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Diffusion-Trapped Airy Beams in Photorefractive Media
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We report the first experimental observation of self-trapped Airy beams in a nonlinear medium. As
opposed to screening or photovoltaic spatial solitons, this new class of self-localized beams owes its

existence to carrier diffusion effects. The asymmetric action of two-wave mixing supports the asymmetric

intensity profile of the Airy states, with a balance that is independent of the beam intensity (unlike
solitons). Further, the self-trapped wave packets self-bend during propagation at an acceleration rate that
is independent of the thermal energy associated with the diffusive nonlinearity.
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The recent demonstration of optical Airy beams [1,2]
has triggered a resurgence of interest in nondiffracting
beam propagation. Like Bessel beams [3], Airy functions
are exact solutions to the paraxial wave equation, are
infinitely wide in the transverse direction, and are self-
healing. Unlike other such beams, Airy beams are asym-
metric and accelerate freely [1]. This curved trajectory,
first noted within the framework of quantum mechanics by
Berry and Balazs [4], has found immediate applications in
optics, with interest ranging from optical trapping [5] and
plasma waveguiding [6] to tomography [7] and frequency
generation [8]. In practice, however, all nondiffracting
beams must be truncated, to keep the energy finite. Such
truncated beams eventually diffract and lose their unique
structure and properties. Hence, it is important to identify
physical mechanisms that could allow these highly local-
ized wave packets to propagate in a true diffraction-free
manner.

Nonlinear media naturally suggest themselves, as it is
well known that self-focusing can counteract the effects of
dispersion and diffraction [9]. For example, the nonlinear
index change due to photoexcited charge carriers in pho-
torefractive media, e.g., through screening [10—12] or pho-
tovoltaic effects [13,14], can lead to beam self-trapping
and the formation of solitons. These invariant beams are
usually symmetric, due to the even (second-order) nature
of diffraction, and the typical nonlinear responses are local
and conservative. Indeed, more complex responses, such as
the gradient-sensitive diffusion nonlinearity [15], usually
trigger a whole different class of instability and dynamics.
For example, the nonlocal and nonconservative action of
diffusion can cause energy exchange among spectral com-
ponents, leading to two-wave mixing, beam fanning, and
self-bending [16—18]. As a result, it has been commonly
assumed that the diffusion nonlinearity cannot cause a
beam to self-trap. On the other hand, the highly asymmet-
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ric action suggests that invariant propagation may be pos-
sible using highly asymmetric beams.

The prospect of observing a diffusion-trapped exponen-
tially contained Airy wave packet in nonlinear photore-
fractive media was first proposed in Ref. [19]. In this
Letter, we experimentally confirm this prediction and dem-
onstrate that these wave packets self-bend during propaga-
tion at a rate that happens to be independent of the thermal
energy kpT. Further, we give direct evidence that internal
wave mixing between the components underlies the self-
localization process.

Before we present our experimental results, we will
briefly outline some of the theoretical aspects associated
with diffusion-trapped Airy states in photorefractive me-
dia. Starting from the Kukhtarev-Vinetskii model [15], the
diffusion space-charge field E. arising from an optical
illumination intensity / can be determined from ESC =
—(kgT/e)VI(I + 1;)~! where kgT is the thermal energy
and e is the electron charge. I; is the so-called dark
irradiance that phenomenologically accounts for the rate
of thermally generated electrons and will be neglected
here, since in our work 7 > ;. Given that our experiments
were conducted in strontium barium niobate crystals
(Srg75Bag,5Nb,Og), we will subsequently focus our dis-
cussion on this material. The diffraction dynamics of a
planar beam propagating along the a axis of this uniaxial
crystal are governed by [19]

JIE O kraksT GIEP/2)
dz 2k ax* 2e |E]

0. (1

In Eq. (1), n is the effective refractive index of the medium,
k = wn/c is the optical wave number, and E is the optical
field envelope. r. stands for the electro-optic coefficient
involved and the x coordinate coincides with the optical ¢
axis. In the strontium barium niobate (SBN) configuration,
for extraordinarily polarized waves r.; = r33 while for
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ordinarily polarized waves r. = rj3. In all cases, the
beams are planar, e.g., diffraction takes place only along
x. Under these conditions, a diffusion-trapped Airy state is
possible and is given by [19]

E = EyAi(em + 4y?) exp(—2yn) explil (en&/2)
+(£3/24)]}. (2)

In Eq. (2), Ai(x) represents the Airy function, n = s —
(e£%/4), E, is peak field amplitude, and £ = =1 depend-
ing on the sign of r.. In the above expression, the coor-
dinates have been normalized, e.g., s = x/x, and
& = z/(kx,?), where x, is an arbitrary spatial scale. Note
that this Airy self-localized wave is exponentially trun-
cated with a decay coefficient y = k’n’xyreqkT/(2e),
and thus conveys finite power. It is also evident that this
asymmetric wave packet propagates without any change
(in spite of diffraction effects) while it continuously self-
bends during propagation at a rate £2/4 that is independent
of kgT.

In the linear case (y = 0), the solution reduces to a
simple, infinitely extended Airy function, first obtained in
Ref. [4]. In the nonlinear, truncated case (y # 0), Eq. (2)
indicates that these asymmetric and diffraction-free prop-
erties are retained, with invariant propagation arising from
diffusion effects. Interestingly, this self-trapping is due to
irreversible transverse energy flow, which in turn explains
the large asymmetry in the beam’s intensity profile.

In the paraxial domain, the transverse Poynting vector is
given by §L = i%(4nok) "(EE: — E*E,) where E, =
dE/dx [20,21]. Figure 1(a) depicts the intensity profile of
a diffusion-trapped Airy state during propagation when the
photorefractive decay factor y = 0.12. The arrows in the
figure, indicating the lateral power flow density, all point
toward the direction of deflection. In addition, their mag-
nitude increases linearly with distance, showing that the
beam constantly accelerates as it propagates, so as to keep
up with displacement of the beam’s centroid (s.). Indeed, it
can be shown from Eq. (2) that the centroid path is char-
acterized by the parabola:

1 &
(s.) 8y +e 1 3)

The propagation of this same beam in the linear case
(without material charge diffusion) is shown in Fig. 1(b).
In this case, because of the high initial confinement, the
intensity features of the beam continuously broaden during
propagation. This is also apparent in the direction of the
transverse flow. In this regime, the arrows point in both
directions, so as to allow the centroid to move along a
straight line [22]. For the case of a reverse phase chirp [s —
—s in Eq. (2)], the phase acceleration is in the same
direction as diffusive transport, and the beam loses its
Airy profile [Fig. 1(c)]. Again, power flows in both direc-
tions, though with a more complex pattern than in the
linear, purely diffractive case.

FIG. 1 (color online). Transverse energy power flow. (a) The
intensity profile of a self-trapped Airy state during propagation
when the photorefractive decay factor is present. (b, c) The
propagation of this same beam (b) in the absence of diffusion
and (c) when the phase profile is reversed.

The exponental truncation exp(—2ym) contributes
greatly to the experimental ease of production. The impact
of this is seen most clearly by Fourier transforming Eq. (2),
which gives ®(K) ~ exp(—AK?) exp(iK>/3), where A is a
constant proportional to y [2]. This is simply a Gaussian
spectrum modulated with a cubic phase.

Experimental confirmation of Eq. (2) was performed
using 532 nm continuous wave laser light projected onto
an 8 X 8 X 8 mm SBN:75 crystal. The setup is shown in
Fig. 2. The creation of the truncated Airy beam consists of
three basic steps: (1) an initial Gaussian beam is projected
onto a spatial light modulator (SLM), (2) a cubic phase
chirp is impressed upon the beam, to create ®(K), and
(3) the beam is Fourier transformed by a cylindrical lens to
generate the incident Airy beam E(x). A wave plate is used
to adjust the polarization of this beam with respect to the
crystalline axis. For SBN:753, r33 = 1340 pm/V and r3 =
67 pm/V, so that the index change above the base index
ng = 2.3 depends on the polarization (for fixed tempera-
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FIG. 2 (color online). Experimental setup. Light from a
532 nm laser is expanded and phase-modulated by a spatial light
modulator (SLM). The beam is Fourier transformed by a cylin-
drical lens and input into an SBN:75 photorefractive crystal.
Light exiting the crystal is imaged into a CCD camera. BE, beam
expander; A/2, half-wave plate; SF, spatial filter; P, polarizer;
CL, cylindrical lens; dashed line, SLM image plane.

ture). For the experiments, we take advantage of the an-
isotropy and use ordinary polarization as a near-linear
reference beam for comparison with extraordinary polar-
ization. Finally, at the exit face of the crystal, the output is
imaged into a CCD camera.

Typical experimental and numerical results are shown in
Fig. 3. The input Airy beam is roughly 100 um wide and
contains 350 mW of power. For extraordinary polarization
[Figs. 3(a)-3(f)], the beam maintains its profile as it prop-
agates. There is no diffraction, particularly evident in the
main lobe, with a transverse displacement of 32 um at the
output. The dependence of diffusion trapping on polariza-
tion provides unequivocal verification of its nonlinear ori-
gins. For ordinary polarization [Figs. 3(g)-3(D],
propagation is essentially linear and the beam diffracts.
The sizes of both the beam and its central lobe roughly
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FIG. 3 (color online). Nonlinear Airy beam propagation for a
350 mW beam with (a—f) extraordinary and (g-l) ordinary
polarization. (a, d, g, j) are inputs, (b, e, h, k) are outputs, and
(c, f, i, ) are cross sections. Left column, experiments; right
column, simulations.

double after 8 mm of propagation, with the central lobe
curving by 37 um from the initial center line. By com-
parison, a Gaussian beam with the same 20 um FWHM of
the central lobe (not shown) would diffract by 5 times and
propagate straight.

Another test of linear vs nonlinear propagation arises
from the slow nature of the photorefractive response. This
is shown in Fig. 4, in which we observe the nonlinear
output for the extraordinarily polarized Airy beam as a
function of time. At first, charges have been photoexcited
but have not yet diffused, so the output beam exhibits pure
diffraction. As time evolves, the diffusive PR nonlinearity
becomes more pronounced, gradually bringing the beam
back to a nondiffracted state. As shown in Figs. 4(b)—4(f),
the lobes focus and narrow, with the first lobe shifting to
the right over time and the second (and higher) lobes
shifting left. This final state, akin to that in Fig. 3(h),
follows from the relative phase shift between neighboring
lobes and, more generally, conforms to Ehrenfest’s theo-
rem on the conservation of mass (light intensity) during
propagation.

Without the nonlinear term in Eq. (1), the dynamics are
symmetric with respect to transverse orientation. For ex-
ample, left-leaning and right-leaning Airy beams propa-
gate identically in linear media (except for the reversal of
acceleration). In the unbiased photorefractive, however, the
reversed profile is not a solution. This is shown in Fig. 5,
where we have created a mirror-opposite beam by revers-
ing the phase mask on the SLM. In this case, the asymme-
try of the cubic phase chirp is in the same direction as the
nonlinear asymmetry provided by the crystalline ¢ axis.
Beam acceleration and two-wave mixing therefore operate
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FIG. 4 (color online). Time evolution of diffusive process for
the Airy beam in Fig. 3(b). (a) Input and (b—f) output. (b—f) are
recorded every 20 seconds. Left column, experimental pictures;
right column, cross sections.

253904-3



PRL 104, 253904 (2010)

PHYSICAL REVIEW LETTERS

week ending
25 JUNE 2010

a

0.5

T
Normalized
Intensity

0 50 100 150 200 250
Position {Jum)

0.0

FIG. 5 (color online). Reversed Airy beam propagation. Ex-
perimental pictures for (a) input, (b) output, and the correspond-
ing (c) cross sections.

in the same direction, compressing the main peak and
removing the side lobes. Simulations show that for longer
propagation distances, the momentum transfer continues,
causing intensity overshoot and enhanced diffraction of the
beam.

Remarkably, the balance between diffraction and non-
linearity does not depend on the intensity of the initial Airy
beam (as it does for other self-trapped beams, such as
solitons) [10]. Since two-wave mixing depends on the gra-
dient, rather than the strength, of the intensity, the peak
field amplitude E, appears only as an independent scaling
parameter in the solution (2). This is confirmed experimen-
tally in Fig. 6, which shows extraordinary Airy propagation
for beams with different initial input powers 200 mW
[6(a)] and 500 mW [6(b)]. As shown in Figs. 6(b), 6(c),
and 6(e), and 6(f), as well as the 350 mW case in Fig. 3(b),
the outputs have nearly identical profiles, with the same
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FIG. 6 (color online). Nonlinear Airy beam propagation with
different input powers (a, b, ¢) 0.2 W and (d, e, f) 0.5 W. Top row,
input; middle row, output; bottom row, cross sections.

transverse displacement of 32 wm, while experiencing no
diffraction during propagation. This independence of in-
tensity makes such beams promising for nonlinear appli-
cations, such as sorting and trapping in colloids [23] and
imaging using spatial nonlinearity [24].

In summary, we have observed the propagation of a
finite-energy Airy beam in an unbiased photorefractive
medium. The results are the first example of solitary-like
wave formation using two-wave mixing and, more gener-
ally, demonstrate that the dynamics arising from an asym-
metric phase chirp can be counteracted by an asymmetric
nonlinearity.
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