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The basic properties of Floquet-Bloch (FB) modes in parity-time (PT )-symmetric optical lattices are examined
in detail. Due to the parity-time symmetry of such complex periodic potentials, the corresponding FB modes are
skewed (nonorthogonal) and nonreciprocal. The conjugate pairs of these FB modes are obtained by reflecting
both the spatial coordinate and the Bloch momentum number itself. The orthogonality conditions are analytically
derived for a single cell, for both a finite and an infinite lattice. Some of the peculiarities associated with the
diffraction dynamics in PT lattices such as nonreciprocity, power oscillations, and phase dislocations, are also
examined.

DOI: 10.1103/PhysRevA.81.063807 PACS number(s): 42.25.Bs, 11.30.Er, 42.82.Et

I. INTRODUCTION

The correspondence between operators and physical quan-
tities is crucial within the context of quantum mechanics.
Since any physically measurable quantity must always be real,
the eigenvalues of every quantum operator corresponding to
it should also belong to the real set. This leads to one of
the basic postulates of quantum theory, namely that every
observable can only be associated with a Hermitian (self-
adjoint) operator. It was not until recently, that the condition for
Hermiticity, as an absolute prerequisite for real spectrum, was
critically reexamined [1]. In a pioneering study, Bender et al.
suggested that even non-Hermitian Hamiltonians can still have
an entirely real eigenvalue spectrum provided that they respect
parity-time (PT ) symmetry. In addition, they demonstrated
that such Hamiltonians can also undergo a sudden phase
transition (spontaneous PT symmetry-breaking) above a
critical threshold. In other words, above this transition point the
eigenvalue spectrum ceases being entirely real and becomes
instead partially complex. The extension of these concepts
into the complex domain has been the topic of several studies
during the last few years [2–5].

A Hamiltonian is calledPT symmetric, if and only if, it has
the same eigenfunctions with that of thePT operator [2]. Here
the action of the parity operator P̂ is defined by the relations
p̂ → −p̂, x̂ → −x̂, whereas that of the time operator T̂ by
p̂ → −p̂, x̂ → x̂, i → −i, where p̂, x̂ are the momen-
tum and position operators, respectively. In operator form,
the normalized Schrödinger evolution equation (h̄ = m = 1)
is given by i�t = Ĥ�, where Ĥ = p̂2/2 + V (x̂) and p̂ →
−i∂/∂x [6]. Given that the T̂ operation corresponds to a time
reversal, i.e., T̂ Ĥ = p̂2/2 + V ∗(x), one can then deduce that
Ĥ P̂ T̂ = p̂2/2 + V (x) and P̂ T̂ Ĥ = p̂2/2 + V ∗(−x). Based
on the previous considerations, it can be directly shown that
a necessary (but not sufficient) condition for a Hamiltonian to
be PT symmetric is V (x) = V ∗(−x). In other words, the real
part of the complex potential involved must be a symmetric
function of position, while the imaginary component should
be antisymmetric.

The fact that wave quantum mechanics and scalar paraxial
optics are described by the same mathematical equation,

often leads to formal analogies between these two distinct
areas of physical science. In this context, complex optical
potentials can be realized by using gain and loss spatial
distributions. In particular, there have been several studies
dealing with optical wave propagation in complex potentials at
both the theoretical and experimental level. Examples include,
gain guiding in waveguides [7], Ginzburg-Landau solitons
[8], and wave scattering from complex periodic potentials
[9,10].

Quite recently the notion of PT symmetry was introduced
within the framework of optics [11–16]. This suggestion
was based on judicious designs that involve both optical
gain/loss regions and the process of index guiding. Optical
potentials satisfying the necessary condition forPT symmetry
were considered in order to synthesize a new class of
materials with properties and characteristics that have no
analog in standard gain/guiding structures. Along these lines,
periodic arrangements or waveguide arrays [17,18] composed
of PT symmetric cells can be envisioned [12,13], where
the entire structure respects parity-time symmetry. Since the
eigenmodes of such systems are not orthogonal, their coupled
mode theories must be reformulated starting from variational
principles as shown in [11]. Moreover, the beam dynamics,
as well as, the stationary properties of such PT symmetric
optical lattices were theoretically studied in both 1D and
2D spatial dimensions [12]. Nonreciprocal behavior, band
merging, double refraction and abrupt phase transitions, are
some of the exotic features associated with these periodic
potentials. In the nonlinear domain, one and two-dimensional
soliton solutions were found to exist below and above the
phase transition point, in nonlinear PT lattices [13]. The
interplay of the Kerr nonlinearity with the PT threshold
was analyzed for the first time [13], and analytical periodic
solutions were also derived [14]. Most importantly, the first
experimental observation of the PT symmetry in any physical
system has been recently achieved in the framework of
wave optics [15,16]. In particular, both “passive” [15] and
“active” [16]PT optical couplers have experimentally demon-
strate inherent characteristics of these pseudo-Hermitian sys-
tems, such as abrupt phase transitions, and nonorthogonal
supermodes.
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In this paper, we investigate in detail the band structure
and wave dynamics related to complex PT symmetric arrays.
In particular, the nonreciprocal and nonorthogonal nature of
the corresponding Floquet-Bloch (FB) modes is analytically
and numerically demonstrated. Since this class of FB modes
is nonorthogonal in the usual sense, a new inner product
is derived based on variational arguments. The conjugate
pairs of these FB modes are obtained by reflecting both the
spatial coordinate and the Bloch momentum vector itself.
The orthogonality conditions are analytically proved for a
single cell, a finite and an infinite lattice, along with the
projection coefficients and the completeness relations. Some
of the peculiarities of the diffraction dynamics arising in PT
lattices such as nonreciprocity, power oscillations, and phase
dislocations are also discussed.

II. BAND STRUCTURE AND FB MODES OF A
PT -OPTICAL LATTICE

The analogy between quantum mechanics and optics is
based on the fact that they share the same mathematical
formalism. More specifically, the equation governing optical
beam propagation is described by a Schrödinger-like equation,
namely the paraxial equation of diffraction. Here we will
primarily explore the diffraction dynamics of optical beams
and waves in PT -symmetric complex potentials in the spatial
domain. In normalized units, the propagation dynamics is

described by

i
∂ψ

∂z
+ ∂2ψ

∂x2
+ V (x) ψ = 0, (1)

where ψ represents the electric field amplitude, z the propaga-
tion distance, x the spatial coordinate, and V (x) the complex
periodic optical potential with period D, V (x) = V (x + D).
From the previous discussion, this complex potential is PT
symmetric provided that its real part or refractive index profile
is even, while the imaginary component (loss and gain profile)
is odd, e.g., V (x) = V ∗(−x).

Let us first consider the characteristics of the band structure
corresponding to a periodic PT structure. To do so, we
look for stationary solutions of the form φkn(x) exp[iβn(k)z],
where φkn(x) is the n-band Floquet-Bloch mode with Bloch
momentum k, and βn(k) is the corresponding eigenvalue or
propagation constant. In all cases the Bloch wave vector k

is restricted in the first Brillouin zone, −π/D � k < π/D.
Without any loss of generality, let us consider the periodic PT
potential V (x) = 4[cos2(x) + iV0 sin(2x)], with period D =
π . The real (solid line) and the imaginary part (dotted line)
of the V (x) potential for V0 = 0.3 are depicted in Fig. 1(a).
We emphasize once more, that the condition V (x) = V ∗(−x)
satisfied by this potential is a necessary but not a sufficient
condition for the reality of the eigenvalue spectrum. By using
spectral techniques we numerically determine the existence
of a PT threshold (V th

0 ), below which all the propagation

FIG. 1. (Color online) (a) Real (solid line) and imaginary (dotted line) component of a PT -symmetric lattice with V0 = 0.3. (b) The
real part of the first two bands of the same potential for different values of gain/loss amplitude V0 = 0.3 (solid-dotted lines) and V0 =
0.5 (solid lines). (c) Real part of the first two bands for V0 = 0.85, and (d) the corresponding imaginary parts of the bands presented
in (c).
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eigenvalues for every band and every Bloch wave number k are
real. Above this PT threshold, an abrupt phase transition [19]
occurs and as a result the spectrum is partially complex in spite
of the fact that V (x) = V ∗(−x) is still valid. For the specific
potential assumed here we find a threshold of V th

0 = 0.5. In
other words, forV0 < 0.5, the band structure is entirely real
while for V0 > 0.5 it becomes partially complex. Figure 1(b)
illustrates the first two bands of this potential for two cases,
i.e., when V0 = 0.3 (solid-dotted lone) and V0 = 0.5 (solid
line). Note that below V th

0 all the forbidden gaps are open
whereas at the threshold V th

0 = 0.5 the first band gap at
the edges of the Brillouin zone k = ±1 closes, as shown in
Fig. 1(b). Moreover, when V0 exceeds this critical value the
first two bands start to merge together forming an oval-like
double-valued band with an associated complex spectrum. The
real as well as the imaginary parts of such a band are depicted
in Figs. 1(c) and 1(d), respectively, when V0 = 0.85. These

figures show that the propagation eigenvalues are entirely
real in the double valued regions, while along the overlapped
sections they happen to be complex conjugate. Note that the
spectrum becomes complex after passing the PT threshold,
starting from the lowest bands. More specifically, the first two
bands form a double-valued band after the threshold while the
rest of the bands have real eigenvalues. For higher values of
V0, a secondary threshold exists above of which the third and
fourth bands merge together forming another double-valued
structure. This process repeats as the value of V0 further
increases.

The peculiar characteristics of the corresponding Floquet-
Bloch modes are also of importance. Figure 2 shows the
FB modes of the first band, for Bloch wave numbers k =
−1,±0.5, 0. We also plot the structure of these modes
below V0 = 0.49 [Figs. 2(a)–2(c)] and above V0 = 0.85
[Figs. 2(d)–2(f)] the PT threshold. Unlike real potentials, the

FIG. 2. (Color online) Normalized intensity profiles of FB modes of the first band of a PT symmetric lattice for different values of
V0, and Bloch wave numbers k. Below the PT threshold for V0 = 0.49, FB modes with the following Bloch momentum are presented
(a) k = −1, (b) k = 0.5 (dashed line), k = −0.5 (solid line), (c) k = 0. Above the phase transition point for V0 = 0.85, we have (d) k = −1,
(e) k = 0.5 (FB mode of the second band) (dashed line), k = −0.5 (solid line), (f) k = 0. In all cases, the real part of the periodic potential
(solid-dotted) line is schematically depicted.
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eigenfunctions have no zero nodes at k = ±π/D = ±1 (edge
of the Brillouin zone) [4], as we can clearly see in Fig. 2(a).
Above the phase transition point, the FB modes with the same
eigenvalue βn(k) form complex conjugate pairs, the same way
the first two bands do. One of these modes at k = −1 of
the first band is shown in Fig. 2(d), where the spatial shift
toward the loss region is apparent. The complex conjugate
pair of this FB mode belongs to the second transmission
band and is spatially shifted toward the gain region. An
example of such a FB mode of the second band is depicted
in Fig. 2(e) for the case of k = 0.5. We point out that, unlike
in real lattices, a FB mode with Bloch wave number k is not
equal to the complex conjugate of the FB mode at −k, i.e.,
φkn(x) �= φ∗

−kn(x). For this reason we say that a band structure
in a parity-time symmetric potential is nonreciprocal, with
respect to the Bloch momentum k. Bloch modes corresponding
to ±k wave numbers have completely different field profiles,
as Figs. 2(b) and 2(e) demonstrate.

We emphasize that these peculiar features are a direct
consequence of the nonorthogonality of the PT Floquet-
Bloch functions. In fact, the usual orthogonality condition∫ +∞
−∞ φ∗

k′m(x)φkn(x)dx = δnmδ(k − k′) (that is valid in real
crystals) is no longer observed in PT symmetric lattices. This
skewness of the FB modes [12] is an inherent characteristic
of PT symmetric periodic potentials and has important
consequences on their algebra. Thus a more convenient
reciprocal basis has to be developed for the inner product.
This new inner product should be capable of projecting any
input wave function on the skewed FB eigenmode basis.

III. INNER PRODUCT ALGEBRA FOR PT -PERIODIC
POTENTIALS

In standard Hermitian optics (when only real potentials are
involved), the inner product of two complex-valued functions
is generally defined as 〈h,g〉 = ∫ +∞

−∞ h∗(x)g(x)dx. Accord-
ingly, the orthogonality relation between two different FB
modes, φkn(x), φk′m(x) corresponding to a periodic potential, is
given by

∫ +∞
−∞ φ∗

k′m(x)φkn(x)dx = δnmδ(k − k′). The question
naturally arises as to how one could define an inner product
for a complex PT -symmetric lattice. In order to answer
this question we first have to obtain the conjugate pairs
associated with the corresponding Lagrangian. This can be
done by substituting a FB mode profile φkn(x) exp[iβn(k)z] in
Eq. (1). By doing so we get the following linear eigenvalue
problem:

φ′′
kn(x) + V (x)φkn(x) = βn(k)φkn(x). (2)

The Lagrangian associated with the above equation is given
by

L1 = [∂xφkn(x)][∂xφ
∗
kn(−x)] − [V (x) − βn(k)]

×φkn(x)φ∗
kn(−x), (3)

where ∂xφ(x) ≡ ∂φ(x)
∂x

. It is straightforward to show that
Euler-Lagrange variations on (3) ∂

∂x
( ∂L1
∂[∂xφkn(x)] ) − ∂L1

∂φkn(x) =
0, ∂

∂x
( ∂L1
∂[∂xφ

∗
kn(−x)] ) − ∂L1

∂φ∗
kn(−x) = 0 indeed lead to Eq. (2) under

the condition of PT symmetry V (x) = V ∗(−x). As a result
the conjugate pairs of the Eq. (2) are φkn(x), φ∗

kn(−x) and the

corresponding new inner product should be defined as 〈h,g〉 =∫ +∞
−∞ h∗(−x)g(x)dx. Since the Floquet-Bloch theorem is valid

for all periodic potentials (real and complex), it follows that
every FB mode can be written as φkn(x) = ukn(x) exp(ikx)
where ukn(x) = ukn(x + D), and D is the normalized period
of the complex PT -symmetric periodic potential V (x). Con-
sequently, direct substitution shows that Eq. (2) is equivalent
to

u′′
kn + 2iku′

kn + [V (x) − k2]ukn = βn(k)ukn (4)

with the following Lagrangian:

L2 = [∂xukn(x)][∂xu
∗
−kn(−x)] − [V (x) − k2 − βn(k)]ukn(x)

× u∗
−kn(−x) + 2ikukn(x)[∂xu

∗
−kn(−x)]. (5)

Apparently the conjugate pairs of Eq. (5) are now different.
In particular they are ukn(x), u∗

−kn(−x) and the correspond-
ing inner product is 〈hk,gk〉 = ∫ +∞

−∞ h∗
−k(−x)gk(x)dx. It is

important to note that, for the conjugate variable, not only
do we have to invert the spatial coordinate x, but the Bloch
wave number k must be inverted as well. Since this inner
product is different than that employed in a real lattice, the
orthogonality condition is also expected to take a different
form and must be systematically derived. As mentioned before,
this is accomplished by first considering the orthogonality in
a single cell, a finite lattice, and at the end examine the case
of an infinite lattice. In all these three cases we refer always to
the eigenvalue problem of Eq. (4).

IV. ORTHOGONALITY IN A SINGLE PT -CELL

The goal of this paragraph is to derive the orthogonality
condition in one individual cell of the periodic potential. This
cell is defined in the range −D/2 � x � D/2. Let us consider
two FB modes ukn, ukmbelonging to different bands (n �= m)
but having the same wave number k. We also assume that the
potential V (x) is used below the PT -phase transition point,
and therefore the eigenvalue spectrum is entirely real. Then
from Eq. (4) we get the following equations for these two
modes:

u′′
kn + 2iku′

kn + [V (x) − k2]ukn = βn(k)ukn,

u′′∗
−km − 2iku′∗

−km + [V ∗(−x) − k2]u∗
−km = βm(−k)u∗

−km,

where u∗
−km ≡ u∗

−km(−x). By multiplying the first one with
u∗

−km and the second one with ukn and by taking into account
that V (x) = V ∗(−x), we have

u∗
−kmu′′

kn + 2iku∗
−kmu′

kn + [V (x) − k2]u∗
−kmukn

= βn(k)u∗
−kmukn

uknu
′′∗
−km − 2ikuknu

′∗
−km + [V ∗(−x) − k2]uknu

∗
−km

= βm(−k)uknu
∗
−km.

By subtracting and taking the integral over the whole
cell, we obtain [βn(k) − βm(−k)]

∫ D/2
−D/2u

∗
−kmukndx = 0,

where we have used the periodicity of ukn, e.g.,
ukn(−D/2) = ukn(D/2). If we allow n = m, we get
[βn(k) − βn(−k)]

∫ D/2
−D/2u

∗
−kn(−x)ukn(x)dx = 0 and since∫ D/2

−D/2 u∗
−kn(−x)ukn(x)dx �= 0 for all FB modes (checked

numerically), we obtain βn(k) = βn(−k). This last relation
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implies that in a PT -symmetric lattice all the corresponding
bands are symmetric around the center of the Brillouin
zone k = 0. Furthermore, since there is no degeneracy
βm(k) �= βn(k), and by using the symmetry of the band
structure, we finally get the orthogonality condition over a
single cell in a periodic potential, that is∫

cell
u∗

−km(−x)ukn(x)dx = 0. (6)

Next we define the normalized FB modes as �kn(x) ≡
φkn(x)/

√
ckn, and Ukn(x) ≡ ukn(x)/

√
ckn where ckn ≡∫ D/2

−D/2 φ∗
−kn(−x)φkn(x)dx. It is easy to see that every FB

function has a unique normalization coefficient ckn depending
on the band index n and the Bloch wave number k. In general
ckn are complex numbers and satisfy the symmetry relation
ckn = c∗

−kn. Based on this normalization, Eq. (6) leads to the
final orthonormality condition, which is∫

cell
�∗

−km(−x)�kn(x)dx = dknδn,m, (7)

where dkn ≡ { 1,when ckn ∈ C or ckn>0
−1,when ckn<0 and δn,m is the Kronecker

delta. As stated before, it has been numerically verified that for
all FB modes below the PT phase-transition point ckn �= 0. In
other words no self-orthogonal FB modes exist in our problem
[20] and the above normalization is indeed well defined.

V. ORTHOGONALITY IN INFINITE PT LATTICES

Here we derive the orthonormality condition of two FB
modes in a PT -symmetric infinite optical lattice. In order
to do this, we calculate the corresponding inner product in a
finite lattice of N cells and then take the limit N → ∞. For
this purpose we consider a finite lattice with an odd number
of waveguides N = 2N ′ + 1 where N ′ is the number of cells
to the left and to the right of the central element. The width of
the array is given by L = ND where D is the lattice constant.
First, we reduce the calculation of the inner product to an
integral over just one (the central) cell, as opposed to over
the entire lattice. In particular, we split the integral in every
individual cell in the following fashion:

∫
finite
lattice

�∗
−k′m(−x)�kn(x)dx

=
∫

finite
lattice

U ∗
−k′m(−x)Ukn(x) exp[i(k − k′)x]dx

=
∫ −(N ′−1)D−D/2

−N ′D−D/2︸ ︷︷ ︸
−N ′cell

+ · · · +
∫ −D/2

−3D/2
+︸ ︷︷ ︸

−1cell

∫ D/2

−D/2
U ∗

−k′m(−x)Ukn(x)ei	kxdx+︸ ︷︷ ︸
0(central)cell

∫ 3D/2

D/2
+︸ ︷︷ ︸

1cell

· · · +
∫ N ′D+D/2

(N ′−1)D+D/2︸ ︷︷ ︸
N ′cell

,

where we used 	k ≡ k − k′ and �kn(x) = Ukn(x) exp(ikx).
Given the fact that ukn(x) is periodic with period D, every
term in the summation can be reduced to an integral over the
central cell by using the change of variables x = x ′ − pD with
p = ±1,±2, . . . ,±N ′:∫

finite
lattice

�∗
−k′m(−x)�kn(x)dx

=
∫ D/2

−D/2
U ∗

−k′m(−x)Ukn(x)ei	kxdx ·
⎡
⎣ N ′∑

j=−N ′
ei	kDj

⎤
⎦ .

Notice that the sum of the above geometric series is well-
known in Fourier analysis [21] as the Dirichlet kernel DN (x) ≡∑N

m=−N eixm, x ∈ R, and thus the previous integral can be
written as∫

finite
lattice

�∗
−k′m(−x)�kn(x)dx

= DN ′(	kD)
∫ D/2

−D/2
U ∗

−k′m(−x)Ukn(x)ei	kxdx. (8)

In order to derive the orthogonality condition in an infinite
lattice we have to evaluate Eq. (8) in the limit N ′ → ∞:∫ +∞
−∞ �∗

−k′m(−x)�kn(x)dx = limN ′→∞{DN ′(	kD)} ∫ D/2
−D/2

U ∗
−k′m(−x)Ukn(x)ei	kxdx. From the Poisson summation

formula [22] one can show that the Dirichlet kernel becomes
a comb of equally spaced Dirac delta functions δ(x), namely:
limN ′→∞{DN ′(x)} = 2π

∑+∞
n=−∞ δ(x − 2πn). Therefore the

inner product over the whole infinite lattice takes
the form:∫ +∞

−∞
�∗

−k′m(−x)�kn(x)dx

= 2π

+∞∑
q=−∞

δ(	kD − 2πq)
∫ D/2

−D/2
�∗

−k′m(−x)�kn(x)dx.

(9)

Since we restrict the values of the Bloch wave number
only in the first Brillouin zone (reduced zone scheme), i.e.,
−π/D � k < π/D it follows that −2π < 	kD < 2π . From
the comb series of Eq. (9), we find that only the central term (for
q = 0) remains. This means that

∫ +∞
−∞ �∗

−k′m(−x)�kn(x)dx =
2πδ(	kD)

∫ D/2
−D/2 �∗

−k′m(−x)�kn(x)dx, and since δ(ak) =
δ(k)/|a|, we finally reduced the inner product calcula-
tion to one individual cell:

∫ +∞
−∞ �∗

−k′m(−x)�kn(x)dx =
2π
D

[
∫ D/2
−D/2 �∗

−k′m(−x)�kn(x)dx]δ(k − k′). By combining this
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last relation with the orthonormality condition in one indi-
vidual cell given by Eq. (7), we arrive at the orthonormality
condition in an infinite PT lattice:∫ +∞

−∞
�∗

−k′m(−x)�kn(x)dx = 2π

D
dknδn,mδ(k − k′). (10)

It is worth mentioning that this orthonormality condition
is very different than the usual one used for real periodic
potentials. Here both the spatial coordinate x and the Bloch
wave vector k must be reflected around the corresponding axis
of symmetry.

VI. PROJECTION COEFFICIENTS IN AN INFINITE
PT LATTICE

It is well known that any function can always be decom-
posed on a complete basis. This process is straightforward
if the basis happens to be orthogonal. If, on the other hand,
the eigenvectors are skewed as in the case of PT lattices,
this decomposition becomes more involved. In this section we
analyze this problem for infinite PT lattice and we derive and
an expression for the projection coefficients.

Let us assume an infinite optical PT lattice with an
arbitrary input field H (x). This profile can be expressed as
a linear superposition of the new orthonormal basis {�kn(x)}
associated with the array and the projection coefficients
An(k) of this expansion can be uniquely determined. More
specifically, any beam profile H (x,z) can be written as a
summation of the Floquet-Bloch modes of all bands and

of all Bloch wave numbers belonging to the first Brillouin
zone. This can be done via the eigenmode expansion
H (x,z) = ∑+∞

n=1

∫ π/D

−π/D
An(k)�kn(x) exp[iβn(k)z]dk. By mul-

tiplying both sides with the corresponding conjugate pair
�∗

−k′m(−x) and by applying the orthonormality condition of
Eq. (10), we get∫ +∞

−∞
�∗

−k′m(−x)H (x,z)dx

=
+∞∑
n=1

∫ π/D

−π/D

An(k)

(∫ +∞

−∞
�∗

−k′m(−x)�kn(x)dx

)

× exp[iβn(k)z]dk ⇒∫ +∞

−∞
�∗

−k′m(−x)H (x,z)dx = 2π

D

+∞∑
n=1

dk′nδn,mAn(k′)

× exp[iβn(k′)z]

and the projection coefficients are given by the formula
(obviously d−1

kn = dkn)

An(k) = D

2π
dkn exp[−iβn(k)z]

∫ +∞

−∞
�∗

−kn(−x)H (x,z)dx.

(11)

The completeness of the FB mode basis is directly related
to the Parseval’s identity [21,22] (different from that in real
lattices):

H (x,z)H ∗(−x,z) =
[+∞∑

n=1

∫ π/D

−π/D

An(k)�kn(x) exp[iβn(k)z]dk

] [+∞∑
m=1

∫ π/D

−π/D

A∗
m(−k′)�∗

−k′m(−x) exp[−iβm(−k′)z]dk′
]

⇒

Q =
+∞∑
n=1

+∞∑
m=1

∫ π/D

−π/D

∫ π/D

−π/D

An(k)A∗
m(−k′)

(∫ +∞

−∞
�∗

−k′m(−x)�kn(x)dx

)
exp[iβn(k)z − iβm(k′)z]dkdk′ (10)⇒

Q = 2π

D

+∞∑
n=1

∫ π/D

−π/D

dknAn(k)A∗
n(−k)dk, (12)

where we define the quasipower [23] as Q ≡ ∫ +∞
−∞ H (x,z)

H ∗(−x,z)dx and the integrated power as P ≡∫ +∞
−∞ H (x,z)H ∗(x,z)dx. It is noteworthy to highlight

that since the projection coefficients An(k) are not dependent
on z, it is easy to understand from Eq. (12) that the quasipower
Q is a conserved quantity in a PT lattice, while the usual
power P is not. Moreover, it is straightforward to see
from Eq. (11) that in general An(k) �= A∗

n(−k) and the
Parseval’s identity in a PT lattice is not in any sense a trivial
generalization of the one we have in a real periodic potential
P = 2π

D

∑+∞
n=1

∫ π/D

−π/D
|An(k)|2dk [24]. In a similar manner,

the closure relationship (which is formally equivalent to the
Parserval’s identity) in a PT lattice can be be shown to be

δ(x − x ′) = D

2π

+∞∑
n=1

∫ π/D

−π/D

dkn�
∗
−kn(−x ′)�kn(x)dk. (13)

The above results are derived for infinite PT optical lat-
tices. However, from the computational point of view, one al-
ways deals with a finite domain and thus it is useful to reformu-
late the above analysis for finite lattices with periodic boundary
conditions and derive the corresponding relations. The physics
is the same in the limit of many cells (the

∫ π/D

−π/D
dk must

be now replaced by the
∑

k) but the computations are much
easier.

VII. ORTHONORMALITY AND PROJECTION IN A
FINITE PT -LATTICE

In this paragraph we analytically examine the FB mode
properties of a finite PT symmetric periodic potential
where periodic boundary conditions are imposed at the
endpoints of the lattice. This approach provides a straight-
forward numerical implementation and calculation of the
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corresponding projection coefficients. The singularities of
Dirac functions in the orthogonality conditions of Eq. (10)
do not exist anymore and are replaced by a Kronecker delta. In
the limit N → ∞ the results approach that of the associated
infinite lattice. Note that this methodology is widely used in
the study of periodic crystals in solid state physics [25].

Let us assume a finite lattice of N number of cells, with
L = ND. We here apply periodic boundary conditions at
the end points of the lattice �kn(−L/2) = �kn(L/2). By
using the Floquet-Bloch theorem and the periodicity of
every FB mode we get exp(ikL) = 1 ⇒ kj = (2πj )/L, j =
0,±1,±2, . . . But these discrete values of the Bloch
wave number must belong to the first Brillouin zone
k ∈ [−π/D,π/D). This leads to the following results: k =
2π
L

[−N ′ −N ′ + 1 · · · −1 0 1 · · · N ′−1 N ′],
for odd number of cells N = 2N ′ + 1, and k =
2π
L

[−N
2 −N

2 + 1 · · · −1 0 1 · · · N
2 − 2 N

2 − 1]
for even number of cells. It is easy to see that in the first case
where N is odd, the discrete k-spectrum is symmetric around
k = 0 and k ∈ (−π/D,π/D), whereas in the case of N being
even the k-spectrum is asymmetric by one point at k = −π/D

and k ∈ [−π/D,π/D). This asymmetry in the case of even
number of cells leads to fundamental numerical problem,
since in this case the FB mode �− π

D
,n(x) does not have a

corresponding conjugate pair �∗
π
D

,n
(−x). For this reason we

choose a finite lattice of odd number of cells N = 2N ′ + 1,
with a symmetric k-spectrum.

The relation between the PT -inner product of two
different FB modes in a finite lattice (with no imposed
periodic boundary conditions) with that in a single cell
has been already presented in Eq. (8). Here we study
how the discretization of Bloch momentum k (due to
the imposed boundary conditions) affects this relation. In
order to do that we have first to calculate the Dirichlet
kernel DN ′(	kD) of the discrete Bloch wave number k =
2π
L

[−N ′ −N ′ + 1 · · · −1 0 1 · · · N ′−1 N ′]. It
is known [21] that the closed form of the Dirichlet kernel
is given by the following relation:

DN ′(	kD)

=
{

sin[(N ′+ 1
2 )	kD]

sin(	kD/2) , when 	kD �= 0,±2π,±4π, . . .

2N ′ + 1, otherwise
.

For the above discretization of the Bloch momentum k, it is
straightforward to show that 	kD = 2π

N
s, where the integer s

takes the values −2N ′ � s � 2N ′. Since N = 2N ′ + 1 > 2N ′
it follows that 	kD becomes zero only for s = 0 and is always
true that 	kD �= 0, ±2π, ±4π, . . . for any other non-zero
value of the s integer. So when 	kD = 0, then DN ′(0) =
2N ′ + 1 from the above formula. On the other hand, when
	kD �= 0 (with the sin(	kD/2) denominator well defined), it
is easy to see that sin[(N ′ + 1

2 )	kD] = 0. By combining these
two last results one can arrive at the conclusion DN ′(	kD) =
Nδk,k′ . By substituting this relation into Eq. (8), and applying
the orthonormality condition in a single cell given by Eq. (7),
we get the orthonormality condition between two FB modes of
different bands with different Bloch momenta in a finite lattice

with imposed periodic boundary conditions, that is∫
finite
lattice

�∗
−k′m(−x)�kn(x)dx = Ndknδn,mδk,k′ . (14)

One convenient normalization for the FB modes at this
point is �̄kn(x) = �kn(x)/

√
N . As in the case of an infinite

lattice, an arbitrary optical beam f (x,z) can be expanded in
terms of the finite number of FB modes (the number of FB
modes is equal to the number of the cells of the lattice and also
equal to the dimension of the discrete Bloch wave number k-
matrix) as f (x,z) = ∑+∞

n=1

∑N ′
m=−N ′ An,km

�̄kn(x) exp(iβn,km
z),

where An,km
are the projection coefficients. By applying the

orthonormality condition of Eq. (14), one can directly derive
formulas for the projection coefficients and for the Parseval’s
identity. These are given by the following equations, (15)
and (16), respectively.

An,km
= dkmn exp(−iβnkm

z)
∫

finite
lattice

�̄∗
−kn(−x)f (x,z)dx,

(15)∫
finite
lattice

f ∗(−x,z)f (x,z)dx =
+∞∑
n=1

N ′∑
m=−N ′

dkmnAn,km
A∗

n,−km
.

(16)

The advantage of this approach is that all the relations
involved can be numerically checked since the spectrum in
the k-space is discrete and has finite number of FB modes.
This in turn allows us to express any beam profile as a linear
superposition of FB modes and thus determine the energy
content of this beam in every transmission band. As we will
see, this information is useful in explaining the dynamical
behavior and propagation characteristics of optical beams in
PT -periodic potentials.

At this point, we like to note that all the numerical results
of the next two paragraphs regarding projection coefficients
have been obtained by using a finite lattice.

VIII. POWER OSCILLATIONS AND PHASE
SINGULARITIES IN PT -OPTICAL LATTICES

The most interesting aspects associated with PT sym-
metric lattices are revealed during dynamic beam evolution.
Let us consider a wide (covers several channels) Gaussian
beam at an arbitrary angle of incidence. Because of the
nonorthogonality of the associated FB modes and the physical
nonreciprocity of the lattice, we are expecting asymmetric
diffraction patterns, such as double refraction and secondary
emissions [12]. For the specific periodic PT potential V (x) =
4[cos2(x) + iV0 sin(2x)] that we consider in this paper, we
examine the spatial evolution of a wide incident beam. In
Figs. 3(a) and 3(b) we can see the intensity distributions for
two different angles of incidence, when V 0 = 0.49. The first
one in Fig. 3(a) the diffraction pattern has a crescent-like
form and is symmetric around x = 0 axis. On the other
hand, in Fig. 3(b) the beam is splitting into three different
components and the evolution is highly asymmetric. For a
better understanding, we have calculated the beam’s “energy
content” for various bands. By applying Eq. (11), the stationary
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FIG. 3. (Color online) Peculiar diffraction patterns in a PT -symmetric lattice under wide beam excitation, for V0 = 0.49 (below the phase
transition point). Intensity evolution of two different input beams, which lead to (a) crescent-like pattern, and (b) three-beam splitting. The
corresponding projection coefficient diagrams for these two input beams are depicted for the (c) first band (solid line), second band (dotted
line), and (d) first band (dashed-dotted line), second band (dotted line), third band (solid line), respectively. The integrated power oscillations,
with respect to the propagation distance, (e), (f) for the input beams of (a), (b), respectively.

projection coefficients |An(k)| can be numerically evaluated
for the first three bands (where most of the “energy” of the
beam is distributed). In Figs. 3(c) and 3(d) the corresponding
projection coefficient distributions for the input field of
Figs. 3(a) and 3(b), respectively, are illustrated. In Fig. 3(c)
the “energy” distribution for the first two bands is symmetric
with respect to the center of the Brillouin zone k = 0, and
this is the reason for the symmetry of the resulted diffraction
pattern of Fig. 3(a). Notice also that both bands have an equal
contribution. For the input beam of Fig. 3(b), the projection
coefficients for the first three bands are highly asymmetric.
We can see that the most of the “energy” of the beam is
distributed along the second band. The first and the third bands
have similar secondary contributions. By taking this plot into

account, one can easily explain the splitting of the beam in
three new beams. The main left lobe is a result of the second
band and the other two of the first and third band.

As we mentioned in a previous paragraph, the power
P is not a conserved quantity in a PT symmetric optical
lattice. So the purpose here is to understand the behavior of
power with respect to the propagation distance z. This can
be analytically done by calculating the integrated power with
respect to the usual inner product 〈h,g〉 = ∫ +∞

−∞ h∗(x)g(x)dx.
The nonorthogonality of the involved FB modes plays a
crucial role here. From the analysis presented in Sec. IV, it
is easy to see what will be the corresponding relation for the
integral

∫
cell �

∗
km(x)�kn(x)dx in one lattice cell. The following

relationship [derived in an analogous way as the orthonomality
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condition of Eq. (10)] also holds over the whole lattice:∫ +∞

−∞
�∗

k′m(x)�kn(x)dx

= 2π

D

(∫ +D/2

−D/2
�∗

km(x)�kn(x)dx

)
δ(k − k′). (17)

We are now in position to calculate the power of an arbitrary
input beam, by expressing it as a linear superposition of
nonorthogonal FB modes. The resulted formula is

P = 2π

D

+∞∑
n=1

+∞∑
m=1

∫ +π/D

−π/D

An(k)A∗
m(k)

×
(∫ +D/2

−D/2
�∗

km(x)�kn(x)dx

)
exp[i	βnm(k)z]dk,

where we used Eq. (14), and 	βnm(k) ≡ βn(k) − βm(k). From
previous considerations we finally obtain

P = 2π

D

+∞∑
n=1

∫ π/D

−π/D

|An(k)|2
(∫ +D/2

−D/2
|�kn(x)|2dx

)
dk

+ 2π

D

+∞∑
n=1
n�=m

+∞∑
m=1

∫ +π/D

−π/D

AnA
∗
m

(∫ +D/2

−D/2
�∗

km(x)�kn(x)dx

)

× exp[i	βnm(k)z]dk. (18)

The first term represents the usual power-spectral summa-
tion that appears in real lattice. Under the usual inner product
and orthogonality relations in a real lattice, the second term
of Eq. (18) is zero and

∫ +D/2
−D/2 |�kn(x)|2dx = 1. So the above

relation is reduced to the Parseval’s identity in a real lattice
[24]. In a PT lattice, the FB modes are not orthogonal and
hence some interference effects are expected. This interference
between “skewed” FB modes is described by the second term
of Eq. (18). Because of this term the power P oscillates in
z. The oscillations are not periodic in principle. The fact that
the integrated power oscillates with distance is even more
surprisingly given the fact that the eigenvalue spectrum is
entirely real (below PT -phase transition point). In order to
develop a better understanding of this behavior, let us consider
two specific examples of power oscillations in a PT - periodic
potential of the form V (x) = 4[cos2(x) + iV0 sin(2x)], with
V0 = 0.49, that is excited by a wide optical beam. More
specifically, we are interested in two different cases, the first
of which is when the input beam profile leads to strong
power oscillations and second is exactly the opposite. In
both situations, the potential parameters are kept fixed. The
intensity evolution patterns of these two beams are illustrated
in Figs. 3(a) and 3(b), respectively. Notice that these patterns
can be spatially symmetric or asymmetric, depending on
their modal “energy” distributions among the various bands.
Figures 3(e) and 3(f) depict the power oscillations of the first
[Fig. 3(a)] and the second beam [Fig. 3(b)].

FIG. 4. (Color online) Diffraction patterns under wide beam excitation of a PT -symmetric lattice for V0 = 0.49. The evolution of (a) the
intensity and (b) the phase of the diffracted field, with respect to the propagation distance are shown. Notice the two phase singularities at
the points where the field is zero. The phase at these points is undetermined. (c) Intensity pattern of a different input beam, and (d) phase of the
corresponding propagating field (c). The phase singularities here have “topological charge” of opposite sign than these illustrated on (b).
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Another interesting feature of wave propagation in PT -
symmetric periodic potentials is the existence of phase
dislocations in the evolution pattern. More specifically, we
examine the diffraction of a wide tilted Gaussian beam
propagating in the same lattice define before. Figures 4(a)
and 4(b) show the intensity and the phase of the diffracted
field, respectively. When the beam splits in two different parts
[Fig. 4(a)], then the field at this point is zero. Consequently,
the phase is undetermined and singularities appear [26]. In the
specific case, we have two phase dislocations with the same
“topological charge” [Fig. 4(b)]. On the other hand, when the
tilt of the beam slightly changes we get similar diffraction
pattern [Fig. 4(c)], but the “topological charge” of the phase
singularities has opposite sign than that in Fig. 4(b) [Fig. 4(d)].

It is noteworthy here that such characteristics and diffraction
patterns have no analog whatsoever in real Hermitian optical
lattices.

IX. CONCLUSIONS

We have demonstrated that PT -symmetric optical periodic
potentials can exhibit new behavior. Nonreciprocity, abrupt
phase transitions and “skewness” of the associated FB modes
characterize such systems. The orthonormality and projections
relations, based on a new type of conjugate pairs, were analyt-
ically derived. Beam dynamics in these structures reveals that
power oscillations and peculiar diffraction patterns exhibiting
phase singularities are possible.
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