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To the best of our knowledge, we propose the first motion-free laser beam propagation analyzer with a
hybrid design using a digital micromirror device (DMD) and a liquid electronically controlled variable
focus lens (ECVFL). Unlike prior analyzers that require profiling the beam at multiple locations along
the light propagation axis, the proposed analyzer profiles the beam at the same plane for multiple values
of the ECVFL focal length, thus eliminating beam profiler assembly motion. In addition to measuring
standard Gaussian beam parameters, the analyzer can also be used to measure theM2 beam propagation
parameter of a multimode beam. Proof-of-concept beam parameter measurements with the proposed
analyzer are successfully conducted for a 633nm laser beam. Given the all-digital nature of the
DMD-based profiling and all-analog motion-free nature of the ECVFL beam focus control, the proposed
analyzer versus prior art promises better repeatability, speed, and reliability. © 2010 Optical Society
of America

OCIS codes: 140.3295, 120.4800, 350.5500.

1. Introduction

A Gaussian laser beam is completely characterized
for all distances from the source by only two param-
eters, i.e., the minimum beam waist radius w0
and the location of the minimum waist z0 [1]. Precise
knowledge of these values is critical for many
applications including, but not limited to, laser man-
ufacturing, machining, optical communications, ma-
terials research, optical metrology, radar, and laser
damage studies. In principle, w0 can be determined
by a single beam radius measurement at a large dis-
tance from the source [2] or in the focal plane of a
fixed lens placed in the beam path [3,4]. In addition,
the interference pattern in an unfocused beam gen-
erated using a birefringent crystal gives a measure of
w0 [5]. However, to determine z0 one must measure
the beam radius at multiple locations along the beam

path [2,6,7]. This multiple measurement process re-
quires either the motion of optical elements in the
beam path or the motion of the entire beam profiler
assembly over large distances, e.g., twice the Ray-
leigh range [8], leading to a beam analyzer that is
slow, cumbersome, and inherently suffers from poor
measurement repeatability. Beam profilers used to
measure the beam radii are dominated by mechani-
cal knife-edge scanning techniques [2,9,10]. Other
less commonly used mechanical techniques include
sliding slit [11], translating pinhole [12], rotating
mirror [13], surface plasmon polaritons [14], and en-
circled energy principal-based profilers [15]. These
mechanical techniques have limited repeatability
as they require high-resolution precision motion
systems that are not only expensive but deploy con-
tinuous transverse-direction analog translation of
components. A new class of all-digital and hybrid
analog–digital spatial light modulator (SLM)-based
profilers has been introduced that use a digital mi-
cromirror device (DMD) [16–20] and liquid crystal
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display (LCD) [21] technologies. The all-digital
version of these beam profilers offers the benefit of
excellent SLM chip-based reliability and 100% re-
peatability in beam profiling by digital-mode chip op-
erations over instrument lifetimes.
In Section 2 we introduce and demonstrate a

new motion-free beam analyzer instrument that en-
gages an electronically controlled variable focus lens
(ECVFL) in conjunction with an all-digital DMD-
based beam profiler to accurately measure the pa-
rameters of a Gaussian laser beam, i.e., w0 and z0.
Such an analyzer design does not require any motion
of optical elements or a beam profiler assembly, thus
eliminating a key limitation of prior art analyzers. In
Section 3 we describe the proposed beam propagation
analyzer optical design and its experimental results.
In Section 4 we show how the proposed analyzer can
be used to measure theM2 beam propagation param-
eter [22,23] of a laser beam. Our conclusions are
given in Section 5.

2. Proposed Motion-Free Beam Propagation Analyzer

Figure 1 shows the proposed beam propagation
analyzer system. The Gaussian laser beam to be ana-
lyzed passes through the ECVFLwith a tunable focal
length f and strikes the DMD placed a fixed distance
d2 from the electronically controlled lens. A Gaussian
beam optical field at a radial distance r from the optic
axis and at a distance z along the beam travel or
optic-axis direction can be represented in terms of
its complex q parameter as [1]

ψðr; zÞ ∝ exp
�
−jkr2

2qðzÞ
�
; ð1Þ

where

1
qðzÞ ¼

1
RðzÞ − j

λ
πw2ðzÞ : ð2Þ

Here wðzÞ is the 1=e2 beam radius, RðzÞ is the beam
radius of curvature, λ is the laser wavelength, and
k ¼ 2π=λ. At the minimum beam waist location z0,
a distance d1 in front of the ECVFL, the phase front
is plane with RðzÞ ¼ ∞. Using Eq. (2), the q para-
meter q0 at the minimum beam waist location can
be written in terms of the minimum beam radius
w0 as

1
q0

¼ −j
λ

πw2
0

≡
1
jzR

; ð3Þ

where zR is known as the Rayleigh range. After
passing through the ECVFL, the laser beam q para-
meter q1 at the DMD plane is given by [1]

q1 ¼ Aq0 þ B
Cq0 þD

¼ AjzR þ B
CjzR þD

: ð4Þ

Here, A, B, C, and D are the elements of the ABCD
matrix that defines the transfer of paraxial rays
through the optical system defined between the
ECVFL and the DMD. The ABCD matrix for this
complete system is a product of three ABCD ma-
trices, specifically, one for d1 distance free-space pro-
pagation, one for transmission through a thin lens
with focal length f , and one for distance d2 free-space
propagation. Hence, the required ABCD matrix is
given by

Fig. 1. Proposed motion-free hybrid-design laser beam propagation analyzer system using a DMD and an ECVFL: PD1/PD2,
photodetectors; PC, personal computer.
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�
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C D

�
¼

�
1 d2

0 1

��
1 0

−1=f 1

��
1 d1

0 1

�

¼
�
1 − d2=f d1 þ d2 − d1d2=f
−1=f 1 − d1=f

�
: ð5Þ

Equation (4) can be rewritten as

1
q1

¼ CjzR þD
AjzR þ B

¼ ðCjzR þDÞð−AjzR þ BÞ
A2z2R þ B2 : ð6Þ

Separating the real and imaginary parts, one can
rewrite Eq. (6) as

1
q1

¼ ACz2R þ BD

A2z2R þ B2 − j
zRðAD − BCÞ
A2z2R þ B2 : ð7Þ

Comparing Eq. (7) with Eq. (2), one can write

Im
�
1
q1

�
¼ −

λ
πw2ðf Þ ¼ −

zRðAD − BCÞ
A2z2R þ B2 ; ð8Þ

where wðf Þ is the f -dependent 1=e2 beam radius on
the DMD plane. Substituting the values of A, B, C,
and D from Eq. (5) and the value of zR from Eqs. (3)
and (8) can be simplified to

w2ðf Þ ¼ w2
0ð1 − d2=f Þ2 þ

λ2
π2w2

0

ðd1 þ d2 − d1d2=f Þ2;

ð9Þ

Next, Eq. (9) can be rewritten as

w2ðf Þ ¼ w2
0

�
ð1 − d2=f Þ2 þ

�λðd1 þ d2 − d1d2=f Þ
πw2

0

�
2
�
:

ð10Þ

In Eq. (10), d2 is known and is fixed, whereas d1 and
w0 are unknown laser beam parameters. By varying
f and measuring the corresponding value of wðf Þ, a
set of simultaneous equations in d1 and w0 can be
found. Since there are two unknowns, a minimum
of two readings is required although more readings
should be taken so that d1 and w0 are determined
in the least-squares sense to account for experimen-
tal errors. Note that, if the actual minimum beam
waist location is behind the ECVFL (and not in front
of the ECVFL as shown in Fig. 1), then d1 would re-
sult as a negative value. Once w0 is determined from
the calculations, the beam divergence half-apex an-
gle can be found using [1]

θ ¼ λ
πw0

: ð11Þ

To measure wðf Þ, knife-edge beam profiling using
the DMD-based beam profiler is employed [16,17].
Using software control, each micromirror on the

DMD can be individually set to either a þθ or a −θ
tilt state. A virtual knife-edge is formed on the DMD
by setting some micromirrors to þθ (black pixels in
Fig. 1) and the rest to the −θ tilt position (clear pixels
in Fig. 1). Photodetectors PD1 and PD2 are set sym-
metrically along the optic axis such that light reflect-
ing off the mirrors in the þθ state falls on PD1; light
reflecting off the mirrors in the −θ state falls on PD2.
This virtual knife-edge slides across the incident
beam, and the PD1 and PD2 power is simultaneously
recorded. The use of two photodetectors is important
for normalization of the detected power when the
laser beam power fluctuates during profiling opera-
tions [18]. Next an error function is fit to the acquired
data and from this error-function fit, 1=e2 beam ra-
dius wðf Þ is determined [10]. The resolution of this
measurement is equivalent to the pixel pitch of
the DMD.

3. Experimental Demonstration

The Fig. 1 analyzer is set up as a proof-of-concept ex-
periment in the laboratory. A 10mW λ ¼ 632:8nm
Melles Griot (Albuquerque, New Mexico) Model 05-
LHP-991 He–Ne laser source is used as the input la-
ser beam. The ECVFL used is a Varioptic (Lyon,
France) Arctic 320 liquid lens with a 3mm clear aper-
ture. The liquid lens is a broadband adjustable multi-
focus imaging lens that changes focus due to the
electrowetting process [24]. The calibration curve for
the liquid lens focal length versus the AC drive signal
is specified in the product data sheet [24]. The re-
sponse of the liquid lens is highly repeatable for a li-
quid lens focal length f > 7:7 cm [25]. The visible
band Texas Instruments (TI) (Dallas, Texas) DMD
used has an extended graphics array (XGA) format
of 1024 × 768 micromirrors with a pixel pitch of
13:68 μm, and θ ¼ 12° , and is placed a fixed distance
d2 ¼ 30:8 cm from the ECVFL. The profiler detectors
PD1 and PD2 are Newport (Irvine, California) Model
918D-UV having a spectral range of 200–1100 nm
and an active area of 1 cm2. The powermeter is a
dual-channel Newport Model 2931C with a nanowatt
optical power measurement resolution.

Focal length f of the ECVFL is tuned by varying
the AC drive signal duty cycle. For each value of f ,
the beam is profiled using the DMD-based profiler.
For a value of f ¼ 9:6 cm, Figs. 2(a) and 2(b) show the
normalized raw optical power data acquired for
the DMD programmedmoving knife-edges across the
beam horizontal and vertical directions, respectively.
The raw data are fit with an error function [Figs. 2(c)
and 2(d)] to generate Gaussian profiles for the DMD
plane laser beam. According to the fit, the horizontal
1=e2 beam radius wHðf ¼ 9:6 cmÞ is found to be
734:05 μm; the vertical 1=e2 beam radius wVðf ¼
9:6 cmÞ is found to be 729:83 μm. By multiplying
the 1-D horizontal and vertical Gaussian profiles
found using the error-function fits, Figs. 2(e) and 2(f)
show the gradient and spatial views of the generated
2-D beam profile, respectively. In a similar manner,
the beam is profiled using the DMD-based profiler for
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other values of f . Table 1 shows the measured hori-
zontal and vertical 1=e2 beam radii wHðf Þ and wVðf Þ
corresponding to each value of f . Note that the values
of f are selected such that the ECVFL is essentially
aberration free, typically with the ECVFL f number
greater than 20, implying weak lens opera-
tions [8]. For example, for a 3mm diameter ECVFL,
f > 6 cm. In addition, the value of d2 is set of the or-
der of f , because a longer d2 would result in the laser
beam expanding more than the size of the DMD and
a shorter d2 would result in not enough change in the
values of beam radii when f is varied to give an ac-
curate curve fit.
Table 1 data are curve fits to Eq. (10) with known

fixed parameters of λ ¼ 632:8nm and d2 ¼ 30:8 cm
using the Levenberg–Marquardt algorithm [26].
Note that, given that the ECVFL diameter is 3mm,

the weak lensing condition is satisfied as the f used
are greater than 6 cm. Figures 3(a) and 3(b) show the
curve-fitting results for the horizontal and the verti-
cal beam radii, respectively. The curve fit gives the
values of the unknown parameters w0H ¼ 324:27 μm,
d1H ¼ 25:8 cm, wθV ¼ 324:71, and d1V ¼ 25:1 cm.

Fig. 2. (Color online) For the 633nm laser beam, DMD knife-edge beam profiling results for the f ¼ 9:6 cm ECVFL. Knife-edge raw
optical power data along the test beam (a) horizontal direction and (b) vertical direction. Error-function fit for (c) horizontal knife-edge
data and (d) vertical knife-edge data. Two-dimensional beam profile (e) gradient view and (f) spatial view.

Table 1. Corresponding Values of the ECVFL a

f (cm) wHðf Þ (μm) wV ðf Þ (μm)

9.6 734.05 729.83
11.5 549.99 550.78
13.6 412.82 415.72
22.9 177.77 173.87
33.0 208.41 206.07

aFocal length f and the measured 1=e2 laser beam horizontal
wHðf Þ (μm) and vertical wHðf Þ (μm) radii.
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Next, using Eq. (11) the beam divergence half-apex
angle for both the horizontal and the vertical direc-
tions is found to be θ ¼ 0:62mrad. These analyzer
measured values compare well with the Melles Griot
laser data sheet values of a minimum beam radius of
w0 ¼ 325 μm and a beam divergence half-apex angle
of θ ¼ 0:62mrad. Note that, theoretically, the accu-
racy of the beam waist measurement is limited by
the DMD pixel pitch, although in practice the accu-
racy is expected to be better because of using more
than two pairs of f and wðf Þ values and the use of
least-squares curve fitting would, in general, even
out the errors. The physical distance between the
ECVFL and the laser aperture in the experiment
is 22:9 cm. Given the average analyzer measured
d1 value is ð25:1þ 25:8Þ=2 ¼ 25:45 cm, the minimum
beam waist is estimated to be formed as
25:45 − 22:9 ¼ 2:55 cm inside the laser.

4. Measurement of Beam Propagation Parameter M2

The beam propagation parameterM2 is a measure of
the quality of the laser beam, i.e., how close a given
laser beam is to an ideal fundamental TEM0 Gaus-
sian mode and is given by the square of the ratio of
the laser beam divergence to the beam divergence of
an ideal Gaussian beam with the same minimum
beamwaist [22,23]. Since Eq. (10) fits the data points
from the conducted experiment extremely well (see
Fig. 3), it can be concluded that this particular laser
beam is close to a pure Gaussian, i.e., the fundamen-
tal mode TEM0 is dominant, implying a value of M2

close to 1. However, the same technique can be used
to estimate laser beam parameters for multimode
laser beams by incorporating the M2 factor into
Eq. (10). For multimode beams, the beam radius is
M times larger everywhere in comparison with the
embedded fundamental mode [22]. Therefore, the
multimode beam radius Wðf Þ at the DMD plane and
the minimum beam radius W0 can be written in
terms of the corresponding fundamental mode radii
as [22]

W0 ¼ Mw0; Wðf Þ ¼ Mwðf Þ: ð12Þ
Inserting Eq. (12) into Eq. (10) yields

W2ðf Þ ¼ W2
0

�
ð1 − d2=f Þ2

þ
�
M2λðd1 þ d2 − d1d2=f Þ

πW2
0

�
2
�
: ð13Þ

In this case, in addition toW0 and d1, there is a third
unknown parameter M. Therefore at least three sets
of f and Wðf Þ readings are required to find the un-
known parameters. Unlike fundamental-mode Gaus-
sian beams where the 1=e2 beam radius definition
is used, for multimode beams the International
Standards Organization (ISO) has recommended a
second-moment radius definition to be used as the
standard for a beam radius [27]. According to this

definition, the beam radius is given by twice the stan-
dard deviation of the irradiance distribution of the
laser beam as sampled by a pinhole translated across
the beam [23]. Most importantly, the second-moment
beam radiusWðf Þ can also be readily measured using
the DMD-based profiler as a pinhole profiler [20]. In
this case, a virtual pinhole is moved across the DMD
and the corresponding PD1 and PD2 power data are
recorded to generate a pinhole irradiance profile
Iðx; yÞ of the incident laser beam. The second-
moment horizontal beam radius WHðf Þ is then given
by [23]

WHðf Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x

P
y
Iðx; yÞ ðx − x0Þ2
P
x

P
y
Iðx; yÞ

vuuuut ; ð14Þ

where

Fig. 3. (Color online) Table 1 data and Eq. (10) provided the least-
squares curve fit for determining the test 633nm laser beam
(a) horizontal beam radius wHðf Þ and (b) vertical beam radius
wV ðf Þ.
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x0 ¼

P
x

P
y
Iðx; yÞ x

P
x

P
y
Iðx; yÞ : ð15Þ

x0 is the centroid of the beam in the x direction. In the
same way, the vertical direction beam radius WVðf Þ
can be calculated. OnceW0 andM are determined by
least-squares curve fitting, the multimode laser
beam divergence is calculated as [22]

Θ ¼ M2λ
πW0

: ð16Þ

Note that the prior art techniques [8,28,29] rely on
measuring second-moment beam radii using me-
chanically translating pinhole profilers that typically
require moving the mechanical pinhole at approxi-
mately 10,000 locations over the beam zone, a pro-
cess that is especially susceptible to repeatability
issues. In comparison, the proposed analyzer has an
inherent 100% accurate digital pinhole location with
the DMD chip structure, which leads to a powerful
attribute for multimode laser beam characterization.

5. Conclusion

For the first time to our knowledge, a laser beam
propagation analyzer system using a liquid ECVFL
and a DMD has been proposed and demonstrated.
Analyzer experiments conducted with a 633nm
wavelength laser beam of manufacturer-defined
parameters show the analyzer to accurately measure
the beam specifications. This analyzer can be used
not only to precisely determine the parameters of
a single-mode Gaussian laser beam as demonstrated
but can also be used to measure multimode laser
beam parameters. The proposed analyzer uses com-
plete electronic control and eliminates the need for
any motion of precision optics, thus promising excel-
lent reliability, speed, and repeatability. Future re-
search will focus on experimentally demonstrating
the M2 measurement capability of the analyzer.

The authors thank Nuonics, Inc. for providing the
equipment for the experiments.

References
1. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl.

Opt. 5, 1550–1567 (1966).
2. J. E. Sollid, C. R. Phipps, Jr., S. J. Thomas, and E. J. McLellan,

“Lensless method of measuring Gaussian laser beam diver-
gence,” Appl. Opt. 17, 3527–3529 (1978).

3. J. A. Arnaud, W. M. Hubbard, G. D. Mandeville,
B. de la Claviére, E. A. Franke, and J. M. Franke, “Technique
for fast measurement of Gaussian laser beam parameters,”
Appl. Opt. 10, 2775–2776 (1971).

4. Y. Suzaki and A. Tachibana, “Measurement of the Gaussian
laser beam divergence,” Appl. Opt. 16, 1481–1482 (1977).

5. J. Falk, “Measurement of laser beam divergence,” Appl. Opt.
22, 1131–1132 (1983).

6. R. M. Herman, J. Pardo, and T. A. Wiggins, “Diffraction and
focusing of Gaussian beams,”Appl. Opt. 24, 1346–1354 (1985).

7. S. Nemoto, “Determination of waist parameters of a Gaussian
beam,” Appl. Opt. 25, 3859–3863 (1986).

8. T. F. Johnston, Jr., “Beam propagation (M2) measurement
made as easy as it gets: the four-cuts method,” Appl. Opt.
37, 4840–4850 (1998).

9. W. Plass, R. Maestle, K. Wittig, A. Voss, and A. Giesen, “High-
resolution knife-edge laser beam profiling,” Opt. Commun.
134, 21–24 (1997).

10. D. R. Skinner and R. E. Whitcher, “Measurement of the radius
of a high-power laser beam near the focus of a lens,” J. Phys. E
5, 237–238 (1972).

11. P. J. Brannon, J. P. Anthes, G. L. Cano, and J. E. Powell, “Laser
focal spot measurements,” J. Appl. Phys. 46, 3576–3579
(1975).

12. P. J. Shayler, “Laser beam distribution in the focal region,”
Appl. Opt. 17, 2673–2674 (1978).

13. C. P. Wang, “Measuring 2-D laser-beam phase and intensity
profiles: a new technique,” Appl. Opt. 23, 1399–1402
(1984).

14. H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg,
“Surface plasmon polariton-based optical beam profiler,”
Opt. Lett. 29, 1408–1410 (2004).

15. M. K. Giles and E. M. Kim, “Linear systems approach to fiber
characterization using beam profile measurements,” Proc.
SPIE 500, 67–70 (1984).

16. S. Sumriddetchkajorn and N. A. Riza, “Micro-electromechani-
cal system-based digitally controlled optical beam profiler,”
Appl. Opt. 41, 3506–3510 (2002).

17. N. A. Riza, “Digital optical beam profiler,” U.S. patent
6,922,233 (26 July 2005).

18. N. A. Riza and M. J. Mughal, “Optical power independent
optical beam profiler,” Opt. Eng. 43, 793–797 (2004).

19. N. A. Riza and F. N. Ghauri, “Super resolution hybrid
analog–digital optical beam profiler using digital micro-
mirror device,” IEEE Photon. Technol. Lett. 17, 1492–1494
(2005).

20. M. Sheikh and N. A. Riza, “Demonstration of pinhole laser
beam profiling using a digital micro-mirror device,” IEEE
Photon. Technol. Lett. 21, 666–668 (2009).

21. M. Gentili and N. A. Riza, “Wide-aperture no-moving-parts
optical beam profiler using liquid-crystal displays,” Appl.
Opt. 46, 506–512 (2007).

22. M. W. Sasnett, “Propagation of multimode laser beams—the
M2 factor,” in Physics and Technology of Laser Resonators,
D. R. Hall and P. E. Jackson, eds. (Hilger, 1989), Chap. 9,
pp. 132–142.

23. A. E. Siegman, “How to (maybe) measure laser beam quality,”
in Vol. 17 of OSA Trends in Optics and Photonics, pp. 184–199
(Optical Society of America, 1998).

24. Model Arctic 320 Liquid Lens Technical Data Sheet: Optical
and Opto-Mechanical Data (Varioptic, SA., Lyon, France,
2006), p. 1.

25. P. Ruffin, “Autofocus liquid lenses target new applications,”
Opt. Laser Europe Mag., pp. 17–20 (October 2007).

26. K. Levenberg, “A method for the solution of certain non-
linear problems in least squares,” Q. Appl. Math. 2, 164–168
(1944).

27. “Test methods for laser beam parameters: beamwidths, diver-
gence angle, and beam propagation factor,” ISO/TC 172/SC9/
WG1, ISO/DIS 11146, available from Deutsches Institut für
Normung, Pforzheim, Germany.

28. M. W. Sasnett and T. F. Johnston, Jr., “Apparatus for measur-
ing the mode quality of a laser beam,” U.S. patent 5,214,485
(25 May 1993).

29. A. E. Siegman and S. W. Townsend, “Output beam propaga-
tion and beam quality from a multimode stable-cavity laser,”
IEEE J. Quantum Electron. 29, 1212–1217 (1993).

1 June 2010 / Vol. 49, No. 16 / APPLIED OPTICS D11


