of the gain (loss) parameter γ = 0.1. It is clear that an
optimal diode is achieved once the nonlinearity strength χ is
larger than a critical value χd .

B. Critical nonlinearity

Next we present a heuristic argument that aims to estimate
the critical nonlinearity strength χd (as a function of γ ), above
which the PT symmetric nonlinear dimer acts as an optical
diode of high efficiency factor Q = 1. To this end we focus our
analysis on the temporal behavior of the total power S0(z). In
the case of (Rabi-like) oscillations S0(z) is bounded between
a minimum and a maximum value. Instead, in the regime
where the coupled system acts as an optical diode, S0(z) is
bounded only from below, while asymptotically it grows in an
exponential fashion [23]. Using the first of Eq. (6) together with
Eq. ((8c), and requesting the extrema condition dS0(z)/dz = 0
(which is equivalent to S3(z) = 0) together with the condition
d2S0/dz2 < 0 for the existence of a global maxima, we
find that S0(z) shows oscillatory behavior (i.e., Rabi-like
oscillations) if the nonlinearity χ is smaller than χd , given by

χd = 4 − 2πγ. (11)

In the main panel of Fig. 3 we compare Eq. (11) with the
numerical values found for χd . The latter has been evaluated
via a direct integration of Eq. (5) for systems sizes up to
z = 106. The critical nonlinearity χd was evaluated up to
fourth-digit accuracy as the nonlinearity strength for which
the total power S0(z) is bounded. In all cases the accuracy
of the integration scheme has been guaranteed by requesting
that the constants of motion Eq. (7) are conserved with
accuracy up to 10−5. A nice agreement between the
theoretical and numerical value of χd is evident for small
values of the gain (loss) parameter γ , while deviations from
the theoretical prediction start to be visible as γ approaches
the PT transition point (i.e., γ = 1) of the linear system.

Finally, we investigate the minimal waveguide length zd

which is required in order to have a high-Q diode. From
Figs. 2(c) and 2(d) we see that the beam evolution follow
two distinct scenaria depending on the initial conditions: if
the beam is launched initially at the gain waveguide, the
propagation is mainly along this channel. If, on the other hand,
the beam excites the lossy waveguide, there is a minimum
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FIG. 3. (Color online) (Main figure) A semilogarithmic plot of
χd vs γ . For the numerical evaluation of χd we have integrated Eq. (5).
(Inset) The efficiency factor Q vs nonlinearity strength χ , for a fixed
gain (loss) parameter γ = 0.1 and three different waveguide lengths
z = 10, 20, and z = 30. For nonlinearity strength χ = χd ≈ 3.4 the
isolator reaches its optimal efficiency.

propagation distance zd which is required before the light
intensity is concentrated in the gain waveguide. We have
found that zd is proportional to the “first passage distance”
zfpd associated with the point that S3 becomes zero for the first
time. In Fig. 4 we report the results of our simulations for
zd ∼ zfpd for various χ (> χd ) values or input power levels.

An intriguing feature of zfpd is the existence of singularities
(peaks in the zfpd) for some characteristic values of the
gain (loss) parameter γ . To understand the origin of these
singularities, we have plotted the evolution of the Stokes vector→
S by making use of the rescaled variables

→
F = →

S /S0. In
this representation, the magnitude | →

F | remains constant, and
thus we can visualize the evolution on the Bloch sphere (see
Fig. 5). It should be emphasized that the Bloch trajectories can
in general show self-intersections, as they are a projection from
a higher-dimensional phase space. One must also distinguish
between closed orbits and those approaching an asymptotic
state, as this is in general connected to broken and unbroken
PT symmetry [12]. We note that closely related Bloch
dynamics appear in different physical model systems like the
ones reported in Ref. [24]. Our analysis indicated that the
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FIG. 4. (Color online) The numerically extracted first passage
distance zfpd versus the gain (loss) parameter γ . The initial conditions
are chosen to be S0(0) = 1 and S3(0) = −1. An inverse power law
is observed. (Inset) The proportionality coefficient f (χ ) is plotted
versus the nonlinearity strength χ for χ > χd . The red line correspond
to the best linear fit.
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FIG. 5. (Color online) Dynamics of the rescaled Stokes variables
F for χ = 9 and various gain (loss) parameters γ : dashed blue lines
correspond to γ = 0.157; pink lines (�) correspond to γ = 0.15; solid
yellow lines correspond to γ = 0.12; and red lines (�) to γ = 0.174.
The green line (•) corresponds to the passive system γ = 0 with
critical nonlinearity χ = 4, where the motion of the trajectory is on
the separatrix. The trajectory associated with γ = 0.157 (see the red
arrow in Fig. 4) is typical to the cases where zfpd diverge and corre-
spond to the closest one to the separatrix of the passive γ = 0 system.

singularities in zfpd are associated with trajectories that, during
their evolution, stay close to the separatrix associated to the
critical value χ = 4 (transition between Rabi oscillations and
self-trapping) of the passive system.

Leaving aside the issue of the singularities, we have found
that for all χ values larger than χd , the first passage distance
zfpd follows an inverse power law, i.e.,

zfpd = f (χ )/γ, (12)

where the proportionality factor f (χ ) is χ dependent. A best
least-squares fit allows us to extract the various f (χ ) which is
in this case f (χ ) = −0.6 + 0.5ln(χ ) (see inset of Fig. 4).

IV. CONCLUSIONS

In conclusion, we have proposed a mechanism for directed
transport in nonlinear optical coupled systems that relies at the
interplay between nonlinearity and PT reflection symmetries.
More specifically, we have observed that above a critical
nonlinearity strength, the beam evolution is unidirectional, i.e.,
the output beam remains in the gain channel, irrespective of
initial conditions. Such behavior implies that these systems
can be used to realize new classes of optical diodes and other
unidirectional photonic elements. Of great interest will be
to extend these notions to more involved arrangements like
nonlinearPT lattices where nonlinear excitations are expected
lead to even more intriguing phenomena.
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