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Airy plasmon: a nondiffracting surface wave
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We introduce a new class of nondiffracting surface plasmonic wave: the Airy plasmon. The propagation properties
of such a field configuration are unique among the family of surface waves and could lead to interesting applications
in plasmonic energy routing. The self-bending and self-healing behavior of these solutions is discussed. Schemes for
experimental realization and potential applications are proposed. © 2010 Optical Society of America
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In recent years, advances in nanotechnology have led to
an increased interest in surface plasmons as a means to
manipulate light at the nanoscale. The part of optics that
deals with surface plasmons has grown into a discipline
of its own, commonly referred to as plasmonics. Several
peculiar properties of surface plasmons have been ex-
perimentally demonstrated and successfully exploited
in waveguides [1], plasmonic nanoantennas [2], and plas-
monic collimators [3], to cite a few.

Although a great deal of attention has been devoted to
surface plasmon guidance, propagation, and diffraction,
to the best of our knowledge no diffraction-free field con-
figurations have so far been suggested for these plasmon
waves. In this Letter, inspired by recent developments in
diffraction-free beams, we present the only possible class
of surface plasmons compatible with paraxial diffraction-
free, surface-bound propagation, and exhibiting a unique
self-bending behavior.

Diffraction-free beams are associated with field config-
urations (exhibiting a definite peak in amplitude) for
which the transverse intensity profiles at any two loca-
tions along the propagation direction remain invariant.
In free space, several families of diffraction-free beams
have beenidentified in the literature, such as Bessel beams
[4], Mathieu beams [5], and, more recently, Airy beams [6].

In general, however, the surface-wave nature of plas-
mons does not allow a straightforward extension of these
ideas to a metal/dielectric interface. In this case, the ex-
ponential decay of the transverse field distribution is
fixed, and, hence, the plasmon propagation properties
are exclusively dictated by its one-dimensional (1D) angu-
lar spectrum. Along these very lines, one may ask whether
a 1D projection of the conical angular spectrum of a two-
dimensional (2D) diffraction-free solution could yield a
surface wave of similar characteristics. In this regard,
the answer is negative, since a “conical” superposition
in 1D leads to a sinusoidal interference pattern, which
is by no means a localized beam.

Lately, nondiffracting Airy beams have been suggested
and observed in optics [6,7]. As first indicated by Berry
and Balazs [8], the Airy wave packet happens to be unique:
it represents the only nonspreading solution to the 1D po-
tential-free quantum Schrodinger equation. Given the iso-
morphism between the quantum mechanical Schrodinger
equation and the paraxial wave equation, the Airy beam
indeed represents the only nondiffracting 1D beam profile
[9,10]. But perhaps the most intriguing feature of this so-
lution is its very ability to freely self-bend, even in the ab-
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sence of any external potential [7]. This aspect has thus far
been exploited in several physical settings, such as in mi-
croparticle manipulation [11], plasma filamentation in air
[12], nonlinear Airy beam generation [13], and optical Airy
bullets [14], to mention a few.

The problem of surface plasmon propagation at the
planar interface y = 0 between a dielectric medium of
permittivity e; placed over a metallic substrate of permit-
tivity €,, is polarization dependent and, therefore, is
strictly vectorial. It is, however, possible to select a Car-
tesian component of the field to be used as a scalar
potential, from which all the other field components
may be deduced. Without loss of generality, the problem
may be effectively formulated in terms of the component
of the electric field normal to the boundary, which obeys
the scalar Helmholtz equation:

VzE’dy + k%ngdy = O (1)

For a surface plasmon, the field exponentially decays
away from the interface, leading to a functional depen-
dence of the form E\ (x,y,2)=A(x.2)exp(ik.2)exp(-a.y),
where the parameters k, and «a; are related through
the dispersion relations of =kZ -kie; and k, =k
€€/ (€q + &,). Assuming that the transverse beam
profile is slowly varying with respect to the propagation
coordinate z, it is straightforward to show that the
problem reduces to the 1D free-particle Schrodinger
equation:
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In this case, one can directly show that the complex am-
plitude of the normal component of the electric field as-
sociated with a finite energy plasmon-Airy beam solution
is described by
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The parameter a in Eq. (3) is a measure of the strength
of the exponential apodization of the field profile. Of
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importance is the angular spectrum of this solution,
which is given by
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In Eq. (4), the Gaussian spectrum arises from the expo-
nential apodization of the beam [in Eq. (3)], while the cu-
bic phase term is associated with the Fourier transform
of the Airy wave itself. Given the Gaussian spectrum of
this Airy plasmon, the paraxial treatment will hold pro-
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In this case, the k-spectrum of the remaining electric field
components can be written in terms of the angular spec-
trum E,(k,), e.g.,
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Based on Egs. (6), the electric field associated with the
Airy plasmon in the dielectric region can be finally writ-
ten as

1 )
E,=— Ky YW
€a \/I{%Ed + a%l
X exp (i\ [Kieq + aﬁz) exp(-aqy). (7)

The corresponding electromagnetic fields in the metal re-
gion can be readily obtained from Egs. (7) using the sub-
stitutions ¢; — ¢,, and ay —> a4(e,,/e4). Plots of the
intensity distribution of an Airy plasmon on the interface
plane and on transverse cuts are presented in Fig. 1. The
diffraction-free character of this Airy plasmon wave is
evident. In addition, the self-bending features of this so-
lution are clearly depicted in this same figure.

The parabolic self-deflection experienced by the Airy
plasmon during propagation can be estimated from
Eq. (3). Taking the quantity 2x, as a measure of the width
of the main lobe, one can define a characteristic propa-
gation length Z, = Zx/ékzxzo for which the beam is ap-
proximately displaced by one full width (of the main
lobe). This characteristic parameter can be used to esti-
mate an upper limit of propagation losses that can be tol-
erated in an experimental setup aimed to observe Airy
plasmons. Given the losses of the system, this behavior
can only be detected provided that the 1/e power decay
is comparable to Z,. This particular choice leads to the
condition max[Im(k,)] = 1/[4v2Re(k.)x?]. Based on this
criterion, Fig. 2 depicts the {,2y} region where such
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Fig. 1. (Color online) Intensity distribution on the interface
plane and on three transverse cuts along propagation.

Airy plasmons are practically allowed to propagate along
a silver—air interface.

As previously indicated, apart from its characteristic
self-bending, Airy plasmons remain essentially diffrac-
tion free during propagation. This important feature
can be more easily appreciated by directly comparing
this solution with a Gaussian plasmon wave whose width
is comparable to that of the Airy main lobe. In the numer-
ical example shown in Fig. 3, we considered an Airy and a
Gaussian plasmon wave propagating at an interface be-
tween silver and air at a wavelength of 1.55 ym. As it be-
comes apparent from the simulations, both plasmons
experience attenuation due to the loss in the metal, but,
while the Gaussian undergoes significant spreading, the
Airy plasmon propagates almost undiffracted. Further-
more, as theoretically and experimentally shown in [15]
for the 2D counterpart, the Airy plasmon shares one of
the most attractive properties typical of nondiffracting
waves: an inherent resilience against perturbations and
a self-healing behavior. This concept translated into the
plasmonic realm leads to a field configuration that is re-
latively unaffected by surface roughness and fabrication
defects of the metallic layer. Based on these properties,
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Fig. 2. (Color online) Central shaded area represents the re-

gion in the parameter space (g, 4) over which the criterion
max[Im(k,)] = 1/[4v2Re(k, )x3] is met for a silver-air interface.
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Fig. 3. (Color online) Comparison between the propagation of
(a) an Airy plasmon and (b) a Gaussian plasmon at a silver—air
interface.

the Airy plasmon could find applications as an effective
means to route energy over a metallic interface between
plasmonic devices.

It is important to note that the aforementioned interest-
ing features of an Airy plasmon can be displayed only
provided that a sufficiently long range of propagation
is possible. In this respect, while the idea of a sub-
wavelength Airy beam appears extremely attractive in
principle, the high losses of strongly confined surface
plasmons would most likely prevent the practical realiza-
tion of such a concept. At this stage, perhaps only weakly
guided plasmons hold promise as far as the experimental
implementation of the Airy plasmon is concerned.

The commonly used schemes for the excitation of sur-
face plasmons over a metallic block, such as the Otto
configuration [16] or the grating coupling, are not with-

out challenges in this specific case, in which a carefully
imprinted transverse profile is necessary. From a practi-
cal standpoint, thin metallic films deposited over dielec-
tric substrates could represent a more viable route
toward the excitation and the observation of Airy plas-
mons. Power could be effectively coupled into the sur-
face plasmon by using the substrate as a waveguide,
provided that the thickness of the dielectric is chosen
so as to support just the first TM mode properly phase
matched to the mode of the metallic film. By using this
scheme, an Airy beam could be generated in free space,
as is done in [6], and then focused down into the input
facet of the substrate with a cylindrical lens, exciting only
the TM mode coupled to the surface plasmon.

In conclusion, a novel class of surface plasmons
capable of propagating almost diffraction free was intro-
duced. Our analysis indicates that this class of solutions
can freely self-bend during propagation—a unique prop-
erty among all other surface waves. Such field configura-
tions may find interesting applications in energy routing
over plasmonic boards. The associated electromagnetic
field distribution was analyzed and suitable coupling
schemes were discussed.
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