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We provide an in-depth treatment of the various mechanisms by which an inci-
dent light beam can produce an intensity- or flux-dependent change in the re-
fractive index and absorption coefficient of different materials. Whenever pos-
sible, the mechanisms are initially traced to single-atom and -molecule effects
in order to provide physical understanding. Representative values are given for
the various mechanisms. Nine different mechanisms are discussed, starting
with the Kerr effect due to atoms and/or molecules with discrete states, includ-
ing organic materials such as molecules and conjugated polymers. Simplified
two and/or three-level models provide useful information, and these are sum-
marized. The nonlinear optics of semiconductors is reviewed for both bulk and
quantum-confined semiconductors, focusing on the most common types II-VI
and I1I-V. Also discussed in some detail are the different nonlinear mechanisms
that occur in liquid crystals and photorefractive media. Additional nonlinear
material systems and mechanisms such as glasses, molecular reorientation of
single molecules, the electrostrictive effect, the nuclear effect (vibrational con-
tributions), cascading, and the ever-present thermal effects are quantified, and
representative tables of values are given. © 2010 Optical Society of America

OCIS codes: 190.4720, 160.4330.
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Nonlinear refraction and absorption:
mechanisms and magnitudes

Demetrios N. Christodoulides, lam Choon Khoo, Gregory J. Salamo,
George I. Stegeman, and Eric W. Van Stryland

1. Introduction

Nonlinear processes occur in abundance in nature. Optics is of course no excep-
tion, and nonlinearities are inevitable. At high input optical intensities, there is
an intensity-dependent change in a material’s refractive index, frequently linked
to an intensity-dependent absorption change. (Note that here we adopt the more
commonly used term “intensity” rather than “irradiance” to describe light in
units of power/area.) Nonlinear index and absorption changes play the key role
in many important nonlinear phenomenon such as all-optical switching or soli-
ton generation; they may be harmless artifacts, for example, in degenerate four-
wave mixing, or they may be deleterious, for example, in second-harmonic gen-
eration or parametric mixing. Nonlinear absorption is the key phenomenon in
nonlinear spectroscopy. It is surprising that, given the important role of such
nonlinear effects, the relevant information is scattered throughout the scientific
literature and there is no review of the different physical phenomena responsible
for these effects.

The intensity-dependent refractive index n,(/), where [ is the intensity, is defined
by An=n,(I)I. Historically n,(/) was first defined for the Kerr effect in terms of
the sum of the real part of the third-order electronic susceptibilities y*(—w:
~—w,0,0)+ XV (-0 0w,~0,0)+ ¥ (-0:0,0,~0). In this case, the index
change is local and effectively instantaneous so that An=n,l. This electronic
nonlinearity has proved very useful for probing different nonlinear interactions,
since many problems can be solved analytically with this particular form for the
index change. However, in addition to the Kerr effect there is a myriad of addi-
tional physical mechanisms that also lead to an intensity-dependent refractive
index change. Many of them depend on the state of the matter that is being
probed optically, e.g., polymer, semiconductor, liquid crystal, or glass. In this tu-
torial review we discuss the physics of these mechanisms and derive, where pos-
sible, formulas that link index change to intensity, and we provide typical values
for the intensity-dependent refractive index coefficients and the characteristic
times that it takes to produce the index change when an optical field is turned on
and the decay time when the field is turned off. In order to achieve these goals, it
proved useful in this review to first describe the pertinent physics of some of the
unique states of matter such as conjugated polymers, semiconductors, liquid
crystals, and photorefractive (PR) materials.

Although a principal goal of this paper is to discuss the relevant physical mecha-
nisms that give rise to an intensity-dependent refractive index and absorption, in
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the final analysis it is necessary to evaluate these pertinent nonlinear coefficients
experimentally. First, the very parameters that enter into expressions for the non-
linearity require experimental determination. Second, although many nonlinear
mechanisms can be described on a single-molecule level, the transition to the
condensed matter phase is not very precise because of intermolecular interac-
tions, collisions, local field effects, etc. Therefore, although many of the gross
features, such as location of maxima, symmetry relations, and a first-order esti-
mate of dispersion with frequency, can be obtained successfully from single-
molecule theories, ultimately experimental measurements of nonlinear coeffi-
cients, most specifically in this case the nonlinear refractive index, are needed in
order to interpret data and accurately predict phenomena. Nonlinear optics is
primarily an experimental discipline!

The nonlinear mechanisms to be discussed in this review are listed below:

Nonlinearities involving transitions between discrete molecular states
“Glass” nonlinearities

Semiconductor nonlinearities

Nuclear (vibrational) contributions to 7,.

Molecules with anisotropic polarizabilities

Al A

(a) Molecular reorientation
(b) Liquid crystals

Photorefractive effects

Electrostriction

Thermal nonlinearities

9. Cascading of second-order nonlinearities

© =N

This list is arranged to be approximately in order of increasing time constants,
except for cascading, which is a special case. Note that some of the mechanisms
occur in all materials, and others are material specific.

In Section 2, nonlinear refraction and absorption due to transitions between dis-
crete states in matter, principally dielectric and organic media, are explored.
Since the general case is very complicated, the formulas are reduced, assuming a
two-level system, to analytical formulas for the nonlinearity near and on the one-
and two-photon resonances; off resonance, in which case the damping term in
the resonance denominators is set to zero; and finally in the nonresonant limit, in
which the photon frequency is ignored relative to the resonance frequencies as-
sociated with the transitions. Insights into some general properties of nonlineari-
ties gained from applying a two-level model are summarized. In addition, since
organic molecules are classical systems with discrete energy levels, the physics
and magnitudes of their nonlinearities are reviewed. Included are polyenes and
their polymerized counterparts, i.e., conjugated polymers, a variety of symmet-
ric and asymmetric charge transfer molecules, and the special cases of dendrim-
ers. Finally, the phenomena of excited state and reverse saturable absorption
(RSA) are discussed with illustrative examples.

In Section 3 the nonlinearities of glasses are briefly discussed. They are basically
discrete energy level systems broadened to overlap between states by the ran-
dom, amorphous, disordered nature of a glass. Although the focus is primarily
on fused silica, for which the dispersion in 7, is well known and highly relevant
to communications fibers, the effect on the nonlinearities of adding various ox-
ides is summarized. To date, the largest nonlinearities have been obtained in
chalcogenide glasses whose absorption edge is in the near infrared.
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Section 4 deals with semiconductors, which exhibit the largest and best under-
stood range of physical phenomena responsible for different nonlinearities. The
largest nonlinearities arise from the absorption of light with the consequent
transfer of an electron from the valence to conduction bands. Even larger non-
linearities, but over a narrow spectral range, occur as a result of bleaching of ex-
citon states located in the bandgap below the conduction band. The effects of ap-
plying active pumping of electrons from the valence band to conduction bands
followed by stimulated emission reverses the sign of the nonlinearities and leads
to nonlinear gain rather than loss. The different effects that lead to nonlinearities
for photon energies below the bandgap are summarized next. The analytical for-
mulas derived in this spectral region are shown to be in excellent agreement with
experiment. Finally, the results for nonlinearities of the confinement of electrons
to two (quantum wells), one (quantum wires) and zero (quantum dots, QDs) di-
mensions are reviewed. Evidence is presented for modest enhancements in
quantum wells (factor of 2-3). However, it is clear that in most QD systems stud-
ied to date there is no clear measurable enhancement except perhaps for GaAs in
one case, in which an order of magnitude enhancement has been reported.

Section 5 reviews the nonlinearity obtained from coupling to vibrational modes
in matter. The contributions are of the order of a few tens of percent in glasses.

Section 6 deals with the reorientation of anisotropic molecules, individually or
collectively, and the resulting contributions to nonlinear phenomena. For single
molecules, the dipoles induced by an optical field tend to align the large mol-
ecule polarizability axis with the field, creating a refractive index anisotropy in
the liquid state. In liquid crystals, intermolecular forces lead to collective behav-
ior. This results in a spectrum of nonlinearites due to absorption and resulting
temperature changes, which reduce the size of the aligned regions and hence the
induced index change. If the liquid crystal molecules are anchored at the sample
surfaces, the application of electric fields results in molecular reorientation with
distance into the sample or a field-dependent threshold for decoupling from the
surface anchoring. Both cases lead to an intensity-dependent refractive index.
Finally, doping a liquid crystal with dye molecules that undergo structural
changes (trans-cis isomerization) on light absorption can disrupt collective ori-
entation in liquid crystals, resulting in huge nonlinearities. All of these effects
are discussed in Section 6.

Photorefractive media, explored in Section 7, are another source of very large
(and usually very slow) nonlinearities. Their physics involves absorption that
raises an electron from a donor state to the conduction band, the motion of that
electron either due to diffusion or applied fields, and then retrapping in an ac-
ceptor state some distance from the initial absorption. This process introduces
nonlocality and electric fields due to the charge separation, which, via the
electro-optic effect, yield index changes. The nonlocality is responsible for a
number of different phenomena such as beam fanning and two-beam coupling.
These processes are quantified, and typical numbers are given.

Section 8§ contains information on the electrostrictive effect, which always com-
presses a material along the field direction. This effect, although relatively slow
and small, leads to acoustic wave generation, which, depending on sample ge-
ometry, can cause spurious effects on the light beam.

The thermo-optic effect (described in Section 9) arises because of beam absorp-
tion, followed by changes in sample temperature and hence index changes. De-
pending on the time scale of measurements of the nonlinearity and the magni-
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tude of the material absorption coefficient, this can be the dominant nonlinear
effect. The decay time scale of the index change is slow and depends on beam
geometry and the material’s thermal properties.

The last contribution to nonlinear effects that mimic nonlinear absorption and
changes in index proportional to intensity occurs owing to the cascading of
second-order nonlinearities. This can occur at the molecular level (local cascad-
ing) or on propagation coincident with the generation of new frequencies (non-
local cascading). The latter can lead to large effects, especially if the second-
order process is near a phase-match condition, for example, in second-harmonic
generation. These effects are described in Section 10.

Some concluding remarks are given in Section 11.

2. Nonlinearities Involving Transitions between
Discrete Molecular States

The physical origin of nonlinearities involving transitions between discrete mo-
lecular states is the electric dipole interaction between the electrons in atoms and
molecules and an electromagnetic field (see standard textbooks such as [1,2] for
detailed discussions). Electrons are excited from the ground state to excited
states via the product of three or more electric fields, which can be either the
same or different electric fields. This changes the electron distribution in the
atom or molecule, and hence the polarization induced by the field has a nonlin-
ear component that is proportional to the product of three fields. The proportion-
ality is calculated from first-order perturbation theory and described in the
single-isolated-molecule limit by the sum of three different third-order suscep-
tibilities 5/;,3,31, which are functions of the electric dipole transition elements be-
tween electronic states and the permanent dipole moments in the ground and ex-
cited states. In the condensed matter limit pertinent to nonlinear optics, the
interactions are described by the sum of three different third-order susceptibili-
ties Xz('j3k)l derived from the molecular susceptibilities.

The starting point for a calculation ole(.;k)lis the isolated-single-molecule third-
order susceptibility 7_’1('1'3/{)1' For detailed discussions see [1]. (In this tutorial review,
parameters associated with single isolated molecules are identified with an over-
bar.) From a combination of repeated applications of first-order perturbation
theory, the method of averages approach to deal with divergences, limiting the
light—matter interaction to electric dipole coupling, assuming that the molecule’s
electrons are initially in the ground state, and limiting the interaction to a single
electron excitation per molecule, the third-order molecular susceptibility 5/5}.3,()1 for
arbitrary input frequencies w,, »,, and , is given below by Eq. (2.1). For details
see the classic paper by Orr and Ward [3]. Here both summations, each over all
of the molecular excited states v, m, and n [see Fig. 1(a)] specifically exclude the
ground state g (as indicated by the superscript ’); i.e., they are taken over the
excited states only. Furthermore, the energy separation between states, for ex-

ample m and n, is written as Em—E_n=ﬁc6mn, and the transition dipole moment
between these states is given by /Z,,,. The permanent dipole moment in state m is

written as f1,,,. Usually finite excited state lifetimes for the excited state to the
ground state are added phenomenologically by making w,,, complex for the ex-
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Figure 1
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(b)
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(a) Schematic of the electronic energy levels for a molecule; g is the ground state
and m, v, and n are arbitrary excited states. Transition diagrams for (b) x®’
X(—w;0,0,~0), () xP(-0;0,~0,), and (d) ¥ (-w;~0,», o).

cited states, i.e., @,,— (I),,g—ifng. Note that subsequent to Eq. (2.1) ,, is a real
quantity:
- 3 .
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L33

80ﬁ v,n,m (a_)vg —w,

— 0, ~ 0,)(@yg — 0, ~ ©,)(D,, ~ W)

q

N ﬂgv,j(ﬂvn,k - /ngg,k) (/an,i B /zgg,i)ﬂmg,l

((I)Zg + wp)(a_)zg +w,+ 0) (0, — ©,)

N ﬂgv,l(ﬂvn,i - /Zgg,i) (/an,k - /Zgg,k)/zmg,j
(@ + 0o~ 0y~ ) (g — )

/ng,j(/zvn,k - /dgg,k) (ﬂnm,l - /dgg,l)/dmg,i
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1 /zgn,iﬂng,bdgm,hdmgzi
-V

g~ Wp T Wy wr)((’;ng - wr)(‘amg - wp)
:‘zgn,z}dng,lﬁgm,kﬂmg,j

(@, + 0 )@y = 0,) (@~ ,)

ﬂgn,lzung,lﬂgm,j#mg,k

(a_):g + wr)(a_);g + w,) (@) — ®,)

ﬂgn,llung,ijugm,jﬂmg,k

. - . (2.1)
(@) + 0@y 0@+ 0, F 0, )

This is called the “sum over states” equation, typically abbreviated S.O.S. The
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usual notation is used in which the frequency of the field affected by the nonlin-
ear interaction [w,+w,+w,] appears as the first argument in 7’5/3121(_[‘”p+ w,
+w,]; »,,0,,0,) and the input interacting fields have frequency components w,,
w,, and w,. Note that in this notation all of the fields can be=with the negative
frequency components corresponding to the complex conjugate of the fields, which

are written as

L r
Ej,inc(Fz t) = EEj(w)eilwt tc.c.= Egj(ﬁ))el(k.riwt) +c.c. (22)

If the medium of interest is a dilute gas of molecules so that molecules can still

be considered isolated, the macroscopic third-order susceptibility Xf;k)l(—[wp
tw,+o,];0,,0,,,) is given by

X [o, + 0, + 0,10, 0,,0,) = NY) (- [0, + 0, + ©,];0,0,0,),

(2.3)

in which N is the number of molecules per unit volume. However, the principal
interest in n, ¢ is for condensed matter in which both intermolecular interactions
and the electromagnetic fields generated by the dipoles induced at the site of a spe-
cific molecule by neighboring molecules are important. (See standard textbooks
such as [1,2] for detailed discussions.) The former can lead to changes in the reso-
nances and the lifetimes of the electrons in excited states, whereas the latter results in
the local field at a molecule being different from those fields obtained from
Maxwell’s equations. (Solving the standard boundary conditions for input beams at
a sample’s interfaces yields the Maxwell fields in the medium of interest.) Unfortu-
nately, there is no truly satisfactory way for calculating the local field correction to
the Maxwell fields. One usually resorts to the approximate Lorenz—Lorenz relation
in which each of the incident (Maxwell) fields associated with w,, @,, and w,, i.e.,
E{(w,), Efw,), and E/(w,) is multiplied by [s;(wp) +2]/3, [g}(w,)+2]/3, and
[&](w,)+2]/3, respectively, to approximate the local field. Here &}(w,) =nf(wp) is
the relative dielectric constant for light polarized along the j axis, x in the current
case. Thus, in condensed matter,

Xz('jBk)l(i [0, + 0, + 0,];0,0,0,) = Nf(3)7-,l(j3]€)l(f [w,+ 0, + 0,];0,0,0,),

Jor_| Septent e 2| glo) 2| | o) +2 || effw) 2

(2.4)

Focusing the discussion to a single input field of frequency @ with polarization
along the x axis of the material, there are three separate pathways to n, ., illus-
trated in Figs. 1(b)-1(d), that affect the field at this frequency. Thus there will be
three different susceptibilities X)(;lx and a total of 24 separate terms needed to de-
scribe the nonlinear interaction for each summation over the excited states. The elec-
tronic nonlinear refractive index coefficient n, . is then defined in terms of the these

susceptibilities by
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3 3
My = 5 IR e (— @3 0,— 0,0) + Xy~ 03 0,0,— ©)
4nieyc

(3)

~(3
+ Xiﬂ,xxxx(_ W~ w,w, (1))} = Q)

X%,xxxx(_ w,w,— (,(),(1)), (253)

2
4nieyc

where

1
~(3 3 3
XgR,)xxxx(_ (1), w’_ (1), w) = E{X(Qi,)xxxx(_ (1), wﬁ_ (1), (J)) + Xgﬂ,)xxxx(_ w;wa (1),_ (1))

nonresonant,w—0

3
+ Xg)“,)xxxx(_ w;— w,0, 0))} _—

3 3
- XE(R,)XXXX(_ 00, 0,0)= XE(R,)xxxx(_ 0;0,0,~ ©)

= X~ 05— 0, 0,0), (2.5b)
where the subscripts 9R and J refer to the real and imaginary parts of ', respec-
tively. This index change is accompanied by an intensity-dependent change in
the absorption defined by Aa= a,(I)I with

_ 3 . 3 .
Ay el = ) 2{X(j,))cxxx(_ w,w,— w, w) + Xg,))cxxx(_ W, W, 0, w)
2nieyc
3
+X(ﬁ,))cxxx(_ 0~ 0,0, w)} (25C)

The spectral breadth of an optical spectrum, for example, the absorption spec-
trum, is related to just the radiative lifetime of the excited state only in special
circumstances [1,2]. In the formulas above it has been assumed that the decay is
due to coupling to the ground state, which results in homogeneous broadening of
the susceptibilities. However, there are other possible contributions to the state
lifetime, especially in dense gases or condensed matter. These typically lead to
inhomogeneous broadening of spectral lines and a variety of line shapes differ-
ent from those given above. Examples are intermolecular forces, collisions in
dense gases, and additional decay channels involving virtual states. It is prima-
rily when a multiple of the incident photon energies approximately equals the
energy difference between the ground and an excited state that the response
takes on the simple form used above. Because of the multiple decay mechanisms
possible, the results of the S.O.S. approach, which considers only a single,
frequency-independent lifetime, cannot in principle be used in the so-called the
zero-frequency limit, although it is frequently used successfully in comparing
the magnitude of nonlinearities in families of molecules in the field of theoreti-
cal chemistry [4].

2.1. Two-Level Model in Isotropic Media

Even without the above considerations on excited state lifetimes, the above for-
mulas for the general third-order susceptibility are quite complicated, since they
involve multiple summations over all of the excited states. However, a great deal
of physical insight can be obtained from a simple two-level model with one reso-
nant frequency @, for a single input beam (x polarized for example) in three com-
mon limits. In fact, a single dominant one-photon transition is a very useful approxi-
mation in many molecules for the interaction of radiation with that molecule.
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Of'the 24 terms that need to be evaluated in the general case, only 2 contain two-

photon terms of the form [(@,¢+2w)?+(I",4/2)?] due to |;0|2ld11—feol% and
clearly only the resonance at @, =~ 2w gives rise to an enhanced two-photon nonlin-
earity. That is, a molecule must have a nonzero difference in its permanent dipole
moments, which rules out two-photon effects in symmetric molecules in the two-
level approximation. (Two-photon effects solely due to dipole active transition mo-
ments between states occur in a three-level model of molecules of arbitrary symme-

try!)

The remaining 22 terms contain terms of the form [(@o+ )2 +(T0/2)2]" in
their denominator with m=1,2,3. These terms arise owing to both |||,
—figo|? and |z,0|* interactions. Clearly in those cases enhancement only occurs when
(1_)10 =~ W.

All of the terms were evaluated numerically for w;y=~ w and @~ 2w, and the
results are summarized in Figs. 2 and 3.

1
ol 1) sat (@) 0 0 sat (@)
(a) ' 72,0l(2) (b) o (@) 02,61 (@)
ny (aé? Ny Kerr () D>4- O Kerr ()
0.2
0.1 008 -0. 0.02 004 006 008 0.1 0.1 -0.08 -0.06 -0.04 BIND 02"0.04 006 008 0.1
V @0 —@ 0. -
0.2
_0_41 -0.84
-1

Frequency dispersion in the normalized (multiplied by [I';o/2]?) (a) ny(w) and

(b) ay(w) for the contributions due to |izo|* for w=@,. Here @,y=1, I';y/2
=0.01. The exact and approximate (formulas in text) curves for 7, () and a, ¢(w)
coincide.

Figure 3
m o1 (@) [exact]
o 0.001 .
0.00044 1y ¢1 (@) [approximate] 0 o1 (@) [exact and approximate]
0.00081
0.00021 o, (@)
0.0006

0.46 0.48 0f5 0.52 0.54 0.56 0.58 0.6

o) — @ 0.0004
-0.0002
0.0002
-0.0004+

004042 044 046 048 05 052 054 0.56 0.58 06
@jp—@

Frequency dispersion in the normalized (multiplied by [I';y/2]%) n,(w) and

a,(w) for the contributions due to |i;o|?|@;—figo|? for 20 = @,,. Here, @,,=1 and

I'/2=0.01.
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Here, only the frequency dispersion terms are given and these have been multi-

plied in the numerator by [T";,/2 ] to produce dominant terms of order unity for the
one-photon resonance case. In the curves labeled “exact” all of the terms were in-
cluded, and it was assumed for simplicity that |, o|?|@;;—fgo|>=|i10|*. In brief sum-
mary, near the one-photon resonances almost complete cancellation occurred (@
~ ), although the individual contributions to the |||}, — fZgo|* terms were large,
and the net results were 4-5 orders of magnitude smaller than the leading |, o|* term,
i.e., negligible unless |, — | is of the order of 25 or greater. And in all cases it was
the triple resonance, m=3, term associated with Y*)(—w ; w,~w, w) [Fig. 1(b)] that
dominated the response. Based on these numerical results, approximate formulas
were obtained for 7,  and «, .| and are given below:

On and near resonance (@,,>>1"})

One-photon resonance: (~ | w—@;o| =5I'},):

I
N 2(0_’10_0’) (0_’10_0))2_7
_ Q) |4
Nyl = o iyl . , (2.6a)
4]’1)2‘806' SOh ) , F%O 3
(09— w)° + T
o o I
N [o(@19— )| 20,0(@1p— w) + T
~ [ (3) 7 4
(24 el — -
2.l 2nieocz soﬁ}f [10) 2 3

(2.6b)

However, off resonance, for which the contribution of I’ 10 in the denominators
can be neglected, the contributions of all 24 different terms become comparable, and
exactly equal in the w — 0 limit. Exact formulas appropriate to these cases are given
below.

Off-resonance (~ | w—@,>>T,0):

N PG = i)’ 12610 Lol * 10

_ -2 2
Ny o= w7+ o) [,
2 an2eletid | (@3- o)) (@ —40d)  (@y— o)
(2.7a)
el = : w2f1oﬁ310 f(3) |10l = fro)? 10 256)?00)2 - 7@?0
“ 2nte (@) — w?)? (@2 — 4?)>
430’ — @7,
il —F—— (2.7b)
(0’10 - w )

Nonresonant (limit w— 0, i.e., ®;;>>2w):
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n2,e1 =

Nf‘3)

h33

{|ﬂ10| (@ — #oo)

|ﬂ10|4}~

(2.7¢)

Note the interference between the |i;o|*(iZ;; —fgo)* and |gz;o|* terms.

Similar calculations were for the frequency region w;,= 2w with results summa-
rized in Fig. 3. Here only the |20|?|4;,—figo|* term has a resonance. Given below are
approximate formulas for both for n, . and a, .

Two-photon resonance (~ | w—@y/2| = 51:10):

o
(09— 20) = -
Mol = N3f(3)’ﬂlo’2(/z11 ~ figo)’ L
“ dnlsc goh Sl "o 2T
0)10 (w10—2w)2+ I
(2.82a)
5 4l
Al = 22 oC soﬁJ |ﬂ10| (i, — ,Uoo) _ \ 2
10
03%0 ((1-)10_2(1))2“1‘ I
(2.8b)

The difference between the exact and the approximate curves for the dispersion
in n, o shown in Fig. 3 results from the neglect of the term with the denominator

[(&,p+2w)2+(T,/2)?] in the approximate formula.

The question of “nonresonant” susceptibilities merits further comment. The lit-
erature is replete with measurements of », that are claimed to be “nonresonant.”
Such claims are frequently erroneous and most likely refer to off-resonance. The

key consideration is usually whether both |@;y— w|>> flo and @o>> w are satis-
fied for a measurement to be in the nonresonant regime.

Recall that light of a given frequency can propagate with a specific wave vector
k for a given frequency and direction in one of two orthogonally polarized eigen-
modes. The refractive index of one of these eigenmodes can be changed by its
own high intensity as discussed above and/or by an intense beam of the same fre-
quency but with orthogonal polarization. Furthermore, the index can also be
changed by a beam at a different frequency of either polarization. And, unless the
frequencies of interest are clearly in the nonresonant regime, each of these can
have different numerical values and different dispersion with frequency, even in
isotropic media.

For an amorphous isotropic material the symmetry relations for x*) lead directly
ton, | o(—w,; 0,)= n2” da(—w,; w,) at any frequency w,, where the polarization of
the index change of interest is identified by Il and the orthogonal one inducing the
change by L. In the nonresonant regime (on/y), the nonlinear refractive index co-
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efficient at w, by a copolarized beam of frequency w, is 1y q(—w,;wp)
=2ny)4(~w,;w,) and by an orthogonally polarized beam is 7y o(—w,;w,)
= ;—‘nzu,el(—wa; w,). Unfortunately, in the literature there is frequently no distinction
drawn between these different coefficients and they are assumed to be equal.

For crystalline media, the relations can be much more complex. The pertinent
nonzero x® coefficients for crystalline media can be found in textbooks (see
standard textbooks such as [1,2]).

In this review we focus primarily on the frequency degenerate case
1y).e1(—w,; 0,), usually written as 7, for convenience.

2.2. Onset of Saturation of Electronic Transitions

In the preceding section the results for 7, .| were based on the assumption that a
negligible fraction of electrons were excited out of the ground state (subscript g) into
the excited states ,,, implying that N, = N in the ground state; i.., N, is effectively
a constant. This is, however, an approximation, especially in spectral regions charac-
terized by strong absorption, i.e., ® = @,,, for some state m where N,, can become
nonnegligible. Since y) = (Ny—N,,), where p is an integer, this leads to a decrease
in the magnitude of ¥ from its value with negligible population in the excited
states. More important, for N,,— N,/2 it also leads to a saturation effect for the
linear absorption at w, which over some time scales mimics the Kerr y'* and has
sometimes been interpreted as x®, x®, ¥'7, etc. Here we discuss only effective
a, due to saturation, a, g, the contribution that is linear in the intensity.

Again we resort to the two-level model to quantify this effect in the simplest pos-
sible case. As stated previously, the two-level model can yield a very good ap-
proximation, since frequently the largest transition dipole moment occurs from
the ground state to just a single excited state we have labeled m.

The linear susceptibility ! for electric-dipole transitions from the ground to
the mth excited state is given by

(Ng _Nm) _ a_)mg
ch)(_ wsw) = % |/umg|2f(l) - P
€ (@ — @)+ I,e/4

~w+il,,/2

(2.9)

in which V=[&"(w)+2]/3 is the local field correction. The excited state decays

asymptotically to the ground state with relaxation time %mg:f;ig, and it is as-
sumed that the decay to all other excited states occurs over much longer times.
When a cw beam of intensity /(w) illuminates the material, the time dynamics of
the ground and dominant excited state, under the assumption that both are only

weakly coupled to other states, is given by
d _ N,,
—N,= B(Ng - Nm)[f(l)]zl(w) -
dt Ting
d 5 1)72 Non
;Ng=—B(Ng—Nm)[f( Pr(w)+—. (2.10)

Ting

Here B is the Einstein coefficient. In the steady state, for small population of the
excited state and N=N,+N,,, the leading term for the population difference is
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N
Ny=N,=—"—— . (2.11)
1+ I(w)/lsat(w)
Since the first of Egs. (2.10) can be rewritten in terms of the linear absorption

coefficient, this saturation intensity /,(w) is defined in terms of B by

1 é[fﬂ)]z kvac DBI- 2
e e al(w):ﬂ[f(]|ﬂmg| g R—
satl @ rmg wn,neg (wmg—w) +Fmg/4
(2.12)
Therefore for small values of /() /I (w)
" N o By~ @+ i,5/2
Xoren— @30) = /Ul ., @)},
0 (wmg_w) +Fmg/4
(2.13)

which now contains an intensity-dependent contribution of a form similar to
Al’l =n; ell .

For input intensities approaching I, (w), the linear susceptibility (and hence the
contribution to the refractive index) is reduced, i.e., the oscillator strength of the tran-
sition is bleached out. The nonlinear term (oc/) is written as X(3)

sat
areal part Xg)sat(_w; ®,~w,w), which gives

(~w; w,~w,w) with

(3)

X et~ @3 0,— @, ) ) Wpg — ©
Ny sat = 2 = 2 2 3[f(1):|4|/umg|4 - .
4ngoc lon gyt (@ — @)? + 2, /4T

(2.14a)
And the corresponding contribution to the nonlinear absorption is

e g, L (2.14b)

Wt =" "5 7 1, 2.14b
s (6 0 + T2 AT

Thus the saturation effect always leads to absorption that decreases with increas-
ing intensity. As a result, this effect is sometimes called “bleaching” of the state.
For an example in which both «, g, and a, . occur, see [5]. This effective nonlin-
earity proportional to |z, g|4 is sometimes (mistakenly) identified as the one-photon
resonant component of the electronic nonlinearity given by Eq. (2.6a). In factitis a
component of the Kerr nonlinearity with 72 ke =75 o175 gat-

It is interesting to compare this contribution near resonance for a fictitious mol-
ecule with zero permanent dipole moments and only one dominant electric di-
pole transition. (This corresponds to a symmetric molecule for which a single,
large electric dipole transition may not be realistic.) The result is shown in Fig.
2(a). Clearly n, g, is an important (~25%) contribution to 7, k., near the one-
photon resonance. Its relative contribution decreases with increasing frequency.
Note that although it is not strictly valid to extend Eq. (2.14a) too far from resonance
and certainly not to the zero-frequency limit, since other considerations about radia-
tive loss from virtual states would have to be included, such an extrapolation shows a
contribution of only =2% in the nonresonant limit.
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Figure 4

Recovery of the dispersion in the refractive index induced by the saturation ef-
fect after an optical field is turned off at r=0.

These contributions due to the terms n, . and 1, 4, can be differentiated from each
other. The first way is by turning off the optical field abruptly (turn-off time
At < 7,,,) and observing the return of the refractive index to its zero-intensity value.
For the electronic case, the return is instantaneous for a detuning from resonance

Aw> fm > Which involves virtual states, whereas the return due to the saturation ef-
fect takes place over the time scale of7,,,, since it involves real population of the ex-
cited state, as shown in Fig. 4.

g,

There are a variety of other examples similar to the one just discussed where in-
dex changes are produced by the redistribution of population densities via ab-
sorption, both linear and nonlinear absorption. The index changes occur both
through the reduction of oscillator strength caused by saturation as discussed
above, but also through the production of new absorbers. They will be discussed
in Subsection 2.6 below. The signs of the respective refraction changes depend
on the frequency position relative the absorption resonances.

2.3. Summary of the Two-Level Model

Although the above results are based on a simple two-level model and the as-
sumption that there is only one contribution to the excited state lifetime that cor-
responds to homogeneous broadening, some useful conclusions can be made
that are useful for more general cases.

1. Although there are resonant enhancements in the denominator of the ex-
pressions for 7, and «, near the one- and two-photon (and multiphoton in the
general case) resonances, this does not necessarily mean that enhancement ac-
tually occurs, because the numerators may vanish or be very small. For example,
cancellation effects make the contributions of the |i;|*(i;; —figo)? terms to 1,
and a, ; negligible relative to the |z;9|* term, which has a [(@;y—w)?+ (T)0/2)43
term near the one-photon resonance.

2. An intensity-dependent change in the refractive index is always accompa-
nied by a nonlinear change in the absorption.

3. The magnitude and dispersion of the one-photon resonant change in the in-
dex and absorption is negligible compared with the magnitude and dispersion in
the linear refractive index and absorption, which occurs at exactly the same fre-
quency and over the same spectral width. However, the 2PA occurs in a fre-
quency region far from the dominant one-photon absorption (1PA) spectrum, it
is resonantly enhanced and can be measured and used.

4. Intensity-induced population changes between the ground state and the ex-
cited state(s) produce significant contributions to the nonlinear index and ab-
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sorption near the one-photon resonance. However, their relative contribution de-
creases with increasing |w;,— ), and their contributions are negligible in the zero-
frequency limit.

5. Off resonance the sign of the nonlinearity depends on the relative magni-
tudes of the contributions due to |i;o|*(i2;; —f2g)? and |z, and these contribu-
tions depend strongly on frequency. In contrast to the on-resonance case where one
term dominates, the contributions of the different terms become comparable. If the
molecule is symmetric (no permanent dipole moments), the nonlinearity is negative
unless contributions from other states are included.

6. The nonlinear index coefficient approaches a constant value with decreas-
ing frequency in the nonresonant limit, whereas the absorption change dies of as
. Here all of the terms (except for the saturation) contribute equally to ) Kerr-

Frequently third-harmonic generation, which depends on | X(3)(*3w; 0, 0,0)?,

is used to estimate the nonlinear refractive index coefficient given by Eq. (2.5a).
In the nonresonant limit X2 (30w, 0,0)=x>  (~oi0,~0,0)=)>

3) X R, xxxx L ] X R, xxxx > 2 X R, xxxx
X(-0;0,0,~0)=xy . (-0;~0,0, o), which makes this a valid procedure in
that limit. However, in general for symmetric molecules

X 30; 0,0, 0)
_ NJ(3)‘[&]()‘4 4w10+lr10wlo/w
eoft [(|@10* ~ 907) = 3wl 1][(| @19 — @) — iwl ]

and it is clear that there is a different resonant structure for third-harmonic gen-
eration than for n, and «,. Therefore in practice the input frequency must be cho-
sen so that 3w < w,, for the two-level model, and in the more general case
3w < w,, for all transition frequencies w,,,.

Listed in Table 1 are the measured 7, and «, coefficients for a number of mate-
rials. Note that although the table contains the net n,, which includes all of the
contributions (some still to be discussed), these values (with the exception of ni-
trobenzene, which has a large rotational component) should be due mostly to the
Kerr effect to within the accuracy of the measurements. There can be large dif-
ferences (+£50%) in reported values, depending on the measurement technique.
The first comprehensive measurements for 7, were reported by Adair ez al. [6]. See
Chase and Van Stryland [7] for extensive recent tabulations. Note that these values
are either off-resonance or nonresonant, depending on the difference between the
wavelengths of the absorption maxima and the measurement beams, and the spectral
widths of the absorption features as discussed above. Furthermore, they may well
contain small contributions from some of the other effects discussed here below.

From the simple two-level model results in Egs. (2.6), (2.7a), (2.7b), (2.7¢),
(2.8), (2.10)—(2.13), (2.14a), and (2.14b), large n,s can occur near one and two-
photon resonances, i.e., when w = @, or 2w = @, and when | ,,|? is large and/or
the difference between permanent dipole moments between the states, i.e., (i),
—fy)?, is large, preferably both.

These conditions for large x®) due to electronic transitions between discrete
states are best satisfied in organic materials. To the nonchemist there seems to be
a semi-infinite number of possible molecules for nonlinear optics. In fact, to date
four special classes of organic materials were identified as promising and have
received most of the attention: (1) linear or quasi-linear molecules and conju-
gated polymers with large -electron delocalization lengths resulting in large
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electron donor at one end and an electron acceptor at the other end, with
m-electron bridges between them, and hence large dipole moments and hyper-
polarizabilities; (3) symmetric linear molecules with an electron acceptor group
in the middle and an electron donor group at both ends, separated again by
m-electron bridges, and (4) 3D molecules, with and without conjugation, such as
porphyrines, phthalocyanines, and dendrimers. These properties can be molecu-
larly engineered in many materials by judicious choices of chains of carbon
bonds, which leads to electron delocalization along the chain. For detailed dis-
cussions, see Nonlinear Optical Properties of Organic Molecules and Crystals,
volumes 1 and 2 [12]. Otherwise the values for 7, in organic materials are typical
of those found in Table 1.

|f1,,¢|* and/or |,,,|*; (2) linear molecules with strong charge transfer groups, an

2.4, Conjugated Molecules and Polymers

These systems are characterized by electron orbitals normally associated with
the individual atoms becoming delocalized and extending over the whole mol-
ecule (polyenes) or even connected chains of molecules in the case of conju-
gated polymers. They were initially of interest in the field of electrical conduc-
tors, and much of the early development of these materials was focused on this
application. Electrical conductivity rises by orders of magnitude when poly-
acetylenes are appropriately doped [13]. Interest in using such materials also for
nonlinear optics was triggered by the seminal paper by Sauteret and co-workers
[14] in which they reported large third-order nonlinearities from third-harmonic
measurements at 1.89 and 2.62 ym in a number of conjugated polymers in their

Table 1. Representative Materials with Values of n, and a,°

. 1y X 10715 (cm?/ W) a? (cm/GW)
Material (e\é;') 1064 nm 532 nm 355nm 266 nm  532nm  355nm 266 nm
LiF 11.6 0.081 0.061 0.061 0.13 ~0 ~0 ~0
MgF, 113 0.057 0.057 0.066 0.15 ~0 ~0 ~0
BaF, 9.2 0.14 0.21 0.27 0.31 ~0 ~0 0.06
NaCl[6] ~8.7 1.8
Sio, ~7.8 0.21 0.22 0.24 0.78 ~0 ~0 0.05
MgO [6] 7.77 0.39
Al,O4 7.3 0.31 0.33 0.37 0.60 ~0 ~0 0.09
BBO 6.2 0.29 0.55 0.36 0.003 ~0 0.01 0.9
KBr 6.0 0.79 1.27 ~0
CaCO; 59 0.29 0.29 0.37 1.2 0.018 0.8
LiNbO; 39 0.91 83 0.38
KTP 3.8 2.4 23 0.1
ZnS [9] 3.66 6.3 34
Te Glass ~3.6 1.7 9.0 0.62
ZnSe [9] 2.67 29 -68 5.8
ZnTe [10] 2.26 120 42
CdTe [10] 144 -300 22
GaAs [10] 142 —-330 26
RNglass [11] ~1.4 22

“Ordered according to bandgap energy, E,, or cutoff wavelength, taken from [8] except
where noted. The values quoted were obtained by using multiple pulse widths in order to
isolate the Kerr response. See the references for details. Blank cells indicate no measure-
ment at this wavelength.

Advances in Optics and Photonics 2, 60-200 (2010) doi:10.1364/A0P.2.000060 76



R 7 2
=N\
(b)R (©) R

(a
Structures of three generic types of conjugated polymers: (a) polyacetylene; (b)
polydiacetylene, where R denotes PTS , 4BCMU, 3BCMU, etc; and (¢) polyphe-
nylvinelyne, where R denotes H, , alkyl, aryle, MEH etc.

resonant and near-resonant regimes. Specifically, for polydiacetylene [PTS, poly
bis(p-toluene sulfonate) of they estimated 1, g o, =1.8 X 10712 cm?/ W,

Based on carbon chemistry, there are three basic conjugated polymer types that
are shown schematically in Fig. 5. In their pure form, they exhibit dominant ab-
sorption maxima (sometimes called exciton lines) in the 500—900 nm range with
typically the longer the peak absorption wavelength, the more effective the conjuga-
tion. Of these three classes, namely, polyacetylenes, polydiacetylenes, and polyphe-
nylvinylenes, in general it has not been possible to make optical-quality materials
from their pure forms, and it has been necessary to add side groups to achieve solu-
bility in solvents etc. In this way, polydiacetylenes and polyphenylvinylenes have
been made suitable for optical applications. The backbone chains still dominate the
molecular nonlinearity, which in the first approximation is independent of these side
groups, although it does reduce the 7, by the fractional extra volume due to the side
groups; i.e., IV is reduced.

Conjugated molecules are a result of the delocalization of the 2p, orbitals asso-
ciated with carbon atoms into 7r orbitals, which extend over the whole molecule
as shown in Fig. 6 for the acetylene molecule. Consequently the electrons asso-
ciated with the initial 2p. orbitals can easily be displaced relatively large dis-
tances in the 7 orbitals, leading to enhanced polarizabilities along the carbon—
carbon bonds. Furthermore, since the potential wells associated with these
delocalized molecular orbitals are relatively shallow, they are strongly nonpara-
bolic and are easily distorted by electric fields, leading to strong nonlinearities.

The prototypical molecules, which can be polymerized via heat or y-ray illumi-
nation into conjugated polymer, are shown in Fig. 5 [15]. For acetylenes,
R’'—C=C—C=C—R, and diacetylenes,

R'—C—=C—C=C—C=C—R,

the bonds shown as double and triple are the ones that delocalize; i.e., they share
their bond character with the single bonds. R” and R are end groups that termi-
nate the molecule. In the liquid state, these quasi-linear molecules are randomly
oriented, thus reducing the net nonlinearities to 1/5 of the value along the chain.
These molecules can in some cases be polymerized to form amorphous media,
in which case the orientations are essentially random, or thin films deposited on
specially prepared surfaces for which some degree of alignment is also possible.
Some molecules (unfortunately very few) can be polymerized into optical-
quality single crystals so that the full nonlinearity can be obtained for one polar-
ization. On polymerization, the bonds to the end groups are broken and multiple
units are joined together, producing a polymer, an example of which (polydi-
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(a) Typical electron distribution in acetylene molecule. The 7-shell electron
states (originating from carbon atomic p=2 states), the o-shell electron states
originate from the carbon atomic s=2 states, and the tightly bound K electrons
come from the atomic s=1 states. (b) Molecular potential well for the electrons.
___________________________________________________________________________________|

acetylene PTS) is shown in Fig. 7. Note that the end groups R and R’ actually
serve two functions, the coupling between the carbon—carbon chains in the crys-
tal and also used to make the molecules soluble for crystallization from solution.
Although the polymer chain may be hundreds or thousands of units long, in
practice the electron coherence length (effective electron delocalization dis-
tance, important to nonlinear optics) is usually limited to at most a few tens of
repeat units.

Pure trans-acetylene has been measured via third-harmonic generation to ex-
hibit large third-order nonlinearities in the resonant and near resonant regimes
[16,17]. However, it is not readily soluble and has not found application in non-
linear optics. Henceforth the polydiacetylenes (like PTS) and the polyphenylvi-
nylenes [like MEH-PPV, (poly2-methoxy-5-(2-ethylhexyloxy)-1,4- phenyle-
nevinylene)] will be used as illustrative examples in the nonlinear optics
domain.

The backbone chain (characterized by delocalized 7 electrons due to carbon—
carbon bonds) responsible for the large nonlinearity has no permanent dipole
moments in either its ground or excited states because of the linear symmetry.
Furthermore, the linear symmetry means that the electronic states are either

Figure 7

(@) b-axis

(b) R=R’'=-CH,-080,<0- CH,

A\ S

x>
(a) Crystal structure of the polymer diacetylene PTS [poly bis(p-toluene sul-
fonate) of 2,4-hexadiyne-1,6-diol]. The large n, occurs along the b axis of the
crystal. (b) End groups R and R’ (of the diacetylene molecule now link the ad-
jacent polymer strands in the crystal lattice [22].
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symmetric (gerade) or antisymmetric (ungerade). For allowed electric dipole
transitions, the initial and final states must have different symmetries. It turns out
that in this class of materials it is necessary for nonlinear optics to consider three
states, two of which have even symmetry and one that has odd symmetry [18]. In
both polydiacetylenes and polyphenylvinylenes, there are strong dipole allowed
transitions from the even symmetry (gerade) ground state to the first odd sym-
metry (ungerade) excited state 1B, (transition moment labeled |i;o|), and from
this excited state to a higher-lying even symmetry state mA,, (|izy,|). For nondelocal-
ized or only weakly localized molecules, the ordering of the electronic states in en-
ergy normally mirrors that of particles in a square well potential, alternating between
gerade and ungerade. The electron correlation effects are sufficiently strong in these
conjugated polymers that the first even symmetry (1A,) excited state frequently lies
below 1B,, but the dipole allowed transition moment between these two states is
small and usually neglected [19,20]. The locations of the 1B, and mA, (=3A,)
states are measured from the linear and 2PA spectra. An example of each is shown in
Figs. 8 and 9 for single-crystal polydiacetylene PTS [21,22]. Note that in both cases
the existence of transitions within the vibrational subbands located to the high-
energy side of the main peak arise because of the strong coupling to the vibrations of
the main polymer chain [23,24]. The 1PA and 2PA spectra found in PPV-MEH also
are broadened owing to vibrational subbands [24,25].

Based on the above discussion a minimum three-level model with z;=0 (no per-
manent dipole moments in the three important states) is needed to describe the
third-order nonlinearity in conjugated polymers. Furthermore, the decay from
the even symmetry excited state mA, is down to the 1B, state, i.e., only 71, # 0
and 7,y # 0. In the off-resonance regime

- - - -2
NF il . D@7y + ©°) +4dw’ B
M) Kerr = 51 ] +

niegch’ (@1 — o) (G0 4) >
(1_)10 (wlo + w)z
- n —(3032 +w2)+— , (2.158.)
|10 |: (‘1_)%0 — o) 10 16(9— w)

and for the nonresonant case
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Linear absorption spectrum of the crystal polymer diacetylene PTS [22].
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2PA spectrum (100 fs pulses) of the crystal polymer diacetylene PTS. Inset, details
of the main two-photon spectrum measured with 100 fs, 2 ps, and 60 ps pulses
[21,22].
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Note that the interference between the ground to first excited state transition
(|£2,0|*) and the first antisymmetric to the higher-lying symmetric excited state tran-
sition (|iZ5;]%) in such conjugated systems can be actually detrimental to obtaining
large nonresonant nonlinearities! Furthermore, since the two terms have both differ-
ent signs and different frequency dispersion, the net sign of #, can depend strongly
on frequency. This is illustrated in Fig. 10, which shows calculations of the fre-
quency dispersion of 7, typical of polydiacetylenes and squaraines (discussed be-
low). As predicted by Egs. (2.15a) and (2.15b), the sign of the nonlinearity can
change with photon frequency depending on the relative magnitude of |,,]?/ |i;0/%.

Figure 10
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Frequency dispersion of n, g, for '), =10Ty, 0,0=1.33@,, and different rela-
tive values of |u,|*/|110|?. (a) For |i;o|>=|ip,|?, the contributions due to |i;,|? (red
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of the contributions for different relative values of the transition dipole moments.
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In polydiacetylenes the sign of 7, is negative between the one- and two-photon reso-
nances, becomes positive near the two-photon resonance, and generally remains
positive all the way to zero frequency (nonresonant case). In contrast to this behav-
ior, the nonlinearity in squaraines, which have weaker two-photon transition
strength, remains negative over the full range w;,> w>0.

Many of the parameters such as @;, @0, |i10|*, and |fz,;|?, that are needed to evalu-
ate n, depend on the lengths, distribution, and orientation of the conjugation chains,
and these in turn depend weakly on the details of the R and R’ groups, but strongly
on the preparation techniques, temperature, and density of defects. An example of
the variation in the linear absorption spectrum and its effect on the nonlinearity is
shown in Fig. 11 for PPV [26]. Another example is the polydiacetylene 4BCMU,
which comes in blue, yellow, and red forms that are due to different molecular con-
formations possible with absorption maxima in the spectral regions for which they
are named [27]. Dependences of the same factors on the even symmetry state prop-
erties are just not known. Furthermore, the propagation loss is known to be very sen-
sitive to preparation technique, for example [28,29].

Figure 11
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(a) Examples of absorption spectra for PPV prepared from precursors synthe-
sized with sodium hydroxide base and water solvent (curve 1), organic base and
20% water, 80% methanol solvent (curve 2), and organic base and methanol sol-
vent (curve 3). (b) Variation of the third-order nonlinearity of PPV as a function
of the wavelength for maximum absorption A\, [26].
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Although in principle independent measurements of all of the above parameters
are possible, there is an additional complication that is the main reason why a
“near- and on-resonance” formula is not given here. In conjugated polymers,
clearly a significant fraction of the oscillator strength occurs in transitions that
occur at energies higher than the peak of the absorption involving the vibrational
sidebands, and detailed theoretical treatments of such problems for calculating
n, are not available.

Some of the best single-crystal polymers grown to date have been polydiacety-
lenes, of which PTS is the most thoroughly investigated [30]. The PTS crystal
structure was shown in Fig. 7. It is characterized by large transition dipole mo-
ments, multiple debye, for the dominant transitions from the symmetric ground
state to the first antisymmetric (1A,— 1B,) excited state and from this excited
state to the second symmetric excited state (1B,— 2A,) [31]. The decay times
from these excited states are in the few picosecond to ~100 fs range for 7, and
75, respectively [32].

There are too many reports of the nonlinearity in such polydiacetylene materials,
primarily in the on- and near-resonant regime, to be summarized here: using a
variety of techniques they collectively confirmed that the nonlinearities are in-
deed very large in the near-resonant and nonresonant regimes, where the 1PA
and 2PA is also large. (Some examples are given in [33-36].) It is generally ac-
cepted that 7, <0 in the region between the 1PA and 2PA peaks, partially due to
bleaching of the one-photon (1A,— 1B,) transition; see Fig. 12(a). This has
been confirmed by both Z scan and the negative absorption change associated
with bleaching of the 1PA there [5,21]. However, in the off-resonant regime, spe-
cifically at 1064 nm, some controversy exists about the sign of #,, although the
magnitude in the range [5—10]X 1072 cm?/W appears consistent [37,38]. This
difference could be due to the different fabrication techniques used resulting in dif-
ferent values of dipole transition moments. In this region the nonlinear absorption
change is positive. For example, see Fig. 13 [5]. The dispersion with increasing
wavelength as shown in Fig. 12(b) indicates that indeed @;|iy;|> > @40|i0* and
that the nonresonant value is positive (Fig. 11) at least for the sample studied, in
agreement with calculations of transition dipole moments in polyenes [31].

Figure 12
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(a) Wavelength dispersion in |n,| over the range 0.72—1.06 um measured by spec-
tral broadening due to self-phase modulation in a sample made by the shear tech-
nique [22,36]. (b) Wavelength dispersion in 7, over the range 1.2—2.2 ym measured
by Z scan for hundreds of micrometers thick platelets of single-crystal polymer di-
acetylene PTS made by crystallization from solution. The dashed curve is a guide to

the eye.
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Figure 13
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Absorption change induced by an intense pump pulse as measured in the poly-
diacetylene 3 BCMU by a probe pulse for three different delay times between
the probe and the pump. The negative absorption change is due to the dominance
of bleaching of the 1A, — 1B, transition whose peak is located at 620 nm. At
lower photon energies, interference with the two-photon transition 1A, — 2A, with
a peak located at 930 nm occurs, and after 660 nm the 2PA term dominates. These
results also show that the decay time from 1B, to the ground state is ~1 ps [5].

In contrast to the conjugated polymers polyacetylene and polydiacetylene,
which contain only carbon in their backbone chain, the main backbone chain of
phenylenevinylene contains phenyl (benzene) rings as well as linear carbon—
carbon bonds. Note that although the phenyls have double carbon bonds from
which electrons can be delocalized, the benzene structure does not appear to lead
to delocalization that is as effective as in the polyacetylenes and diacetyelenes.
The PPV absorption maxima occur at shorter wavelengths than those of polydi-
acetylenes and polyacetylenes (=450 nm versus 620 and 650 nm, respectively).
To improve the solubility and reduce the defects in PPV, side groups like MEH, i.e.,
to make MEH-PPYV, are added. Thin film samples of both random and highly ori-
ented forms have been fabricated and characterized for optical studies [39,40]. The
details of the fabrication determine the optical losses that can be minimized to be as
low as 0.1 dB/cm, orders of magnitude lower than in pristine PPV, as shown in Fig.
14.

There have been a number of nonlinear optical studies of PPVs. There is a strong
2PA maximum along with vibrational subbands for incident radiation at ~ @,,/2
as shown in Fig. 15. Detailed measurements of 7, have been reported around
800 nm by the Australian National University group for a number of PPV-related
materials [41], and the wavelength dispersion at longer wavelengths of PPV-MEH
by Chris Bubeck and collaborators at Max Planck Mainz [29]. Of particular interest
is the dispersion (Fig. 15), which clearly shows a change of sign of the nonlinearity
with increasing wavelength, as might be expected from Egs. (2.15a) and (2.15b),
similar to the results in polydiacetylene PTS.

Listed in Table 2 are values of n, and «, for a number of conjugated polymers
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Figure 14
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Comparison of residual absorption of PPV and MEH-PPV [29].
|

and the measurement technique used. The values are much larger than those
found in normal dielectric media. More complete listings of 7, at A\=0.8 um can
be found in [41]. Structures are shown in Fig.16.

The nonlinearity n, of 30— 100 nm sized nanocrystallites of polydiacetylene in so-
lution has been investigated by Nakanishi and co-workers [46]. The results were cor-
rected for the random crystallite orientation and its concentration in solution. Al-
though the magnitude and sign of 7, was of the same order as that in bulk crystals, a
number of quantum effects were clear in their measurements. Namely, the absorp-
tion peak was shifted to longer wavelengths, the spectrum of the vibronic sidebands
on the low-wavelength side of the absorption peak changed in structure, and 7, did
depend on the crystal size.

The effect of metallic coating of polydiacetylene [with R,=(CH,),;CH; and
R,=(CH,)sCOOH] was evaluated in [47]. After polymerization via vy irradiation,

Figure 15
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Nonlinear optical spectra of MEH-PPV measured at the laser wavelength A. (a)
Comparison of data of &, from nonlinear prism coupling (films, filled large dots,
left-hand scale), from two-photon excitation spectra of fluorescence (solutions,
open circles, arbitrary units scaled to the peak of film data, error bars are smaller
than symbol size), and from Z scan (solution, small dots, right-hand scale). (b)
Dispersion of 7, from nonlinear prism coupling (films, filled large dots, left-
hand scale), and Z scan (solution, small dots, right-hand scale). See [29] for

details.
|
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Table 2. Kerr and Nonlinear Absorption (Where Available) Coefficients for a
Selection of Conjugated Polymers in Thin Film Form

1y, X 10712 a, A Measurement
Material (cm?/W) (cm/GW) (um) Technique
PPV [26] n,|=1-10 80 0.8 DAWM’
2,5-Dimethoxy p-PPV [42] |ny| =4 0.8 D4WM
2,5-Dimethoxy p-PPV [41] ny,=—4 25-80 0.8 Kerr gate
MEH-PPV [43] ny=-3 180 0.5 Z scan
PPV-ACSH [41] ny=—1.1 40 0.8 Z scan
DBSA-PANI [45] n,=—1.7 42 1.054 Z scan
Polydiacetylene 4BCMU [44] n,=0.05 <0.25 1.31 Mach—Zehnder

“Measured by power-dependent transmission.
b ..
Degenerate four-wave mixing.

the absorption spectrum resembled that of bulk polydiacetylenes. An enhancement
due to the silver coating of ~ X 2 was measured for 7, at 532 nm.

2.5. Charge Transfer Molecules

The generic form for charge transfer molecules (also called chromophores) is
shown in Fig. 17(a) [12]. For detailed discussion see, for example, [12]. As in-
dicated in the cartoons in Fig. 17(b), the end groups have contrastingly different
properties. The donor (D) groups, for example N(CH;),, OCH;, H,N have
loosely bound electrons. At the other end, there is an acceptor (A) group, for ex-
ample NO,, CN, etc., which easily accommodates additional electrons. The in-
termediate bridge group should facilitate the transfer of electrons between the
two end groups. This is usually achieved by a structure for which 2p. electrons
are partially delocalized, such as a single or multiple benzene ring(s), or a se-
quence of single—double carbon bonds as discussed above. As indicated in Figs.
17(b) and 17(c), there is a partial transfer of charge from the donor to the accep-
tor groups, resulting in a permanent dipole moment in the ground (and excited)

Figure 16
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Structures for conjugated polymers of Table 2
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Figure 17
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(a) Prototype charge transfer molecule with an electron acceptor group on one
end, a donor group on the other end, separated by a bridge. (b) Change in charge

distributions introduced by an electron acceptor group A, an electron donor
group D, and both A and D. (c¢) The charge transfer molecule nitroaniline [12].
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state(s). An example for which there are both large dipole moments as well as a
reversal of their signs is shown in Fig. 18 [48]. In such molecules it is typical that
their nonlinearity is dominated by the ground and first excited states; i.e., a two-
level model is a reasonable approximation, i.e., in the nonresonant limit 7,
o |02 (11— fi00)* — |10 *. The nonlinearity n, ¢ can be dominated by the perma-
nent dipole moments for large values of (iz;,—iy)?. An example is shown in Fig. 19
[49].

Typically, quantum chemical calculations (AM1, Austin Model 1) are needed to
evaluate the molecular parameters as well as the molecular nonlinearities in such
systems [50]. Such calculations have shown that the nonlinearity is linked to the
degree of charge transfer from the donor to the acceptor, which is related to the

Figure 18
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(a) Chromophore structure (KJS-1) with strong charge transfer properties. (b)
Electron distribution in the ground state. (c) Electron distribution in the first ex-
cited state. Permanent dipole moments have different signs in the two states

[48]!
|
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Figure 19
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Plot of the molecular second hyperpolarizability (7>} (averaged over all orien-
tations) on permanent electric dipole-moment difference between excited and
ground states Au for three charge transfer molecules [49]. DEANST,
4-(N,N-diethylamino)-S-nitrostyrene; ~ 2,6-ANS,  2-anilinonaphthalene-6-
sulfonic acid; PRODAN, 6-propionyl-2-dimethylamino naphthalene.

bond-length alternation (the average difference in length between single and
double bonds in the molecule due to the charge transfer from the D to the A
group). This led to a simple physical two-level model based on a linear combi-
nation of the two extreme (resonance) structures, the cyanine limit (called the
valence bond configuration, VB) in which no electron transfer occurs and the
zwitterionic limit (called the charge transfer configuration, CT) in which the
maximum electron transfer occurs [51-53]. These limiting resonance structures
have different single—double carbon bond linkage structures. Assuming a two-
level model, which frequently is adequate for charge transfer molecules, the
structure for a specific molecule is assumed to be a linear combination of the va-
lence and charge transfer bond configurations. Writing Wy and W1 as the wave
function of the two limiting configurations, the corresponding ground state energy
levels as Eyg and Ecr, and —¢ as the interaction between the donor and acceptor
gives a molecule’s Hamiltonian as

0 -t
HO:(_Z V)’ V=Ecr—Evg, —t=(WyH[Vcr). (2.16)

The Schrodinger wave equation is then solved for the ground state and excited
state wave functions W,, and W, and energies E,, and E.,, respectively of the
coupled system in terms of the fraction f of the charge transfer configuration in the
ground state, i.e., ¥y, = V/le\I’ vet &‘If cr and

1 1
EngE[V_ \/V2+4t2]3 EeXZE[V—i— VV2+4I2]3

2
_ e L

,
T Ny

The problem now requires finding the change in the carbon bonding distances in

(2.17)
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terms of the above parameters. This change involves an additional elastic energy
with force constant k& associated with the optical phonon with displacements
along the charge transfer axis. Noting that Eyz=0.5k(¢—q%g)? and Ecr="V,
+0.5k(q—q0CT)2, where the decoupled state energy Ey5 has been set to 0, V, is the
adiabatic energy difference between the ground and excited states (i.e., at their mini-
mum energy value), ¢ is the molecule’s bond length due to the charge transfer, and
qer and g3 are the equilibrium bond lengths in the decoupled valence and charge
transfer bond configurations, the ground state energy is now given by

1 1
Eg=7| Vot Ek{(q —q¥p)* + (g —qen) — VP4 | (2.18)

The ground state corresponds to the minimum energy of E(q), ie.,
dE(q)/dq=0, which yields [51]

1 qg/B_qopt
0 0 0 0
—qopt = =@yt acr) T 2 (v —gcr) =f= .
) 2 VV2+412 q(\)/B_qu
(2.19)

Now an optical field is introduced in order to find the optical response. ucr
=Qle|Lp, is defined as the dipole moment created in the charge transfer state,
where Q is the maximum charge transferred over a distance L, and the dipole
moment of the coupled ground state is given by fict. The application of an electric
field £ polarized along the charge transfer axis leads to a perturbation Hamiltonian
added to the original Hamiltonian so that

(EVB —t ) e df dfdVe 2fucr
H= Ve=Ecr— Evg — — ==
—t Eer—ueé) & T PVBTHE T e T v ag T B

(2.20)

In the preceding formulation, V" is now replaced by Vg, and the polarization in-
duced along the charge transfer axis by the application of the field is p(€)
=—dE,/ d&, which contains all the contributions, linear, quadratic, cubic, etc., in the
field €. The nonlinear polarizability ) is now given by

&f
avi

4rueqlV? — 7]
- (21
E],

3
-3) _ ld *

Vixxx 6 d 83 ¢

=T Hct
£=0

More detail can be found in [51-53].

&=0

The plot of ) versus the charge transfer fraction f'in Fig. 20(a) shows how this
approach can be used to optimize the third-order susceptibility in charge transfer
molecules [53]. Clearly /=0.5 produces the largest nonlinearity | #*)]. This formu-
lation has been verified experimentally as shown in Fig. 20(b) for a family of triene
compounds by using solvents with different polarity (which contribute an additional
field component) and donor-acceptor groups [53]. Therefore proper molecular de-
sign (molecular engineering) can lead to large values for 7).

Such molecules can be used in any number of pure forms which, depending on
the operating temperature, are single crystals or neat liquids. They have also
been dissolved in appropriate solvents and, as shown in Fig. 21, in solid-state
polymers. The chromophores can be included as “guests” dissolved uniformly in
a host polymer and are not chemically attached to the polymer. Alternatively, the
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Figure 20
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(a) Calculation of * due to varying amounts of f, the fractional charge transfer
from the donor D to the acceptor A. (b) Measurement of %) by third-harmonic
generation on the triene family of molecules in different solvents [53].

chromophores can be attached as pendants oriented more or less orthogonal to
the main chain of the polymer by chemical bonding at one end of the molecule.
It is also possible to bond (cross link) both ends of the chromophore to different
or even the same polymer backbone chain (which can be folded) inside the poly-
mer matrix. A fourth alternative is main chain attachment in which the chro-
mophore is inserted (bonded) on both ends into the polymer backbone chain.
The doping levels of the molecules into the polymers depend on the particular
chromophore details, the host polymer and the form of attachment, increasing
from 1%-30% for side-chain and guest-host systems to about in 50% doping in
the main-chain and cross-linked cases. For random orientation of the molecules,
the value of the macroscopic third-order susceptibility (and 7,) is reduced to
about 1/5 of the molecular value along the charge transfer axis. However, the
technology for partially orienting the chromophores and forming the solid-state
polymer solutions discussed here is very well developed because of the interest
in using them for electro-optics applications [54,55]. Because the chromophores
typically have large dipole moments in the ground state, electric field poling has
been used to achieve some degree of alignment of the chromophores and hence
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Figure 21
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Different ways of including charge transfer molecules (chromophores) inside
polymer matrices. (a) Guest—host system in which the molecules are dissolved in
the polymer without bonding to it. (b) Chromophores bonded as pendants at one
end to the polymer chain. (c) Charge transfer molecules bonded directly into the
polymer chain. (d) Chromophores tethered at both ends either to the same poly-

mer or to different polymers (case shown).
_______________________________________________________________________________________|

increase the net nonlinearity back toward its molecular value along the charge
transfer axis.

Chromophore nonlinearities can also be accessed by dissolving them in compat-
ible solvents, but of course with the 1/5 random orientation factor. Many of the
suitable solvents tend to be polar, which can change the electron transfer char-
acteristics of the chromophore dissolved in them and hence the nonlinearity. In
fact, experimental verifications of the calculations shown in Fig. 20(b) were per-
formed by using well-characterized solvents to change the electron transfer
properties [53].

A word of caution is necessary when using bridge groups with double bonds
such as carbon or nitrogen in the bridge group. Oxygen-induced photodegrada-
tion of the double bonds of the bridge when illuminated with light primarily in
the visible or UV can lead to changes in chemical structure, drastically reducing
the electron transfer properties of the bridge and hence the nonlinearity [56].
Pinhole-free encapsulation of the polymer is necessary for long-term stability.

Some representative values for large n, measured in polymers as well as in so-
lution are given in Table 3. Structures are shown in Fig. 22. Clearly the values
listed are higher than those in Table 1 for nonorganic dielectric media.

Table 3. Representative n, and «, (Where Available) Values for Some
Randomly Oriented Charge Transfer Molecules

1y X 10714 @, A ny X 10714 a, A
Material (cm?/W) (ecm/GW)  (um) Material ~ (cm?/W)  (c/GW) (um)
DANS[57] +7 <1-2 106 DMSM’[59] 16 <1 0.7
DAN2°[57] +20 <1-2 1.06DEANSTY59] 19 <1 0.7
MNA‘[58] 25 1.06

“~20%wt in PMMA.

20 wt. % in formamide.

“30 wt. % in nitrobenzene.

dExtrapolated from measurements of 17% MNA in PMNMA.
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Figure 22
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Structures for molecules in Table 3.

2.6. Miscellaneous Molecules

Symmetric squaraine dyes have exhibited large nonlinearities. They are essen-
tially linear molecules that have identical donor groups at both ends of a D-A-D
structure and hence have no permanent dipole moments. Their linear nature
means that their ground and excited states have either even (A,) or odd (B,)
symmetry, similar to that discussed previously for polyenes and conjugated
polymers. Hence a three-level model of the type discussed previously for conju-
gated polymers is appropriate as a first approximation. Their absorption spectra,
typically peaked in the 650—900 nm range, exhibit dipole transition moments
>10 debye for the 1A, — 1B, transition with very narrow linewidths and a transi-
tion dipole moment to the dominant two-photon state, i.e., 1B, — mA,, whose value
is about one half of the 1A, — 1B, value [60,61]. Equation (2.152) and Fig. 10 pre-
dict a negative n, off-resonance and nonresonant value, and magnitudes in the —5
X102 —-10""%cm?/W range have been measured for 1500 nm>\
> 1064 nm [42,62—64]. Values for a few specific cases are given in Table 4. In most
cases, significant 2PA was also found. Squaraine-based molecules have been suc-
cessfully doped into polymer films and low-loss fibers [63].

Another family of molecules that have been of interest because of their large
nonlinearities is the polymethines [65]. An example of the large nonlinearities
available in the communications bands due to the electron delocalization along
the acetylenelike bridging structure consisting of single and double carbon
bonds is given in Table 4. Since the main absorption maxima occur around
1000 nm, the listed nonlinearities are off resonance, 1.€., in the tails of the linear ab-
sorption spectra. Structures are shown in Fig. 23.

Table 4. Representative n, and a, (Where Available) Values for Miscellaneous

Molecules®
7y X 10714 A 1y X 10714 a A
Material (cm?/W) (um) Material (cm?/W) (cm/GW) (um)

(1 wt. %) ISQ 41(m,|)[63] 13 D-ADsquaraine  —80 [64] 46 13
(0.1 wt. %) ISQ 2.1(|ny|) [62] 1.06  “Pyrole squaraine —13[140] 0.8
(1 wt. %) BSQ 88(m|)[63] 1.3  Polymethine —490 [65] 50 13

(%2 wt. %) BSQ 20(n,|)[62]  1.06  Polymethine ~290 [65] 1.55
464wt %) SBAC  0.9[59] ~0 08

“Random orientation of linear molecular axis.
bPercentage in PMMA fiber.

“Estimated from solution measurements in chloroform.
YSBAC dye in PMMA (a D-A-D structure) .
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Finally, dendrimers have been of increasing interest for nonlinear optics [66].
They have proved useful as molecules for certain applications because of their
ability to incorporate multiple functionalities needed, for example, for photore-
fractivity. For third-order nonlinear optics, specifically nonlinear absorption,
they offer the possibility of broadband 2PA needed, for example, for optical lim-
iting [67]. In fact limited cooperative effects have been observed in an experi-
ment where the number of two-photon active species was doubled in a den-
drimer, and a factor of 6 increase in the 2PA cross-section was measured [68].
Even though some large molecular nonlinearities ~Real{%>)} have been re-
ported, these dendrimers occupy much larger volumes than the molecules previously
discussed here, and it is not clear whether the macroscopic x'* will also be large.
Goodson and colleagues have reported 7, and @, measurements on the dendrimer
CZD4NS?2 (see Fig. 24) at a concentration of 3 X 107> mol/L in chloroform [69].
From their Z-scan data they calculated n,=—1.1X10"" cm?/W and a,
=102 cm/GW at 800 nm. (The peak linear absorption occurs at 450 nm.) In addi-
tion they also observed higher-order nonlinear refraction effects. To check for coop-
erative effects potentially leading to an enhanced 7, they measured the nonlinearities
for both the nitroaminostilbene and carbazole functional groups (Fig. 24) alone.
They found that the dendrimer nonlinearity was completely accounted for by the two
nitroaminostilbene groups and that the carbazole had no effect on n,. More experi-
ments are clearly needed to truly assess the potential of dendrimers for enhanced 7,.

Here we have presented a very brief review of the origins and magnitude of 7, in
the two common organic material systems, namely, conjugated polymers and
charge transfer molecules. More detailed information about the chemistry etc.
can be found in review books containing many pertinent chapters such as
[70,71] and discussions of the current status of materials for organic nonlinear
optics in [52,53].
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Figure 24
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2.7. Excited-State Absorption and Reverse Saturable
Absorption

There are a variety of examples such as the above where index changes are pro-
duced by the redistribution of population densities of two or more excited states
via absorption, both via successive linear and nonlinear absorption processes
[72,73]. The index changes occur through the reduction of oscillator strength
due to saturation as discussed above, but also through the production of new ab-
sorbers as discussed in this subsection. The signs of the respective refraction
changes depend on the frequency position relative to the absorption resonances.

Linear absorption can promote species to excited states that serve as the lower
state of a second electric dipole allowed transition before the excited state elec-
trons decay back to the ground state. Figure 25 shows a quasi-three-level system,
described in more detail below, that is a good approximation for many organic
dyes.

This process produces what is called excited state absorption (ESA). It is con-
venient to describe the second absorption process by an absorption cross sec-
tion, o, related to the dipole matrix element |u,|%, since the ESA coefficient is
simply

ay = 09Ny, (2.22)
where N, is the electron density of the first excited state, i.e.,

le alg]

=—. 2.23
dt fiw ( )

Here a, is the absorption coefficient from the ground state g (also described by
a cross section o, times the density of ground state absorbers N,) and 7iw the
photon energy—one excited state produced per photon absorbed.
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Figure 25
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Such equations can be integrated in time to see the effect of the ESA on the
transmitted intensity. First, integrating Eq. (2.23) yields

alg t alg
N =—2| 1)dr = —EF (), (2.24)
fiw hw

—0o0

where F'is defined as the fluence, energy per unit area, which when plugged into
the equation describing the intensity change,

dl
;:_UlgNg[_O'lell, (225)
gives
il NF() - N, 22 o) (2.26)
T == O VN t) N,/ 7). .
dz Tiee £ 2hw

A similar equation can be obtained for 2PA in which the fluence F (integrated
energy of a pulse) is replaced by the intensity, and the product of density times
cross sections divided by photon energy is replaced by a quantity called the 2PA
coefficient, a,. The process represented here is a pair of sequential linear ab-
sorption processes, as opposed to the usual nearly instantaneous 2PA, which is
proportional to the product of the squares of the transition dipole moments
Lo P Ug1 [. Thus, Eq. (2.26) is a precursor to the results of perturbation theory for
2PA, and the transition from sequential 2PA [Eq. (2.26)] to instantaneous 2PA given
by dI(z) =—a,I? becomes apparent [74].
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A realistic depiction of one-photon-absorption-induced ESA is shown by the
three-level system with vibrational-rotational manifolds in the excited states in
Fig. 25. Notice that, although many levels are shown, there are only two domi-
nant transitions. For molecules with rotational and vibrational degrees of free-
dom coupled to the electronic transitions, excitation to higher-lying states in
each manifold is rapidly followed by intrasystem relaxation to the bottom of the
band. The ESA then proceeds from this relaxed excited state into a higher
rotational—vibrational manifold. Rapid intersystem relaxation returns the elec-
trons in the second excited state manifold to the bottom of the first excited band,
where they can again absorb. Thus a single excited state absorber can efficiently
absorb multiple times even for pulsed inputs.

If the ESA cross section is larger than that of the ground state, 05, > 0, where
the absorption cross sections are now understood to be averages over the
vibrational-rotation manifolds, then the absorption process is also referred to as re-
verse saturable absorption (RSA), and increasing input yields increasing loss [75].
This model is a useful model that can be used to describe ESA in many organic mol-
ecules, and as we will see in the discussion of semiconductors, can also describe
some free-carrier absorption phenomena. Figure 26 shows Z-scan data on the or-
ganic dye chloro-aluminum phthalocyanine, CAP, showing the fluence dependence
of both nonlinear absorption, following Eq. (2.26), and the nonlinear refraction fol-
lowing that discussed at the end of this Subsection [73]. In this figure, two sets of
data are shown for the same energy but with pulse widths differing by a factor of 2.
Thus the fluence used is identical, but the intensity differs by 2 X. The fact that the
nonlinearities are the same shows the fluence dependence. Table 4 gives parameters
for a sampling of molecules showing RSA.

In cases where the input pulses deplete the population of the lower level and de-
cay of the upper state is possible, the equations governing the process become
more complicated [76]:

Figure 26
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dN g N, Nl
— - = —, (2.27a)
dt ho Tig
le (O] N, Nl
— 5 (2.27b)
dt ho Tig
dl
;:_UlgNg[_U'ZINlI- (2270)

The refraction from these absorption processes is simply related to the redistri-
bution of the population of levels when we are creating and/or removing absorb-
ing species. Depending on which side of resonance, the index can be increased
or lowered. For pulsed input, the index change follows the population in time.
For pulses short compared with the population decay time, the index change fol-
lows the integrated energy, which has the shape of an error function.

In many situations involving organic molecules triplet states become involved,
and the appropriate level structure is a five-level system [77]. Solutions of these
equations show an increasing loss with increasing intensity that eventually turns
into saturation for high inputs. More sophisticated approximations to Eq. (2.21)
yield overall saturable absorption for o,; <o, and RSA (i.e., increasing loss
with increasing intensity) for ;> o, as seen in Fig. 27 [78]. References [79,80]
give ESA including triplet states along with the dynamics.

We conclude this discussion of excited-state nonlinearities with the nonlinear re-
fraction associated with the population redistribution. These refractive changes
are a result of the changes in the linear absorption arising from creating excited
states and removing population from the ground state. They were calculated
from the Kramers—Kronig relations. The prediction is that there should be a de-
crease in index below resonance and an increase above resonance if the creation
of the excited state absorbers dominates the absorption changes (as opposed to
the loss of ground state absorbers). This should be the case where RSA domi-
nates saturable absorption. As shown in Fig. 27 and listed in Table 5 (Fig. 28),
the observed nonlinear refraction in CAP is positive, indicating above-resonance
excitation. As for the absorption, defining a refractive cross section, oy, is more

Figure 27
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Table 5. Parameters of RSA Dyes

Material/Solvent Ty 0y o/ 0 o 7
Polymethine/ethanol [78] 0.7 X 10717 cm? 60X 1077 cm? 81 0.3 ns
CAP/methanol [73] 22X108cem?  23X1077 cm? 10 1.8X10"7cm?  7.0ns
SiNc/toluene [73] 2.8X108cem?>  3.9%1077 cm? 14 47X10 "% cm?>  32mns

“Here 7 is the singlet state lifetime. In CAP and SiNc, much of the population goes to the
triplet state in this time where it can strongly absorb as opposed to the ground state for the
polymethine.

appropriate than using n,. Values of oy for representative molecules are given in
Table 5, using the following definition to give units of square centimeters for the
cross section (another definition sometimes used is to drop the wave number £,
yielding a cross section with units of cubic centimeters):

kvacAn = O-RNI' (228)

It is interesting to note that if one calculated an n,for CAP using, for example,
the 30 ps data in Fig. 27, one would obtain a value of 7,=1.2 X 107'% cm?/W at a
concentration of only 1.3 mM, i.e., a very large value if given a neat material. And,
using the 62 ps data would yield a value for n, approximately twice as large, given
that the intensity is only half as large.

3. Glass Nonlinearities

There are many definitions for a “glass.” For example “any of a large class of ma-
terials with highly variable mechanical and optical properties that solidify from
the molten state without crystallization. They are typically made by silicates fus-
ing with boric oxide, aluminum oxide, or phosphorus pentoxide, are generally
hard, brittle, and transparent or translucent, and are considered to be supercooled
liquids rather than true solids” [81]. In optics, glass usually refers to silica, i.e.,
amorphous SiO, (silicon dioxide) doped with various atoms and/or molecules. Pure

Figure 28
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silica, typically doped with Ge to increase its refractive index, is routinely used in
fibers for transmission, and hence its linear and nonlinear optical properties have
been studied extensively in optics, especially in the communications bands. On the
one hand, a nonlinear refractive index is essential to soliton propagation, and on the
other hand, it can produce detrimental crosstalk due to four-wave mixing etc. [82].

As stated in the above definition, the optical properties are not the same for every
sample, as they would be, for example, in a single crystal of quartz. The reasons
are primarily twofold. One, glass properties vary with the details of the prepara-
tion technique, which is usually proprietary to each commercial supplier. Differ-
ent complexes can form on a local scale, especially for multicomponent glasses.
Second, the optical properties depend on the purity of the starting materials, as
well as upon small amounts of impurities added to the fabrication for stability,
etc. In addition, the glass properties may depend on the location in the melt from
which the sample was taken, the center, the edges, etc., although this aspect is
probably less of an issue with glasses from commercial sources than with re-
search grade samples made in small melts. Because of its importance in optics,
n, has been measured in silica and lightly doped silica by many different tech-
niques. Table 6 gives an indication of the variability in n, with supplier.

At 1.55 pm, which is far from all of the electronic resonances in the UV and hence
is in the nonresonant regime, the recommended value is 7n,=2.5+0.1
X 1071 cm?/W. This corresponds to one of the very few cases in nonlinear optics
where such precision is possible, primarily due to the elaborate schemes for in situ
measurements in fibers (see references cited in [83]). The dispersion with wave-
length for fused silica is shown in Fig. 29. Note that the spread in values is the
least at 1.55 um because of the importance of this wavelength region. In the spectral
regions where these glasses are used for nonlinear optics, the Kerr response is fem-
toseconds or less.

Over the past 10—20 years many new glasses, mostly heavy oxides and chalco-
genides, have been synthesized with the goal of improving 7, in glasses. The range
of values along with the glass classification is documented in Fig. 30 [84]. However,
the values for loss («; in inverse centimeters) achieved to date in many of these ma-
terials have resulted in lower net figures of merit defined by 7,/ @, than in fused
silica. There are two principal reasons for this. In general, the larger the nonlinearity,
the more the absorption edge due to electronic transitions is shifted to longer wave-
lengths, and hence the larger the residual absorption in the near infrared and
1-1.5 um regions relative to fused silica. Second, fabrication techniques optimized
for low loss have been pursued vigorously only for silica, Er-doped glasses, and
some specialty glasses developed for applications other than nonlinear optics (with
small to moderate 7,). Hence there is hope that scattering and other losses can be
reduced in highly nonlinear glasses in the future.

A number of glasses in standard glass catalogs that were deemed promising for a

Table 6. Measured n, in Fused Silica at 800 nm from Various Suppliers [83]

Sample Source 1, X 10710 cm?/W
Suprasil 32
Schott SQ1 25
Heraeus 35
Herasil 33
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combination of fiber processability and potentially high n, were investigated,
primarily in the late 1980s and early 1990s. The range of values for n, was
107°-107"cm?/W [11,85-88]. The inclusion of metal oxides in glasses for in-
creasing the nonlinearity occupied members of the French glass community in the
1990s; the metal oxides included oxides of Te, Ti, Th, and Nb, which produced 7,
values in the range 1075 to 6 X 107'* cm?/W [89-91].

The chalcogenide glass family has been of special interest because of its high
nonlinearities in the near and mid-infrared. Values are typically in the 107'* to
2 X 107" cm?/W range as shown in Fig. 31. Many of these glasses have absorption
cutoffs in the near infrared and are prone to optical damage for wavelengths that, de-
pending on the specific glass composition, can extend to 1.3 um [92-97].

In principle the S.O.S. Egs. (2.1) and (2.3) can be used to calculate glass nonlin-
earities. In practice, the random, amorphous, disordered nature of a glass leads
to broad distributions of resonant frequencies and decreased excited state life-
times. The effect of this disorder on, for example, the linear spectrum of glasses

Figure 30
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is dramatic. Although the absorption spectrum of silica still has structure that
can be identified with the electronic transitions in the dominant glass constitu-
ent, gaseous SiO,, the absorption spectrum is quasi continuous and not discrete.
Furthermore, this corresponds to inhomogeneous broadening; so the inverse of the
breadth of the spectrum does not yield the homogeneous relaxation times associated
with S.0O.S. Because of these complexities, there have been a number of approxi-
mate formulas proposed from which the 7, of a multicomponent glass can be esti-
mated based on the glass’s linear optical properties. One such formulation that is
widely used, and has been moderately successful provided that it is used in the off-
resonant regime, is the BGO equation named after it’s originators [98], namely,

0.29(ny— 1)(n3+2)?
n, (cm*W) = X 1071, (3.1)

\/1.52+ (ng—1)(n2+2)v,
n(\)vy

67’ld

or in its simplified form

1.64 (n,— 1)

ny, =

n [Vl

where v, is the Abbé number defined as v,=(n,~1)/(np—n,) and ng, ngp, and n,
are the linear refractive indices at 0.48613, 0.58756, and 0.65627 um, respec-
tively. The Abbé number and (n,— 1) reflect the strength of the glass dispersion, and
(ny—1) as well as (n%+2) the glass polarizability, both of which are in the S.0.S. ex-
pression. A comparison of the 7, values measured at 1.55 um and estimated from
Eq. (3.2) is shown in Table 7. Although the agreement deteriorates when the glass’s
absorption edge approaches the refractive indices on which the Abbé number is
based in multicomponent glasses, these formulas provide a useful estimation
method.

X 1073 ecm?*/W, (3.2)
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Table 7. Comparison of Measured and Calculated n, Based on Eq. (3.2)

Fused Silica BK7 SF6

Vg 68 64 25

ng 1.46 1.52 1.81
Theory 1, (cm?/W) 2.6X10716 3.0x 10716 13x 1071
Experiment 7, (cm?/W) 25X 10710 3.4%10716 20X 10710

4. Semiconductor Nonlinearities

Semiconductors are very important in optical technologies, since they emit and
detect radiation efficiently and can be used to optically and electro-optically ma-
nipulate signals etc. As a result their optical properties are very well known, in-
cluding their nonlinear optical properties [99].

There are multiple mechanisms that contribute to An(/) in semiconductors. In
some ways bulk semiconductors are more complex than molecules because they
have multiple continuous bands and not discrete states. On the other hand, most
semiconductor properties can often be well characterized by simply specifying
the bandgap energy and wavelength of interest. The full spectrum of ultrafast
nonlinearities can be predicted from a single material-related number to within
factors of 2 or 3. This cannot be done for materials with discrete states where
there are multiple two-photon (2PA) states and therefore knowledge of the full
spectrum is required. In a semiconductor, a single measurement of the nonlinear
optical response at a single wavelength, along with the bandgap energy, can give
the full nonlinear spectrum [100]. Table 1 lists 7, and «, for several representa-
tive semiconductors at different wavelengths.

Shown in Fig. 32 are the allowed electron states in an ideal semiconductor with a

Figure 32

Conduction Band Before Absorption After Absorption

Valence Band

(a) Electron occupation (dark blue) of the valence and conduction bands in a
two-band semiconductor at zero temperature as a function of electron energy £
and wave vector (k,k,). The red line indicates allowed transitions from the va-
lence to the conduction band. (b) Incidence of optical field of photon energy
fiwo> Eg,,. (c) Electron occupation of the bands subsequent to the optical field.
E éap>E oap defines the resulting bandgap between the lowest energy unoccupied
states in the conduction band and the highest energy occupied states in the valence
band. 7is the spontaneous recombination time for a conduction band electron to re-

turn to the valence band.
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single valence and conduction band [101]. The states lie on the surface of
“bowls,” upright for the conduction band and inverted for the valence band, and
any electrons occupying the states at the top of the valence band and bottom of
the conduction band have zero momentum (kinetic energy), i.e., away from this
point || # 0. In fact, a 4D representation of the densities of state in E—k space is
necessary, since the electrons can move in all three spatial coordinates; i.e., Fig.
32 represents a cut in this space. At 0 K, all of the electrons exist in the valence
band, none in the conduction band. At finite temperatures, the electrons pick up
an additional energy okgT, and some electrons are excited into the lowest re-
gions of the conduction band.

The largest changes in refractive index are associated with the absorption or
emission of radiation that results in transfer of electrons to or from the conduc-
tion band, respectively [99]. Absorption of an incident beam of frequency w
> Wgap = E4sp/ i and intensity / leads in the steady state to a partial filling of the con-
duction band near its bottom and a lowering of the electron occupation level at the
top of the valence band. This results in a change in the effective gap with E,,(1)
> E4,,(0) and a change in the optical properties of the semiconductor called “band
filling” or “band blocking,” as indicated in Fig. 33.

Furthermore, when a negatively charged electron leaves the valence band it
leaves behind a positively charged “hole.” As a result of the coulomb interaction
between the two, additional states called “excitons” are introduced into the
bandgap near k=0; see Fig. 34 [99]. Because of their close proximity to the bot-
tom of the conduction band, these states can be easily bleached out, either by
thermal fluctuations o<kg7 or by incident light, producing another change in the
optical properties called “exciton bleaching.”

The dimensionality of allowed electron motion (3D in bulk semiconductors) can
be reduced to 2D in quantum wells and superlattices (k, and k,), to 1D in quan-
tum wires (k,) and 0D (k=0, full confinement in all three directions) in QDs
[102]. This reduction in dimensionality changes (1) the nature of the density of
states in the valence and conduction bands, for example, from continuous in 3D
to discrete states in 0D, as well as (2) the magnitude of electric dipole transition

Figure 33
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(a) Absorption spectrum and its change (—A ) before and after the passage of an
optical field with Ziw > E ,,, through the semiconductor. (b) Spectral dependence of
the absorption and refractive index changes. The index change refers to GaAs.
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Figure 34
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citon states. (¢) Energy of the lowest-lying exciton state (£, n=1) versus the
bandgap energy for a number of semiconductors [99].

elements due to changes in the overlap of the initial and final state electron wave
functions. Hence 7, also changes!

The nonlinearity is called “active” when a field is incident on a semiconductor in
which the conduction band is initially occupied by pumping electrons from the
valence band, either by electrical injection or by optical pumping so that for cer-
tain transition regions the occupation is higher in the conduction band than in the
valence band and gain is achieved [103—106]. As shown in Fig. 35, similar
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(a) Semiconductor with electrons in the conduction band resulting from optical
(solid black arrow) or electrical pumping. An incident field stimulates an elec-
tron to drop down to the valence band, producing gain at the optical output. (b)
and (c) Induced change in the absorption spectrum due to the stimulated emis-
sion. (d) Resultant change in the refractive index.
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changes but opposite in sign occur in the refractive index, and the absorption is
now negative; i.e., gain exists. Such semiconductor optical amplifiers are the
most versatile all-optical signal processing elements available to date [105].

The characteristic time for both passive and active nonlinearities is the recombi-
nation time 7, for electrons returning to the valence band from the conduction
band, typically 10 ns for GaAs at room temperature. For example, for high input in-
tensities the index change associated with the passive nonlinearity can be turned on
in subpicosecond time scales but the turnoff time is dictated by the recombination
time; i.e., the index change lingers for = 7,. as indicated previously in Fig. 4 , or by
the time it takes to sweep out the electrons, for example, by an applied electric field
[107]. There are also other mechanisms associated with electron dynamics in the
conduction band that will be discussed with respect to semiconductor optical ampli-
fiers and active nonlinearities [ 103—106].

In addition, there are other ultrafast nonlinearities like the usual Kerr effect,
2PA, and the Raman effect, which are relatively much weaker in spectral regions
where there is significant linear absorption [100]. The quadratic (or ac) Stark ef-
fect (QSE), which is a significant contributor to the overall ultrafast nonlinear
response below the band edge, is often referred to as “virtual saturation,” since it
becomes real saturation or band filling for input frequencies above the bandgap.
For input frequencies lower than the bandgap region and Urbach tail, these ul-
trafast mechanisms dominate the nonlinear response of the semiconductor.

4.1. Carrier-Related Nonlinearities (Excitation and
De-Excitation of Carriers)

4.1a. Bulk (3D) Semiconductors
E.. /h can be absorbed to move an

At 0 K incident radiation of frequency wy,,=E gy,

electron from the top of the valence band to the bottom of the conduction band, and
the absorption is zero for w,,,> . For @ > w,,,, absorption occurs via near vertical
transitions [Fig. 32(a)] that conserve k with a maximum probability given by the
product of the density of states in the valence band times the density of unoccupied
states in the conduction band times the electric dipole transition matrix elements
(which are a measure of the overlap of the spatial wave functions in the initial and
final states) [99]. Thus the absorption spectrum rises smoothly from zero for w
> wg,,. At finite temperatures, the electrons pick up an additional energy kg7, and
the top and bottom of the bands are now blurred and extend into the gap over ener-
gies typically of order k7. In practice, defects also contribute to this additional re-
gion, which is called the Urbach tail. As a result, the absorption spectrum now de-
cays smoothly to zero in the gap region even for w,,,> w. The more intense the
incident light, the larger the change in the occupation of states in both bands with a
resulting decrease of the absorption; see Fig. 33. The contribution to the refractive
index is different for an electron in the valence versus the conduction bands, and
hence the dispersion in the refractive index is also changed with increasing intensity
(linked to the absorption change via the Kramers—Kronig relation). These nonlin-
earities are called “passive.” Furthermore, since the density of states is high and the
transition matrix elements large, the index change can be saturated at moderate in-
tensities. For details, see [108].

Band filling (blocking): There are multiple theories of carrier nonlinearities in
semiconductors; however, for most cases of interest they give comparable re-
sults. Here we follow the discussion of [100]. The theory of Banyai and Koch
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[109], which includes the effects of electron—hole Coulomb interaction, plasma
screening, and band filling, is perhaps the most general; however, in order to give
a quantitative analysis, a knowledge of the value for the interband matrix ele-
ment is required. This is often difficult to calculate from first principles, and the
value is often approximately determined by comparing the computed and mea-
sured linear absorption spectrum. This theory is beyond the scope of this paper
and luckily is often not needed, as the following theories give good agreement
with experiments. The theories that we refer to as band-filling models are the
model attributed to Aronov et al., [110] and Austin et al., [111] (BF1), and the
dynamic Moss—Burstein model with Boltzmann statistics [112—-114] (BF2). In
both theories the refractive changes are attributed to carriers independent of the
generation mechanism, for example by single-photon absorption or 2PA. In BF1
the nonlinear refraction from free carriers is calculated directly from the real
part of the complex dielectric function. Creating a density AN, of free electrons
in the conduction band accompanied by the elimination of a density —AN, of
bound electrons in the valence band changes the index of refraction for off-
resonance excitation (hwE,) by An [111],

AN.e? E;
An=- 2 2 2’ (4.1)
2egngw me, E, — (ho)

where m, is the reduced effective mass of the electrons in the conduction band and
the holes in the valence band. Hot-carrier effects are neglected in Eq. (4.1) for pulses
longer than a few picoseconds, which is the time carriers take to reach the band edge
(thermal equilibrium with the lattice discussed later in the context of active nonlin-
earities) for most semiconductors [111]. Shorter pulse excitation requires the more
sophisticated analysis of Banyai and Koch [109]. The factor Eé/ (Eé—h2 w?) can be
thought of as an enhancement factor of the usual plasma index change. This simple
theory explains most of the nonlinear refraction encountered for carrier nonlineari-
ties where the carriers are generated by single- or multiple-photon absorption. We
should also mention that the carrier nonlinear refraction is always negative, i.e., leads
to self-defocusing nonlinearities. While the following heuristic is too simplistic to
explain the details, if one thinks of creating zero-frequency oscillators, one is always
above resonance so that the index change is negative.

A somewhat more sophisticated analysis is given in the BF2 model below. The
excited carriers block the absorption at frequencies higher than the energy gap
by filling the available states in the conduction band with electrons taken from
the valence bands, Fig. 32. This model uses the Kramers—Kronig integral of the
change in absorption to obtain the change in index. The total change in the index
of refraction, including contributions from electrons, heavy holes, and light
holes, is given by Wherrett ef al. as [113]

62 ANL s me APh mep
An=— SV | VP2 et i [T\ L Z— T,
m m m

2ngw” | m, my,
AP, me;
+— 1+Z—Jll 5 (42)
my m
where
2 Ep<ﬁw>2 ws)
I=—="|—, 4.3
3 mksT\ E,
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fx xe™
Ji= dx, 4.4
0 x2~l—al~j ( )

E,~hwm,
kBT m]

and where the photogenerated electron and hole densities are given by AN, and
AP,. The subscripts ¢, &, and [ represent the conduction, heavy hole, and light
hole bands respectively. Similarly m is the free-electron mass, and the subscripts
denote the bands as above. The electron charge is e, ky the Boltzmann constant,
T the temperature in kelvins, and £, is the Kane momentum parameter, where Ep
is ~21 eV for most semiconductors [115]. In Egs. (4.4) and (4.5), i and j are dummy
subscripts that represent ¢, & or [. AP, and AP, are determined from [113]:

ANC m, 3/2 ANC m,, 3/2
=1+|—] , =1+|—] . (4.6)
APh my, AP] m;

Equations (4.2)—(4.5) are an approximation that is adequate for near-resonant
excitation. Off resonance, as is the case for 2PA, J;; should be replaced by F,
with F';; defined by

my; E, myE,~fho myE,+ho
Fy==2J]| — +J| — +J| — , (4.7)

where the J defines the integral as in Eq. (4.4). For hw~ E, and E,>> kT, the
second term on the right-hand side (RHS) of Eq. (4.7) is dominant, and F'; re-
verts to J;; as in Eq. (4.4) [101,103,104]. In 2PA experiments £,-hw is compa-
rable with £, and all three terms in Eq. (4.7) should be retained.

The contribution of the electrons to the index change, AN, in Eq. (4.2) includes
blocking due to electron transitions from the heavy-hole band and light-hole
band in addition to the change in the electron population in the conduction band.
AP, and AP, give the contributions of the holes from the respective transitions.
In semiconductors like ZnSe, CdTe, and GaAs with two-photon excitation of
carriers (thus using F; in Eq. (4.2) rather than Eq. (4.4) for J;)) the change in in-
dex from transitions between the light-hole and the conduction band (electron
blocking, light hole blocking, and free-light-hole generation) are nearly equal
and contribute about one-third each to the total index change. This shows that for
these semiconductors it should be a good approximation to use a two-band
model. This is the case discussed in what follows. Examining J;; in Eq. (4.4), we
see for ;> 1 thatJ;;~ V! 4a;. Substituting this value for J; into Eq. (4.7), F;; be-
comes proportional to x2/(1 —le) with x=hw/E,. Assuming a two-band model and
substituting F; for J;; in Eq. (4.2) gives a change in index due to carrier transition
blocking An,, as

(hw)?

o« — 4.8
[E; — (fhw)?] (48)

np

The dominant frequency dependence here comes from the denominator and is
the same as the enhancement factor in the theory of BF1 using a two-band
model. This agreement is expected, since the same physical mechanism is used
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in both calculations. Comparison of these theories for 2PA excitation in semi-
conductors like ZnSe, CdTe, and GaAs shows good agreement [10].

In this case we can write an equation for the nonlinear refraction by using a re-
fractive cross section o with units of square centimeters (as was used in Sub-
section 2.6 for molecules), using Eq. (4.2) to obtain a function of the ratio
hw/E,=x as

oRAN  #%* E, 1
An= - 3202
ke 2&qnom Egx*(x"—1)

N, (4.9)

where we replaced the effective mass with mE,/E,, [100]. Often in the literature
the k,,. is not used in the definition, leaving a cross section in cubic centimeters.
Here we use k,,. so that we can compare these semiconductor free-carrier refractive
cross sections with the molecular cross sections discussed in Subsection 2.6. There
we saw values in the 0.5 to 2 X 10™!7 cm? range, which as we will see is comparable
with those for semiconductors; see Table 8 below. Since the hole densities are related
by Egs. (4.6) to the conduction band carrier density, the key parameter for describing
the band filling effect is the electron density in the conduction band at energy E,
AN, (E). Assuming that the population of the conduction band can be neglected
prior to the incidence of the optical beam, for a semiconductor with a single direct
bandgap (two-band model),

d I(t) AN(E)
—AN(E)=a,(I)— — , (4.10)
dt hw

r

where «; is the intensity absorption coefficient and 7, is the recombination time.
In steady state,

1(?)
AN,(E) = ay(I P (4.11)

Defining o as the cross section for the index change (from Egs. (4.2)—(4.7)
when a carrier is promoted from the valence to the conduction band and assum-
ing minimal change in the absorption spectrum, the band-filling nonlinearity
1, sebt 18 deduced to be

Table 8. Parameters Needed for Carrier-Related Nonlinearities in Selected
Semiconductors®

Parameter InSb GaAs ZnSe ZnS CdS ZnO CdTe
E, (eV) 0.18 1.42 2.67 3.66 2.42 32 1.44
o (cm?) 8x 10710 44x107%  7x107  3x107  6.5x10718
[116] 9] 9] [117] [118]
oy (cm?) 2-4x1075%  38x1071 47x1077 3.8x107  9x1077  3.0x107'°
[119] [10] [10] [117] [118] [10]
7, (ns) 50 1 ~1 3.6 2.8
(91 [91 [117] [118]
A 10 um 1064 nm 1064 nm 1064 nm 532 nm 532 nm 1064 nm
n 4.0 343 2.7 2.4 2.6 1.9 2.7

“Defect-dependent and Auger (which dominate at high intensities) decay rates are not
knowingly included.
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0RAN(E) 1. 0% T, 0p

n= - [— N3 scbf = .
kvac kvachw kvachw

(4.12)

Note that saturation of the index change will occur when «; is reduced with in-
creasing intensity. Furthermore, the electrons (and hence the index change) in
the conduction band can diffuse over distances of a few micrometers so that the
index change is not local. This nonlocality can be utilized to reduce the effective
turnoff time in semiconductor waveguides with cross-sectional dimensions of a
few wavelengths by applying an electric field to sweep out the carriers from the
optical path [107].

In Table 8 are listed o, 7,, and E,,,, for a number of common semiconductors. For
GaAs, which exhibits an absorption maximum of ~10* cm™, this gives 1, gt
~107? cm?/W. Of course, the distance that the incident beam penetrates the semi-
conductor is only a few micrometers. Table 9 breaks down contributions to the re-
fractive index change caused by plasma and blocking.

Frequently short pulses are used with pulse width A7< 7,.. In this case, subse-
quent to the passage of the pulse, the induced index change An, is given as

O'RNc(E,t) TS>AL ooy (1A a0
Ang=—— J I(¢")dt' = F, (4.13)

p
kvac kvachw 0 vaclt @

where F is the fluence. This index change decays in time as
An, (1) = An,, exp[—#/7,]. (4.14)

More on free-carrier refraction and absorption: In Subsection 2.6 we discussed
ESA and RSA in molecules. The absorption and refraction from excited states is
analogous to that occurring in semiconductors that is due to photogenerated car-
riers (electrons and holes). Free-carrier absorption takes the role of ESA, and
free-carrier refraction, as discussed above, takes the role of excited-state refrac-
tion. The discussion of nonlinear absorption is otherwise nearly identical to that
of Subsection 2.6. The bands take on the role of the vibrational-rotational mani-
folds, and the equations describing the loss are the same with simple redefini-
tions of the quantities. For example, for linearly excited carriers in Egs. (2.25) ¢,
replaces the product of the ground state absorption cross section times the den-
sity, i.e., Ny0,, Where N, is the density of excited carriers (electrons and holes)
and o, becomes the free-carrier absorption coefficient o~. Here the assumptions are
that band filling can be ignored and that phonon relaxation to the bottom of the con-
duction band (top of the valence band) is rapid on the time scale of the pulse. The
resulting nonlinear loss is then given by Eq. (2.26), reproduced here with the substi-
tutions made for semiconductors:

Table 9. Contributions to Change in the Index of Refraction Caused by Plasma

and Blocking
Blocking Blocking Blocking
Plasma Blocking Electron Plasma h-hole Plasma I-hole
Semiconductor Electron Electron lIh-c h-hole hh-c I-hole Ih-c
ZnSe 20% 33% 23% 4% 16% 2% 2%
CdTe 27% 23% 21% 7% 15% 4% 3%
GaAs 34% 25% 24% 3% 10% 2% 2%
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dF(t) - ao
P aF(t) - 2th (7). (4.15)

Here the relaxation process within the band comes from phonon emission, and
the free-carrier absorption takes the place of ESA. Of course, associated with
each absorption process are the corresponding refractive changes described by a
free-carrier refractive cross section, o, as discussed in this section. Values for
sample cross sections are given in Tables 8 and 10. While RSA is an important
property for organic dyes, semiconductors cannot be diluted in solvents; so the
linear absorption is usually too large to utilize this nonlinear response except
perhaps in a few thin indirect bandgap materials [120]. However, free-carrier ab-
sorption and free-carrier refraction are independent of the method of photoge-
neration. Thus, for example, 2PA can create the excitation, resulting in further
absorption from excited states in molecules or free carriers in semiconductors.
These processes will appear as fifth-order nonlinearities, i.e., x*: x'") processes
[10].

Exciton bleaching: As mentioned briefly before, exciton levels exist in the gap
just below the conduction band in the vicinity of =0 [dashed curves in Fig.
34(a)] [99]. Since the hole—electron binding is weak, these are Wannier excitons,
and their spectrum is hydrogenlike [Fig. 34(a)], with the levels becoming the
continuum reaching the bottom of the conduction band, [99]

1
E, = Eg,— Ey— — Coulomb correction, (4.16)
n
h? htey 1 1 1
Ey= , ag=—H—, —=—=+—. 4.17
‘ 2m,azB b em, m, m, m, ( )

Here E, is exciton energy offset from the conduction band for states for »n
=1,2,3..., agis the Bohr exciton radius for the n=1 state, and m, is the reduced
exciton mass; see Fig. 34(b). Variation of the n=1 energy offset £, versus band-
gap energy is shown in Fig. 34(c) for a selection of semiconductors and indicates
an exponential relation between the two parameters.

In three dimensions well-defined exciton levels exist primarily at very low tem-
peratures T, where kg7 is smaller than the binding energy as shown in the calcu-
lations reproduced in Fig. 36 [99]. As the carrier excitation increases with in-
creasing incident light intensity due to absorption, at low temperatures the
exciton line is rapidly bleached out and becomes essentially indistinguishable

Table 10. Comparison of Experimental and Theoretical Values for the Index
Change per Unit Carrier Density o, [10].

oy (1072 cm?)

Theory Theory

Material N\ (nm) E, (eV) m./m m,/m Expt. (BF1) (BF2)
ZnSe 532 2.67 0.15 0.78 0.8 1.6 1.6
CdTe 1064 1.44 0.11 0.35 5.0 5.9 5.9
GaAs 1064 1.42 0.07 0.68 6.5 7.2 6.2
ZnTe 1064 2.26 0.12 0.60 0.75 2.4 2.2

Advances in Optics and Photonics 2, 60-200 (2010) doi:10.1364/A0P.2.000060 109



£

. ~ 16

= T

< E 12

2 .

a © 08

8 Z
- § o
[ ey
Z £ 00

2

02) C -0.4 LN B B BN B N S R S
© -10 -5 0 5 10 15 20
O
% (Ihw_Eg)/Eo
|

3.0 T

-2 0
(‘hw_EQ)/Eo
Theoretical (includes plasma screening and coulomb interactions) curves for the
frequency dispersion of the (a) absorption and (b) refractive index at 10 K and
(c) absorption at room temperature in GaAs for different electron densities N, in the
conduction band. For (a) and (b), curvel, N,=0; 2, N,=5X 10" cm3; 3, N,=3
X 10" cm™3; 4, N,=8 X 10' cm3; and for (c), curve 1, N,=1X 10" cm™3; 2, N,
=1x10"%cem™; 3, N,=2X10%cm™>; 4, N,=3x10"® cm™ [99]. Here m,
=0.0665m, m;,=0.457m,, ag=12.5 nm, and £,=4.2 meV. Dashed curve, density

of states.
|

from the absorption band edge, which moves to higher energies because of band
blocking as discussed above. At room temperature in GaAs, the exciton peak is
essentially bleached out owing to thermal excitation into the conduction band.
Clearly at low temperatures the peak nonlinearity (7, o, ~ 1077 ¢cm?/W) associ-
ated with the exciton line can be much larger than that due to band renormalization
but can also be much narrower in spectral width [99,121].

Figure 37 shows the measured absorption of GaAs and its refractive index cal-
culated from the plasma model via the Kramers—Kronig relations for different
cw input power levels at room temperature [108]. Initially, the index change is
linear in the input power, showing that an effective n, provides a useful descrip-
tion for the nonlinearity. Note, however, that the saturation of the absorption and
index change since the absorption change for 1 — 3.2 mW is comparable with the
change for 20— 30 mW.

4.1b. Active Nonlinearities (with Gain)

In this process an electron population inversion [AN,(E,)—AP,(E,)>0] be-
tween the conduction and valence bands for some range of energy difference
(E,—E,) must be created [103—106]. This population inversion is produced ei-
ther by pumping optically (by absorption) electrons from the valence to the con-
duction band or by injecting these electrons via electrodes attached to the semi-
conductor. When a beam of frequency w is incident inside the region of
inversion, stimulated emission can occur, and the beam is amplified, accompa-
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Figure 37

—_
W

Experiment Bulk GaAs 3000k

o -
o N
T

S
=N

Absorption (104 cm'l)

[
|

1) eff (max)
~10%cm?/w

Frequency @

{ (e
>

Experiment (left-hand side) and theory (right-hand side) of the frequency spec-
trum of the absorption and refractive index change in GaAs at different input
powers. The experimental refractive index change was obtained by taking the
Kramers—Kronig transform of the experimental absorption spectrum at different
powers [108].

nied of course by electrons giving up energy by returning to the valence band.
This amplification process is shown schematically in Fig. 35(a) and is described
by

C

d
—AN(E) == BI)[ANL(E) — AP ,(E — hw)] - (4.18)

dt

7

Typically optical pumping with radiation fields of frequency @, > @y, is used
to achieve and maintain the population inversion, and very fast electron dynamics
occurs in the conduction band when an optical pulse is applied to produce the
steady-state Fermi electron distribution as shown in Fig. 38 [103,104]. The corre-
sponding electron temperature 7, of this Fermi equilibrium distribution can be very
high.

To understand the fast time dynamics, consider what occurs when a short pulse
of frequency w is incident [103,104]. As indicated in Fig. 38(b), stimulated
emission occurs and the gain is reduced. This results in a hole in the electron dis-
tribution in the conduction band, Fig. 38(b), panel II. This process is called
“spectral hole burning.” This hole is filled in [Fig. 38(c), III] on a time scale of
~100 fs by electron scattering, and subsequently this distribution relaxes (carrier
heating) on a picosecond time scale to a new Fermi equilibrium distribution [Fig.
38(c), IV] at a lower electron temperature (since the total number of conduction band
electrons is reduced). Since pumping continues, eventually the conduction band
electron distribution [Fig. 38(c), V] returns to that prior to the incidence of the pulse.
This occurs on a time scale that depends directly on the pumping rate.

These dynamics have been probed experimentally and confirmed by modeling
for very short pulses by passing an ultrashort probe beam through the sample
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Figure 38
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(a) Photon field incident on a semiconductor with conduction band partially
populated. (b) Stimulated emission reduces the gain as the conduction band is
depopulated. (c) I, Conduction Fermi band population distribution before opti-
cal field incidence. II, Hole produced in electron distribution due to stimulated
emission. III, Relaxation to new electron distribution due to collisions. IV, Re-
laxation to new Fermi band distribution. V, Return to original (before field inci-
dence) Fermi distribution by pumping (electrical or optical) [103,104].

and evaluating the nonlinear phase shift imparted on the probe as a function of
time delay between pump and probe [106]. The calculated temporal evolution
shown in Fig. 39 agreed well with experiment. The integrated conduction band
electron density AN, recovers on the time scale of nanoseconds in this example.
The dominant effects are the Kerr effect, carrier heating, and partial depletion of
the conduction band electron density. Note that an effective n, over the picosec-
ond time scale is not a useful parameter for the active case. The off-resonance
nonlinear response of these active devices can also be modeled by using
Kramers—Kronig relations in a way similar to that done for the bound electronic
response discussed in the next Subsection [122].

4.2. Ultrafast Passive Nonlinearities (Kerr Effect efc.)

Here we discuss the nonlinear refraction (along with the nonlinear absorption)
associated with bound electrons in semiconductors and/or dielectrics. This non-
linear refraction is called the bound electronic Kerr effect. These nonlinearities
are only dominant in the transparency range of the material where other nonlin-
ear optical effects are negligible, as they are usually the smallest of the nonlinear
responses discussed in this paper (but the fastest!). In the transparency range the
nonlinear optical response is due to the anharmonic motion of bound valence
electrons that have low mass and can respond at optical frequencies. Thus they
are often referred to as “instantaneous” nonlinearities; however, because of the
finite response time (< 107!3 s) they still show dispersion, as we will see.

There are three nonlinear processes that need to be taken into account, 2PA, Ra-
man absorption, and the so-called QSE, often referred to as the ac Stark effect or
virtual band blocking; see Fig. 40. The nonlinear refraction can then be calcu-
lated by frequency nondegenerate Kramers—Kronig relations derived from cau-
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Figure 39
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Theoretical modeling of the nonlinear phase shift (due to the index change) ex-
perienced by a probe beam as a function of delay time between an intense excit-
ing beam and the probe beam. TPA, 2PA (Kerr effect); SHB, spectral hole burn-
ing; CH, carrier heating; TOT, total nonlinear phase shift; V,, electron density in
conduction band [106].

sality. The change in index at w,; due to the presence of a strong excitation beam

at frequency w, is related to an integral over all frequencies w of the nondegen-

erate nonlinear absorption at frequency w, that is due to the presence of the
strong excitation light beam of frequency w, by [123]:

c (*Aad(w;w)

ny(w; w,) = —Pf — 5 do (4.19)

where P denotes the principal value of the integral, and

VE
P
Aa(wlaw2) =K 3F2(x19x2) (420)
Ro1Noplg

with x, x, given by fiw, »/ E,, is the nonlinear absorption with F, containing the
spectral information as given in Table 11. K is a material-dependent constant
given by

Figure 40

ho
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Principal ultrafast nondegenerate two-photon processes that dominate semicon-
ductor nonlinearities below the bandgap [122].
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Table 11. Components of Nonlinear Absorption Spectral Function F,(x;, x5)

Process Fo(x,x5)

2PA x,+x,>1 (x1+x21)3’2< 11 >z
P (I
27x1x§ X X

Raman x;—x,>1 (v =X, — 1)3/2( 11 >z
27xx3 X X

QSEx;>1 1 X 20— D3+ 8(x—1)?
2%,x3 (0, — 1)\ x} —x3 (—xd)? x3

221 ¢
= ——2—’
57780 \/moc2

and my, is the free-electron mass. The frequency degenerate n,=n, (—w; w) is
given by setting w= w, after the integral has been performed.

K (4.21)

The QSE functions in Table 11 are derived in [100] and come from a two-
parabolic-band model of semiconductors, i.e., a single direct bandgap. Remark-
ably this simple theory gives excellent predictions for the magnitude and spec-
tral dependence of the observed nonlinear absorption and refraction in
semiconductors and even dielectrics. Refinements of this theory to include four
bands (or even higher bands) have been performed [124] and can give even bet-
ter descriptions of the nonlinear response to ultrashort pulses. This simple two-
parabolic-band model gives the spectral dependence of degenerate 2PA as

(2x—1)*"?
F,= T , (4.22)

where x=fiw/ E,, which is shown in Fig. 41. Also shown in Fig. 41 are 2PA mea-
surements of several semiconductors with the data scaled according to

F. (h—w>= : n?E3 oS (4.23)
2 g=2 :

E,) K\E,

g
where K=3100 cm GW ' eV*'2 (the experimental best fit) is used with £, and £,
in electron volts. Values of the measured 2PA coefficients (a5*?) for representative

semiconductors along with several dielectrics are shown in Table 1.

Plugging the F, components into Eq. (4.19), performing the integrals, and tak-
ing care to subtract divergences yields the nonlinear refractive index 7, s,

hcK \/E—p
n2,scuf(wlaw2) = 2 nen 4G2(x1,x2), (424)
017702~ ¢

where the dispersion function G, is given by

2 (= Fp(x";x,)
Gy(x1,x,) = —f ?dx'. (4.25)

As pointed out in [125], this integral, when E-7 Hamiltonians are used as op-
posed to A P, can prove to be difficult to perform, since it includes some diver-
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Figure 41
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Function F, (for 2PA) of Eq. (4.22) plotted as a function of fiw/ E, (solid curve)
along with data scaled according to Eq. (4.23) [124].

gences that need to be subtracted out. However, this has been done with results
that agree with experiments. The nonlinear absorption that goes into Eq. (4.19)
is given in Table 11. The result is

A
1y seufl @) = 57 GH(hW/E,), 4.26
2, f( ) n%Eg 2( g) ( )

where the spectral dependence is in the G, function as given in Table 12 and is
quite complicated.

Table 12. Components of Dispersion of n, from Various Nonlinear Absorption
Processes with G,(x;; xp) = G27A(x) ) Xo) + G3OMM (X1 : xp) + G5 X1 : x)

Process Gy(x3x7)
2PA H(xy,%5)+H(=x,x,)
Raman H(xy,—x,)+H(=x;,—x,)
e L4 4 Bl x) Pk
Xy F Xy ————t ==
29xfx§ 2 x% x% Xy xf*x%

261(3%; *x%)[ 12 2]

————5[(1—x)"*+ (1 +x,)
0 —x3)?
2x3(3x3 —x3)

— 5o LX)+ (142"

202 2
xl(x17x2)2

X=X, 1 [3(1 —x) 2= (a2 (L=x) 24 (1 +x,) 22 1]

29x‘1‘

4 x| 8 2
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Here

1
3.2 -3/2 2
——xxi(1l —x +—(x, +x
302 1 1) 2( 2T xy)
X[(l_xz_x1)3/2_(1_x1)3/2]

3
- Exgx%[(l —x) 2+ (1-x) 7]

3
+ —xzxf(l —x,)2 + —xgxl(l —x;)"?
2 2
2, .2 12 3 3 -1
+ sz(xz +xP) (1 —x)" = gxle(l -x)

1
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The last term in Table 12 allows one to calculate the limit of the nondegenerate
G, QSE. When the limit x; — x, is taken, the contribution to the usual degenerate
1) scuf 1S Obtained.

It is noteworthy that the bandgap scaling predicted can also be obtained by using
a quasi-dimensional analysis. Such an analysis was used by Wherrett to obtain
the bandgap energy scaling of 7, ¢,,s E;‘ [126].

The different contributions are plotted in Fig. 42. In general, below the 2PA reso-
nance, 2PA, and Raman effect contribute nearly equally to the small, positive,
relatively dispersion free region of 1, ., and then 2PA takes over around the 2PA
resonance and begins to decrease 7, to take it negative above the 2PA resonance.
There the strong one-photon resonance negative contribution from the QSE kicks in
as well to take n, very negative near the 1PA bandgap. This region of the spectrum
where 7, decreases rapidly for sw— E, is shown in Fig. 43 along with experimental
data. This response evolves smoothly into the real band-blocking nonlinearity dis-
cussed in the paragraphs titled “4.1a Band filling (blocking).” Nonlinear refractive
indices of several materials have been measured, covering a broad range of normal-
ized frequency as shown in Fig. 44. Figure 45 shows the wavelength dispersion of
1y seuf In ZnS along with its 2PA spectrum [127]. In both cases, the agreement of
theory with experiment is good.

The hidden E: scaling can be displayed more conveniently on a log/log plot of
n, scaled by the dispersion function G, as in Fig. 46. Here it is seen that the non-
linear index at 1064 nm varies from —3.3X 10713 cm?/W for GaAs, to +3.1
X 1071 cm?/W for Al,05,t0 +1.23 X 10713 cm?/W for ZnTe. We also see that, for
example, the measured values of n, for ZnSe at 1.06 and 0.532 gm, which have dif-
ferent signs, are consistent with the scaling law derived from a simple two-parabolic-
band model. Again, several of the experimentally measured nonlinear parameters
are shown in Table 1.
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fect), RAM to the Raman effect, and QSE to the quadratic Stark effect [125].

4.3. Low-Dimensional Semiconductors

As we have seen in the previous discussion on semiconductor nonlinear optics,
at telecommunications wavelengths of about A=1.55 um, typical bulk semicon-
ductors have a nonlinear refractive index insufficient for many applications. For ex-
ample, silicon has an n, ; of 0.5 X 107!3 cm?/W, while GaAs is a bit larger at 1.5
X 10713 cm?/W [128,129]. Both, however, fall far short of the needed strong optical
Kerr effect of an 1, of about 107! cm?/W to produce attractive index changes of
the order of 1072~10"* with MW /cm? intensities. Yet, since these semiconductor
materials are exactly what is used in today’s electronic platforms, optical devices
made of compatible materials are needed if they are to be integrated as an active el-

Figure 43
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ement. One potential approach (still unproved) is to make use of low-dimensional
semiconductors. Confinement in one or more dimensions of the conduction band
electrons can change the nonlinear optical response of a semiconductor in a number
of ways. This includes confinement structures that are of the order of and smaller
than the exciton Bohr radius in either one (quantum well), two (quantum wire), or all
three (QD) spatial dimensions [99,102]. In each of these structures an excited elec-
tron is confined by the dimensions of the structure, and its behavior can be signifi-
cantly altered from that of a bulk semiconductor of the same material [99,102].

As discussed previously, the transition matrix elements are a product of the den-
sity of electron states (V,) times the integral over the spatial overlap of the elec-
tron wave functions in the valence and conduction bands. The overlap integral
referred to above depends on the details of the confined structure, and it can ac-

Figure 45
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tually be enhanced (or reduced) relative to the bulk case. For interband transi-
tions between the valence and the conduction band(s), the oscillator strength x.,
depends on

o | R PR, (4.28)

where 3 is the electron momentum operator, i, (7, k) and (7, k) are the electron
wave functions in the valence and conduction bands, respectively, and the al-

lowed wave vectors £ depend on the dimensionality. For the confined states we
can write

Wi R = ki) = $0,7) S, ™ = §(0,7)F(7),  (4.29)

where the function F(7) is traditionally called the envelope function while

&(0,r) is the Bloch wave function at k=0. As a result Eq. (4.28) can be expanded
as

f L PF WEp)Fdr + f JFF Do (E - ) oodr. (4.30)

The first integral vanishes owing to the orthogonality between the valence and
the conduction band Bloch wave function, while the other terms are slowly vary-
ing over any one unit cell. These terms can therefore be pulled out of the integral
to give
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where the sum is over unit cells in which F :‘/F . 1s slowly varying so that

2 [FF]= f VFchdr3. (4.32)

As a result the oscillator strength of the transition is determined by the integral
IF :F .dr®, which is the overlap of the envelope functions and is either zero or
nonzero depending on the parity of F' i and F.

In a similar way we can examine the intraband oscillator strength of the transi-
tion between two states in the conduction band. This is particularly important,
since some two-photon transitions of interest will likely involve both a band-to-
band transition and an intersubband transition. In this case we have

f WE(E - p)Wdr (4.33)
y o

where 7 and j represent two different states in the conduction band. This can be
expanded to

% % [T L= 3 s % ~ =S 3
J;/ ¢Cj0¢ciOch(E p)Fcidr + jVFCjFCi(ijO(E p)d)ciodr . (434)

Here again we can examine both of these integrals over unit cells, and in this
case the first integral is nonzero and the second is zero if we take them as Block
wave functions. The first integral can again be zero or nonzero depending on the
parity of F j and F,;. However, one must consider that the (E -p) operator will
change the parity of ;.

The changes in the electron density of states in going from a bulk semiconductor
(electron motion allowed in full three dimensions, k., k, and k) to quantum wells
(electron motion allowed in two dimensions, &, and k), to quantum wires (elec-
tron motion restricted to one dimension, &) and finally to QDs in which the elec-
tron is completely confined (zero dimensions) are illustrated in Fig. 47 [102]. As
the dimensionality is decreased, the electron density becomes progressively
more localized in energy. In fact, in zero dimensions (for QDs), the resulting dis-
crete energy spectrum resembles that found in molecular systems.

The interest in dimensionally reduced semiconductors for nonlinear optics has
been limited primarily to quantum wells and QDs [102]. The reason is simply
that these structures can be fabricated in a number of different ways. High-
quality quantum wires have proved to be difficult to fabricate, and the main
driver for their development has been quantum wire lasers [130].

While the physics of electron confinement from one to three dimensions on
nanoscales is a fascinating and current subject, here we will focus on the nonlin-
ear optical properties of such structures. Quantum wells have become a mature
technology, and indeed nominal enhancement of resonant nonlinear optical
properties has been reported. For type II-VI semiconductor crystallites imbed-
ded in glass matrices (QDs) it is not clear whether significant enhancement oc-
curs [131], although there has been a report of large enhancement for I1I-V
nanocrystals in glass [132]. The magnitude of enhancement experimentally pos-
sible in GaAs QDs is still unresolved although progress has been made on iden-
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Figure 47
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(a) No confinement in electron motion in conduction band (3D bulk sample). (b)
Electron confinement in 1D (2D quantum wells). (¢) Confinement in 2D (1D
quantum wires). (d) 3D confinement (0D QDs). (e)—(h) Electron energy E versus
density of states N,(E) for (e) 3D, (f) 2D, (g) 1D and (h) 0D semiconductors
[102].

tifying fabrication conditions which yield the desired geometries of the dot
structures, etc. where materials research, especially in the GaAs system, is still
at the frontiers of the field.

4.3a. Quantum Wells

Quantum well structures have been fabricated in a surprisingly large number of
materials, Al,Ga,_ As/GaAs, InGa;_, As/GaAs, InGaAsP/InP, and
GaN/Al.Ga,_,N, to name but a few [133—135]. However, the onus for nonlinear
optics has been on AlGaAs/GaAs structures for a number of important reasons.
First, this material system is widely used in the optics industry for making lasers and
detectors, as well as modulators of various kinds. Second, the molecular beam epi-
taxy (MBE) fabrication technology is very highly advanced, and the proliferation of
MBE machines throughout the world has resulted in easy availability of high-quality
samples. Third, on the physics side, not only is there an excellent lattice match for the
composite structures, which reduces the internal strain, the reduced electron mass is
also very small, leading to large nonlinearities. Hence here we focus on this material
system. Shown in Fig. 48 (top) is a typical quantum well structure composed of al-
ternating AlGaAs and GaAs layers deposited by MBE [136]. As indicated in Fig. 48
(bottom) periodic modulation of the bandgap results, with the bandgap energy of
GaAs being lower than that of AlGaAs. As a result, the lowest energy conduction
band electrons are confined to the GaAs regions in allowed discrete energy states
whose location and number depend on the detailed composition of the Al,Ga,_,As.
The electron wave functions are essentially sinusoidal across the GaAs layers and
exponentially decaying in the AlGaAs layers. The general parity conditions dis-
cussed above require that states of the same symmetry in the valence and conduction
bands be connected by transitions, i.e., the even symmetry states (e.g., cosinelike
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wave functions) and the odd symmetry states. (When there is significant overlap of
the wave functions between next-nearest-neighbor GaAs layers, the structure is
called a “superlattice”). The resulting calculated absorption spectrum consists of a
series of steps with transitions to confined energy levels E,, occurring from the va-
lence band when the photon energy 2w = E_, occurs as indicated in Fig. 49(b), until
fiw=Egy, aiGaas» at Which point it becomes a smooth continuum of the kind associ-
ated with bulk semiconductor samples; see Fig. 49 [102]. Associated with each
bound electronic state is an exciton level that produces discrete peaks in the absorp-
tion spectrum lying below the photon energy associated with that bound state.

The observed absorption spectra of quantum wells agree with these predictions,
see Fig. 50 [136]. As expected, the onset of the absorption of bulk GaAs occurs
at a lower photon energy than the quantum well. Furthermore the quantum well
exciton features even at room temperature are better defined (narrower) than in
the bulk sample. In addition they show new features not discussed above that re-
quire a more sophisticated treatment of the valence electrons than that allowed in
a two-band model. Most specifically, the excitons associated with the light hole
and heavy hole valence bands produce two separate peaks in the absorption
spectrum.

The early definitive experimental work on the nonlinear properties of multiple
quantum wells (MQWs), which showed enhanced nonlinear properties due to
electron confinement and hence galvanized the field, is shown in Fig. 51 and re-
ported in Table 13 [137]. This work focused on the nonlinear index change due to
saturation of the exciton level. The intensity-dependent change in the exciton ab-
sorption coefficient was measured around resonance in a series of MQW:s of dif-
ferent thickness, and the Kramers—Kronig relations were used to evaluate the
corresponding index change. Both the maximum index change and the bandgap
energy increase with decreasing well width were found. A very important fea-
ture of these results is that for a given MQW), the index change is sublinear in the
incident intensity; i.e., an effective n, is not a useful concept similar to the results
found in bulk semiconductors and discussed above. Enhancements of a factor of
~3 occur in the maximum refractive index change per excited electron in going
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Figure 49
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(a) Idealized absorption spectrum for bulk GaAs including the exciton. (b) Ide-
alized absorption spectrum of an AlGaAs—GaAs quantum well [102].

from bulk GaAs to relatively small GaAs MQWs [137]. Because the absorption
is different for each data point in Fig. 51, it is more useful (see Fig. 52) to discuss
the index change per electron raised from the valence to conduction bands. How-
ever, this calculation also shows about a factor of 3 maximum enhancement for
the MQWs. That is, the o, we used for describing bulk materials is enhanced.

Subsequent experiments on GaAs/AlAs quantum wells at frequencies around half
the bandgap also showed enhancements of a factor of 23 in n, [ 138]. In yet another
set of experiments, the nonlinearities of InGaAs/InAlGaAs quantum wells were
measured near their bandgap. The resonant excitation and saturation of the exciton
line in the 1.48—1.55 um spectral range gave a value of n, of 6 X 1071 cm?/W or

Figure 50
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Measured room temperature absorption spectrum of a 1 ym GaAs platelet and
of'a 50 period quantum well of comparable thickness. Note that the net thickness
of the quantum well sample is one half of the bulk sample [136].
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Figure 51
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1y o(max) ~1.5X 107° cm? W [137].

an index change of 6 X 107 for intensities in the 100 MW /cm? range [139]. How-
ever, unfortunately no comments were made on enhancements relative to bulk me-
dia [139]. Finally, large enhancements were reported for GaAs/AlGaAs quantum
wells measured with 532 nm radiation, although no indication is given of the bulk
values used for comparison at that wavelength [ 140]. The net conclusion is that mod-
est enhancements of a factor of 2—3 have been measured.

4.3b. Quantum Dofts

In fact, by reducing the size in all three dimensions, forming what is called a QD,
the material properties exhibit the largest changes relative to the bulk semicon-
ductor. The reason for this is that each atom in a bulk material sees its neighbors
as replicas of itself. Hence very few atoms are at the edge or interface surface of
the material, so that the material parameters or response of the material to an ex-
ternal stimulus is basically determined by the atoms in the bulk. Thus in bulk
media the surface atoms can almost always be neglected, even though their en-
vironment or bonding to their neighbors is very different.

Table 13. Measurements of Nonlinear Refraction Coefficient n, and Absorption
in Various MQWs

Material Npandgap (M) 1, (cm?/W) ayy, (cm/GW) \ (nm)
GaAs/AlGaAs [137] ~840-870 ~1.5%107° 6 816
GaAs/AlAs [138] ~740 55%X10713 4 1545
InGaAs/InAlGaAs [139] ~1600 6.0Xx10710 6.6 X 10* 1500
GaAs/AlGaAs [140] 6.5x1071 6.5X10° 532
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On the other hand, for a nanosize structure like a QD the situation is dramatically
different [102]. In this case all of the atoms are influenced by the fact that the
structure has a surface even though the nanostructure may be a cube of 100 at-
oms on a side or composed of a million atoms. The consequence of the effect of
the surface atoms and small volumes is that the energy level structure of the ma-
terial is dramatically changed. Since the optical properties of a material depend
intimately on its electronic structure, all of the material properties become de-
pendent on size. This result implies that the nonlinear optical coefficients at a
specific wavelength can be tuned by changing QD dimensions.

In many ways QDs made by MBE have features that resemble those of mol-
ecules such as discrete optical transitions. However, it is not at all obvious that
the change in behavior due to a decrease in size will in practice always enhance
nonlinear optical parameters as opposed to decreasing their nonlinear efficien-
cies.

The simplest approximation is to assume spherically symmetric crystallites and
a two-band model. (Assuming ellipsoids has had only a minor effect on theoret-
ical results [141,142]. For example, the conduction band wave function F,(F)
can be expressed in terms of the product of spherical Bessel functions of order €,
Jdl Bep(r/ry)], where ry is the crystallite radius and Sy, is its pth zero and spheri-
cal harmonics Y7(6, ¢), so that [131]

Fo(7) = B By (rlro) 1Y{ (6, ), (4.35)

where By, is a normalization constant. The valence band wave function F,(#) has
a similar form. Taking the zero of energy at the top of the valence band, the en-
ergy levels for the conduction electrons occur at
22
c fi B€p
= Egap T 5 , (4.36a)
m.ry
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with successive levels 1s (€=0, p=1), Ip (£€=1, p=1), etc. and for the valence
band

1B,

S
2myry

Ey = (4.36b)

The valence and conduction band energy levels are shown schematically in Fig.
53. Since pre, * [ F Fodr?, the selection rules are 8¢, 8,1, 8,5 s0 allowed tran-
sitions (in this model) can occur only between similar symmetry states in the valence
and conduction bands. In addition, there is a correction to the energies due to the in-
teraction between the hole and electron pair; so the resonance frequency for a tran-
sition is given by

W, #B, &
S — —b—, (4.37¢)

ha)g =F, +
PR 2mgd 2mat e

where b is a numerical factor equal to 1.8 for ps— ps transitions.

Note that a different notation is frequently used when electron spin and spin—
orbit coupling is included [131]. The valence band(s) arises from p orbitals,
which in the simplest case are sixfold degenerate (i.e., p,, p,, and p. with two
possible spin states each). Normally spin—orbit coupling lifts the degeneracy and
results in a fourfold degenerate pP5,, valence band level and a twofold degener-
ate pP,,, level. The complication arises because of the coupling between the
atomic angular momentum J and the angular momentum L associated with the
envelope functions. As explained in detail in [131], for the lowest energy levels,
even symmetry states involving €=0 and €=2 are denoted pS};), (in the valence
band and pS, in the conduction band) and the lowest odd symmetry energy levels
are pP;), for €=1 and €=3, etc. It is this notation that is frequently used to de-
scribe transitions in QDs.

Glasses doped with II-VI semiconductor crystallites: Semiconductor crystal-
lites doped into various glasses have been known for many decades as absorp-

Figure 53
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tion edge filters produced commercially by companies such as Schott and Corn-
ing. By varying the crystallite size down to nanometer dimensions, the
absorption edge can be tuned over >100 nm, a well-known feature of QDs in gen-
eral. Early degenerate four-wave mixing experiments near resonance by Jain and
Lind stimulated interest in the nonlinear optics community in these systems [143].
The most common semiconductor constituents have been the II-VI compounds
CdS, CdSe, and CdTe (reviewed in [131]).

A consensus on the nonlinear properties of these semiconductor doped glasses
has been slow to emerge in the literature because of the complexity of these sys-
tems. Much of the work has been summarized in the excellent review article by
Banfi ef al. [131]. Three mechanisms for exciting the semiconductor electrons
out of the valence band have been identified. First there is the usual absorption of
a photon to move an electron from the valence to conduction band as discussed
above. The narrow luminescence peak associated with this process has a relax-
ation (recombination) time of nanoseconds. Second, there are trapping states
due to bonds dangling from the glass or semiconductor or both at the interface
with the glass. This process leads to a broad fluorescence peak with relaxation
times of microseconds. The broad distribution is indicative of a broad spectrum
of trap states. Third, photodarkening of the glass, which depends on the inte-
grated optical flux, also occurs. This effect is believed to be due to the ejection of
electrons out of the semiconductor into the glass disordered matrix where they
are trapped. This darkening, which is strongly sample dependent, can be elimi-
nated by heating the sample [144]. The contributions of these processes to the
net nonlinearity can have different signs and different relaxation times, depend-
ing on the particular system under consideration. Furthermore, these processes
are coupled. For example, in a darkened sample the recombination time goes
from nanoseconds to picoseconds [145,146].

Whether quantum size effects are relevant depends on the ratio of the crystallite
radius 7 to the exciton Bohr radius ag, i.e., R=r,/ag. For example, ag is 3.2, 5.6
and 7.4 nm for CdS, CdSe, and CdTe respectively [131]. For R < ~3, significant
quantum size effects have been found to appear. See, for example, the complex ab-
sorption spectrum measured in CdSe-doped glasses shown in Fig. 54 [147]. Many
different transitions with widely differing transition strengths between localized
states are shown theoretically to contribute and their relative contribution depends
strongly on the crystal size.

The situation with respect to the nonlinear properties has been complicated by a
number of factors [131]. For example, there is always a distribution in the crys-
tallite sizes resulting from the fabrication methods used, which, given the strong
dependence of the electronic states and transition dipole moments between them
on size as illustrated in Fig. 54, tends to smooth out the optical response [131].
This affects primarily the resonant response. Unless specifically measured, the
average size of the crystallites and their density is estimated to at best an accu-
racy of £10%. Still another complicating factor is the fact that the crystallite com-
position, for example in CdSSe glasses, is not the same as that of the starting ma-
terial [148]. Furthermore, free-carrier absorption is an important contribution to
the effective 2PA when measured with picosecond and longer pulses, and the
two effects were infrequently separated from one another experimentally [131].
In summary, the detailed properties of the samples and their contributing physics
were in many cases not sufficiently well defined.

The resonant intensity-dependent index and absorption change was measured,
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Figure 54
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for example, in a CdSSe-doped glass with average crystallite size of 11 nm, at
the boundary between quantum confinement and bulk sample behavior [149]. The
experimental results for the index change are shown in Fig. 55 for a crystallite con-
centration of ~1073. The index change reported was ~ 107>, in reasonable agree-
ment with the values both predicted from the partly phenomenological semiconduc-
tor plasma theory based on bulk semiconductor parameters and by applying the
Kramers—Kronig relations to the observed absorption change [149].

Banfi and coworkers have carried out extensive measurements on the nonreso-
nant properties of [I-VI doped glasses, accompanied by complete characteriza-
tion of relevant sample properties [131]. The key definitive results summarized
in the excellent review paper by these authors are shown in Figs. 56-58 [131].
Both femtosecond and picoseconds pulses at different frequencies were used on
both bulk samples and a series of nanocrystallites with crystal radii varying over
4.8—14.0 nm for CdTe and 5.2—13.5 nm for CdS, 4Se,, ;. To within a factor of 2
(which is comparable with the overall experimental uncertainty), no significant
variation in Imag[ y®*](a,) versus crystallite size was found for all the cases and
wavelengths studied, and the values were essentially equal to the bulk sample value,
i.e., no enhancement was observed; see Fig. 56. Given that varying the crystal radius
varies the semiconductor bandgap, the authors also tested whether the nonresonant
nonlinearity of quantum confined samples followed the trends predicted for bulk
samples discussed in Subsection 4.2, specifically the functions F(w) and G(w) in
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Figure 55
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Absorptive changes and corresponding dispersive index changes. (a) Experi-
mental results: Aa=a(N=10"® cm3)—a(N=0). (b) Theoretical results, Aa
=ap(I=3 MW/cm?)—Aa(1=200 kW/cm?). (c) Measured dispersive index
changes, Angy, using single-beam interferometry [149].

Egs. (4.20) and (4.4). The results in Figs. 57 and 58 show agreement with the bulk
semiconductor results to within a factor of 2. The key conclusion from these detailed
studies is that quantum size effects have at most a factor of 2 effect on the nonreso-
nant nonlinearities for the values of R investigated!

Another approach rooted in chemistry is to form semiconductor crystallites in
colloidal suspensions via chemical reactions. Recently additional 2PA experi-
ments were reported on small II-VI crystallites made this way, also over a broad
range of frequencies [150]. The crystallite sizes for CdTe (r,=3.2,6.6 nm) and
CdSe (rp=1.9,2.1,2.2,2.4 nm) were smaller than those discussed above in the
doped glasses studied by Banfi e al. [131]. An example of these results is shown in
Fig. 59. Two cases were studied, the degenerate 2PA case, i.e., when two photons of
the same frequency were absorbed, and the nondegenerate case, when the input pho-
tons had different frequencies. Note the oscillatory behavior observed in «,, which
is now evident for these smaller crystallites, versus frequency due to quantum con-
finement. It was found that including band mixing in the theory gave a significant
improvement to their agreement between theory and experiment, although the
agreement was less satisfactory for the smallest crystallites, probably because the ef-
fects of the split-off band were not included in the Kane 4-p theory. The experimen-
tal results showed that the volume fraction normalized 2PA cross section actu-
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Figure 56
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of 1.2 um (@), 1.4 um (*) and 1.58 um (&) for CdTe and at 0.79 um (+) for
CdS; ySe,, ; nanocrystals and bulk CdS [131].

ally decreased with decreasing crystallite radius for R=r,/ag < 1. This decrease
is small and agrees with the expectation for the small reduction in density of
available states as the dot size decreases. It would be expected that these results
would be applicable to other hosts and is consistent with the results of Banfi et
al. for glasses [131].

Unfortunately, the anticipated enhancements of optical nonlinearities were not

Figure 57
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Plot of the scaled quantity (w/ wy)*Im(x'>) for bulk CdS and CdTe crystals as well
as CdTe and CdS,¢Se, | nanocrystals with the radii shown in Fig. 56. The solid
curve is a fit to Eq. (4.20) [131].
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realized for glasses doped with I[I-VI semiconductors. Furthermore, these doped
glasses were found to be unsuitable for a range of nonlinear integrated optics ap-
plications involving all-optical switching devices because of the semiconductor
properties of the I[I-VIs involved. Namely, these bulk materials have a large ef-
fective electron mass, which produces an unfavorable trade-off between index
change and absorption and the index change saturates at a small value [151,152].

There has been limited work performed on QDs in other materials systems: the
results are summarized in Table 14 In a study of III-V semiconductors using
pump—probe Z-scan studies of GaAs nanocrystals grown in porous glass, the
nonlinear coefficient reported is 1.3 X 107! ¢cm?/W. The bound electronic non-
linear refraction in the quantum confined sample was found to be enhanced by a fac-
tor of 30 relative to that of the bulk crystal [132]. This is the only example of large
enhancements reported in GaAs nanocrystals.

The other QD system in Table 14 involves a complicated sample structure. The
Mn:ZnSe samples consist of a MnSe core, Zn,_ Mn,Se diffusion region, and an
outer ZnSe layer. The authors found the nonlinearity to decrease with decreasing QD
diameter.

It would appear that the variation in results from different experiments indicates
that more careful experiments are needed.

Prospects for GaAs QDs: However, based on the enhancement obtained from
the previously discussed MQW work, it is possible that the GaAs system could
yield still better results for QDs. On the other hand, based on the 1I-VI QDs just
discussed, predicting enhancements can be a dangerous business. Controlled
growth of 0D QDs in the GaAs system has only been achieved in the past decade
or so; so there are expectations for new nonlinear optics measurements to test the
enhancement hypothesis in this technologically important material system.

The Stranski—Krastanov (SK) MBE growth mode is the preferred method for

Figure 58
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Figure 59
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Degenerate and nondegenerate 2PA spectra for two CdTe doped glasses with
crystallite radii of 6.6 nm (CdTe-750) and 3.2 nm (CdTe-600) and for two CdSe
doped glasses with crystallite radii of 2.4 nm (CdSe-590) and 2.1 nm (CdSe-600)
[150].

growing GaAs QDs and capping them with higher bandgap material [154,155].
For this growth mode the deposited material has a slightly larger lattice constant
than the substrate. For example, in this approach a material such as InAs is de-
posited on a substrate like GaAs or AlAs. InAs has a lattice constant that is about
7% larger than that of GaAs or AlAs; so the small lattice mismatch introduces
strain. During SK growth, the first few layers of InAs, typically 1.6 monolayers,
forms a pseudomorphic 2D layer, called the “wetting layer” [Fig. 60(a)]. After
this critical thickness, however, 2D growth is no longer energetically favorable,
and the energy reduction in strain more than compensates for the increase in sur-
face energy as the 2D islands organize or self-assemble [156] into 3D islands
[Fig. 60(b)].

Under typical growth conditions the buried QDs are observed to be well aligned
but significantly nonuniform in size, shape, and position [157-159]. As shown in
Fig. 61 the QD structures are composed of different shapes. While there has
been significant progress in improving the homogeneity of both morphology and
positioning of QDs, achieving control to better than 10% remains a considerable

Table 14. Nonlinearities Reported in Various QD Systems

A
Material n, anL (nm)
Mn:ZnSe [153] 1.4X 1074 cm?/W 8.4 cm/GW 800
GaAs in porous vicor glass [132] 1.3x 107" ecm?/W 80 cm/GW 1064
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Figure 60
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challenge. For the SK growth, typical densities are 10'°-10'2 cm2, although
much smaller densities are possible with care [160]. Meanwhile typical SK QD di-
ameters [161] are from 10 to 30 nm. Depending on the growth conditions, as shown
in Fig. 62, QDs can grow randomly spaced or in regular rows. Such regularity raises
the possibility of a cooperative QD response.

Figure 61

{136} {133} {011} nonfaceted

Scanning tunneling microscope image of the structure for two different QD
shapes observed.
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Figure 62

(a) One layer of QDs that are randomly distributed; (b) several layers of QDs that
are influenced by the vertical stacking to form a vertical and lateral alignment
that results in a large lateral separation between QDs.

A very different approach to producing GaAs QDs is based on colloidal growth
[162—-165]. Colloidal QDs are synthesized in a beaker from precursor com-
pounds dissolved in solution. The synthesis is based on a three-component sys-
tem composed of precursors, organic surfactants, and solvents. When the solu-
tion is heated to a sufficiently high temperature, the precursors chemically
transform into monomers. Once the concentration of monomers reaches a super-
saturated solution the nanocrystal self-assembled growth begins and is stabi-
lized by a layer of surfactants attached to their surface. The typical size of a col-
loidal QD is smaller than their MBE counterpart and is about 2—8 nm in
diameter. The smaller size therefore results in high densities of about 10'4 cm 2. The
application of colloidal QDs to the broad field of nonlinear optics may be larger than
the possibilities for MBE nanostructures because of their significantly lower fabri-
cation cost. However, even colloidal QDs suffer from poor uniformity of size with an
inhomogeneity that is typically also of the order of 10%.

4.3c. Summary for Quantum Confinement Structures

For both quantum wells and QDs it is clear that the expectation of a dramatically
large enhancement in the nonlinear optical coefficients has not been clearly and
consistently demonstrated, and one can ask why? Basically the reason is that es-
timates of the potential enhancement are complicated and that all of the experi-
mental conditions, material preparation factors, and competing physics are dif-
ficult to control.

A brief summary of the more important issues is given next. For example, we
might expect the enhancement due to confinement to first increase with decreas-
ing size owing to the increase in the overlap of the wave functions, but at some
point we might expect a decrease with decreasing size as the overlap weakens as
the lowest energy state moves near the top of the well. Furthermore, the com-
parison between low-dimensional and bulk material is again difficult because of
linewidth and fill factor issues that can significantly lower the effective enhance-
ment. Another issue of importance is that low-dimensional structures have a
high density of surface states that are localized at the interface between the semi-
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conductor’s well and barrier. That the optical excitation to these states is stronger
than in the bulk and second-harmonic generation at an interface is one good ex-
ample. Obviously, the nonlinear behavior of low-dimensional structures could
have significantly larger interface issues. Yet another possibility for an observed
enhanced nonlinear behavior could be the differences in the nonradiative life-
time. The discrete nature of the energy levels in a low-dimensional structure pre-
sents the potential of a longer nonradiative lifetime, a larger excited state popu-
lation, and a narrower spectral linewidth. On the other hand, surface and
interface states can have the opposite effect, shortening the nonradiative life-
time, and must also be considered.

All of these issues, and most likely some that we did not recognize, play a role in
the nonlinear interaction between light and low-dimensional structures. Many of
the early investigations of the enhancement due to confinement have not yet paid
careful attention to many of these issues. In many ways, the question of nonlin-
ear optical effects in confined structures begs for more comparison between
theory and carefully designed experiments in order to single out different issues
and develop a clear understanding of the effects of decreasing the dimensions of
nonlinear optical materials in order to take advantage and optimize the potential
enhancement and therefore engineer more efficient nonlinear optical materials.

5. Nuclear (Vibrational) Contributions to n,

When light couples via electric dipole interaction to other (than electronic) nor-
mal modes in matter, there is an intensity-dependent change in the refractive in-
dex [166]. Coupling to vibrational modes that modulate the molecular polariz-
ability can give rise to significant contributions via n, ,,,. (10%-20% in glasses).
The formulation given below is for the cw case, normally valid for pulse widths
greater than 1—10 ps and has as its starting point a single vibrating molecule.

It is well known that an isolated molecule containing N atoms can typically have
3N—6 vibrational degrees of freedom. Some are dipole active, i.e., they modu-
late the permanent dipole moment, and others are Raman active, i.e., they modu-
late the molecule’s polarizability [167]. Dipole active modes are observed in the
linear absorption spectrum, whereas Raman active modes participate in nonlin-
ear optical interactions such as Raman scattering and stimulated Raman scatter-
ing. In condensed matter these rules can be broken, and weak Raman active
modes can appear in the linear absorption spectrum and vice versa.

Since this effect is rarely found in textbooks, we give a more detailed discussion
than in previous sections. The polarizability for a molecule can be written as
[167,168]

adfm n

di’m: dém—i_Eq_f (51)
B

‘?qr[j énﬁ=0

The key material parameter is the nonlinear polarizability tensor dab  /dg,
which characterizes the coupling between the light and the Raman active vibra-
tional modes. In Eq. (5.1), the summation over 3 is taken over all of the Raman
active vibrational modes, which have a vibrational amplitude ¢'#). For a single
cw incident field E,(7, ) of frequency w, a nonlinear polarization parallel to the
incident field [for 7y ,,.(—@; w)] is induced in the molecule of the form
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which includes the local field correction #). The potential energy associated
with this interaction is given by

. o daf,
Vintoc_fpf dEg=—52B4qn

= | FUPEE. (5.3)
9 | 8-

From classical mechanics, there is an all-optical force F# that induces the vibra-
tion in the Bth mode (approximated as a simple harmonic oscillator) in the molecule
given by

F’G_—iV _l e
n_ &qﬁ int_2 5_5

n

, [FOPEE=mmglq?+T 548+ Q3gP1,
-0

(5.4)

where 714 is the effective mass associated with the vibration and I;;;I is the opti-
cal phonon lifetime [168]. Note that the field product contains frequencies at 2w

and 0, which drive the vibrations at =0 and ()=2w. Here Q p 18 the normal
mode (natural) vibration frequency versus (), which is the frequency at which q‘f
is driven by the mixing of the optical fields. The response due to 2w clearly de-
pends on the wavelength of the incident light. In the subsequent discussion we
focus on the dc term, although the harmonic term will progressively contribute
more to the process as the light frequency is decreased toward the vibrational
frequency. Substituting the solution to Eq. (5.4) into (5.2) gives, in the mol-
ecule’s frame of reference,

- 1 a&ffn ? (i
M EN=2 - -3 P @)PE(w)e™ ™ + c.c.
B 87’171139% o, qnﬁzo

(5.5)

Inserting into the slowly varying phase and amplitude approximation gives

N oak,,

2
[FV* (5.6)

- w0) =S —————| =
B dny(w)mgegeldy aq, =0
Similar considerations give

2

P

&d\émn

nZJ_,nuc(_ w;w) = 2 5 5 -B
B dny(w)n,,(w)egmgedy o, -0

(5.7)

Most of the interest in n, ;. has been for glasses that have small Kerr nonlineari-
ties, especially in the case of fused silica. The principal problem in evaluating n, ;.
has been the lack of information about the molecular Raman polarizability tensor
and the fact that disorder etc. in the glassy state leads to continuous rather than dis-
crete Raman spectra. There is, however, a wealth of Raman scattering spectra that
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arise from thermally excited vibrations in a medium. For a single molecule, the

x-polarized Raman spectrum in the limit ky 7>> %) g (typically room temperature)
is given by

Ii(wy) s w;‘ 36—“?&1 ? kgT
AQU(w,) "5 8c*(4m)’e; gy | [ i
T2 T2
X p + £ . (5.8

(0~ w,+ QB)Z + l:é (0,— w,— (_)B)2 + l:é

which contains the same Raman tensor as 7, . [168]. Here A€} is the standard
notation for the solid angle subtended at the detector in spontaneous Raman scatter-
ing and is not related to the sound wave frequency.

The glass disorder can be described by a distribution of phonon frequencies
O B—Q o). Comparing the single-molecule Raman spectra (and Raman gain)
data with the Raman spectra of the glasses shows that for the spectral width AQ B
of f((_l ﬁ*(_l o) With the approximation AQ > r s> the Lorenzian functions can

be written as 5(ws—wpiﬂ p)- Integrating over the distribution AQ ﬁ—ﬂ o) and
eliminating the Raman polarizability gives

[ Hapdta- )

c@m? J,

() o'k T AQ(w)

(5.9)

n2\|,nuc(_ w; w) =

In this equation [/ (w,)d(w,— w,) is the absolute value of the integrated spon-
taneous Raman spectrum for the Stokes side over the solid angle A}, a relatively
easy measurement.

The OKE technique referred to in Table 15 consists of the excitation of a total
index change with an intense femtosecond pulse and then use of a second fem-
tosecond pulse to probe the index change [169,171]. A typical result is shown in
Fig. 63(a). The ringing corresponds to the vibrational response when the ul-
trashort pulse of duration Az excites the vibration as a 6-function impulse, i.c.,
AtQ ;< 1. Detailed modeling shows that after about ~10 ps the measured 7, o
:n2,/Kerr+n2,nuc; See Flg 63(b) [83]

Data also exist for n, ;. in media other than glasses. The noninstantaneous re-
sponse of liquid CS, has been measured by a number of authors (for example
[83,172]). Careful analysis of experimental data led to the following results mea-

Table 15. Fractional Contribution Measured of n, ., to the total n, for a Few

Glasses
Glass Wavelength (nm)  Nuclear Fraction (%) Method
Fused silica (Si0,) [166] Visible ~15-18 Raman
87% GeS,-13% Ga,S; [169] 825 13+£5 35 fs OKE
64%PbO-14%Bi,05-7%B,053-15%Si0, [169] 825 1245 35 fs OKE
0%—50% GeO, in GeO,-SiO, [170] 800 13-18 18 fs SRTBC
20%Nb,05-80% TeO, [171] 800 20 100 fs OKE

“SRTBC-spectrally resolved two beam coupling.
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Figure 63
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(a) Time-resolved (function of probe delay) closed aperture Z scan at fixed z with
~35 fs pulses of a Ge—Ga-—S glass. The relative change in transmittance 67/ T of the
probe beam was recorded. Filled circles, experimental data; solid curve, nuclear
contribution calculated from the Raman spectra; dotted curve, electronic contribu-
tion. The total experimental signal is shown in the inset [169]. (b) Calculated contri-
bution of 7, . in fused silica versus pulse width [83].

sured with 100 fs pulses [83]: contributions of electronic 7,, 19%, sub-pulse-width
response; vibrational 64%, decay time ~170 fs; and rotational 17%, decay time
880 fs. We discuss the rotational contribution, 7, ., in Section 6.

6. Molecules with Anisotropic Polarizabilities

Changes in the orientation of molecules due to applied fields provide an impor-
tant contribution to the intensity-dependent refractive index in states of matter in
which reorientation of anisotropic molecules can occur. The required anisotropy
is in the linear molecular polarizability, and the states of matter composed of
such molecules are liquids and liquid crystals [173].

There are two principal mechanisms. An incident field induces anisotropic di-
poles in molecules, and the interaction between these individual dipoles and the
applied field leads to a torque by which the molecules tend to reorient parallel to
the incident field direction. Some net molecular realignment of the molecule’s
largest polarizability axis results in a net increase in the bulk refractive index
parallel to the applied field and a decrease in the direction orthogonal to it. In
liquid crystals, this reorientation is a collective phenomenon. Finite temperature,
which tends to homogenize the alignment because of thermal fluctuations in the
orientation, limits the net alignment. The characteristic response times are the
reorientation times allowed by the viscosity.

The second mechanism is limited to liquid crystals. There are strong intermo-
lecular forces that lead to net molecular alignment over microscopic, mesos-
copic, and/or macroscopic volumes. These aligned regions can be realigned by
applied fields, as described above, but usually very slowly relative to the single-
molecule case. More important is the absorption of the incident light, which re-
sults in increasing liquid crystal temperature and a weakening of the intermo-
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lecular forces relative to thermal fluctuations. Decreasing alignment leads to
progressively more spatially uniform refractive index and large index changes
with temperature.

6.1. Single-Molecule Reorientation of Anisotropic Molecules

Analysis of molecules with 3D molecular anisotropy involves Euler angles and
straightforward but cumbersome mathematics. Instead of discussing the most
general case, we illustrate this with the simpler case of a linear molecule such as
CS, with symmetry in the polarizability orthogonal to the linear axis [2]. The ge-
ometry of interest is illustrated in Fig. 64(a). The incident field in the laboratory
frame of reference is assumed to lie along the x axis,

E(t) = é Ey(w)cos(k - 7— wt),

and the polarizability tensor in the molecule’s frame of reference is given by

- a,010
a=0|a|0
010 |a

with o> «, . The local field at the molecule is given by

Eloc =[é;zcos 6, — ¢;sin 6, cos ¢, + é:sin 6, sin &1 VEy(w)cos(wr),

- g (w)+2

D _- -
A T (6.1)

and the dipole moment induced in the ath molecule is given by

Figure 64
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frame of
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dg“{\/f\\ EG,0)
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(a) Orientation coordinates of a liquid CS, molecule when an optical field is
along the x axis in the laboratory frame of reference (x,y,z). The molecular
frame of reference is defined by (x,7,2). (b) Solid-angle element with circular
Ssymmetry.
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PulFit) = & B =[é:d3) cos 6, — é;it, sin 6, cos b, + é=a, sin 0, sin ¢,]
X[fVPE (w)cos(wt). (6.2)

The polarization P, induced along the laboratory frame’s x axis is given by

P, =N, p)=Na, +(&—a,)cos’ ) "TPEy(w), (6.3)

in which () denotes the average over all possible molecular orientations, i.e.,
over 6,. Because of the molecular symmetry, the average is taken over rings with
effective area elements sin 6, d6, (i.e., —d cos 6,), see Fig. 64(b). The probability
Pr(6,) of finding a molecular axis («;) in a cone at angle 6, to the x axis (field di-
rection), with a cone width —d cos 6, is

Ordering potential energy

Pr(6,) > dcos 6, X exp— : :
Disordering energy

normalized to [¢ Pr(6,)=1. The ordering is due to the potential energy of the in-
duced electric dipole in the applied field,

1 R 1 -
Vine=— Eﬁa “Eipe=— E[dn cos’ 0, ta, sin® Ha][fglr)]zE(z)(w)COSZ(wf),

(6.4)

where cos?(wt) is the time average of cos?(wt), i.e., % The disorder is due to thermal
fluctuations of energy k7. Thus

- 2 _ _ 2 2
a E (o) (a”—aL)cos 6 E (w)

L (1,2
exp) | — + [/ ] (dcos @,
4k, T 4k, T
Pr(6)= ,
“ _ 2 . 2 2
0 @ E(w) (a—a )cos 6E () ()2
f exp) | — + [f ] (dcos@,
1
4k, T 4k, T
(6.5)
and therefore
0 (@~ a,)cos’ 6,
cos’ 6, exp [fVTPEX(w) |d cos 6,
1 4kgT
(cos® ,) = — 5
J, ((a" ] >)" ’
ex w) |d cos 6,
P 4k T 0
(6.6)

Assuming that the net reorientation is small and therefore that quantities of the
form e* can be expanded as 1+x, after some algebra

P.=N =f<1)+w[f(l)]z[f(l)]z Eo(w) (6.7)
A 45k T 0L '

in which « is the isotropic polarizability due to completely randomly oriented
molecules before a strong optical field is turned on. The nonlinear contribution
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can now be written as an effective intensity-dependent refractive index coeffi-
cient n, ,, as

N (q-
nis(z)c 45kgT

[[f<”]2“>]“ (6.8)

nZH,or(_ W, (,!)) =

It is easy to calculate the effect of the strong field on the index with polarization
along y and z axes,

s ol ) e GO “) [0 (6.9)
' ni (Z)c 90k T

Note that in principle all of the molecules can be aligned by a sufficiently strong
optical field; see Fig. 65. In practice, other phenomena such as damage and ion-
ization limit the effect to small net angle changes. For the 3D case where a,,
# @, F A,

N [[f(l)]Z(l)]4 . . o o o
nleje  45kgT ot @yt ] - [ana t ana, + @ a).

nZII,or(_ w;w) =

(6.10)

The turn-on and turn-off times of this effective nonlinearity depend strongly on
the local viscosity and the temperature. The simplest equation that describes the
time dynamics is

AY d 1
Ao+ — = torque =T Vint = _[dll - C1’J.j|<51n(2 0a)>|Eloc(w:t)|2
) (90 4

with 7,=Cn/kgTand viscosity 7; the numerical factor C depends on the details
of the molecular shape. The classic example is liquid carbon disulfide, the case
just discussed theoretically. Here there are many contributions [83,172]. Decay
times ranging from 900 fs to a few picoseconds have been reported (for example,
[83,172,174]). The magnitude was ny g, =n,,=1-5X10"" cm?/W for this
case. Typically, the larger the molecule, the longer the decay time; for example,
~30 ps was measured for nitrobenzene [174].

6.2. Liquid Crystals

The nonlinear optics of liquid crystals is in some ways closely related to the pre-
vious case. Strong intermolecular forces between liquid molecules in the liquid

Figure 65
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Variation with input light intensity of the refractive index parallel (n;) and per-
pendicular (7 ) to the applied field.
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Figure 66

Nematic Cholesteric Smectic
Examples of molecules and their alignment in nematic, cholosteric, and smectic
liquid crystals [173].

state can lead to a unique form of matter in which molecular clusters exist,
aligned along a direction in space (the “director”). It is this alignment that leads
to the name liquid “crystal.” There are many families of liquid crystals; see Fig.
66 [173]. Most of the molecules can be considered to have ellipsoidal shapes as
shown in Fig. 67(a). The structure of one of the most commonly used and exten-
sively studied molecules, SCB, is shown in Fig. 67(b). Examples of R and R’ are
C,H,,+1, C,H,,:10, and nitro and cyano (e.g., 5CB) groups. A single molecular
structure can take on different liquid crystal ordering as temperature or the side
groups are changed. For example, nCB is not a liquid crystal for n =4, and it is
nematic for n=>5-7 and then smectic for larger n. Although some molecules may
exhibit a permanent dipole moment, the net alignment in the liquid state aver-
ages the dipole moment to zero over optical wavelengths. Note that the align-
ment is not perfect and is described by a scalar order parameter S
=0.5[(3 cos? 6—1]), where @1is the angle between the molecular long axis (typically
along «), and the average over all molecules of the direction of «, 7, is called the
“director.”

We focus on nematic liquid crystals in which the preponderance of experiments
in nonlinear optics have been performed and in which there are multiple mecha-

F

(@)

Side Group R— Terminal Group R’

— Linkage Group X

DT AT e

Cghlyy
(a) Schematic of a typical liquid crystal molecule. (b) The chemical structure of
a 5CB liquid crystal molecule [173].

Advances in Optics and Photonics 2, 60-200 (2010) doi:10.1364/A0P.2.000060 142



nisms that give rise to n, [173]. In bulk form these materials, when oriented, ex-
hibit a uniaxial refractive index distribution if the molecules have approximate
or exact cylindrical symmetry. At properly prepared single boundaries, or be-
tween two plates with prepared surfaces, it is possible to anchor the orientation
of the molecules for some distance away from the boundary. There are two pos-
sible directions for 7, parallel to (planar) or orthogonal to (homeotropic) to the
boundary, shown in Fig. 68. For all intents and purposes, these aligned nematic
cells behave as uniaxial crystals characterized by refractive indices n,=(g))"?
and n,=(g,)"?, i.e., with a birefringence An=n,—n . As the temperature is
raised, a second-order phase transition to an isotropic liquid occurs, and order is
lost. In the transition region, the correlation distance over which orientational or-
der exists decreases, resulting in a decreasing order parameter, and the birefrin-
gence approaches vanishing value.

As in all other molecular systems, a laser will induce in nematic liquid crystals
changes in the populations of the electronic energy states, resulting in nonlinear
polarizations of various orders. These so-called electronic nonlinearities of lig-
uid crystals are typical of organic molecules. Except for some effects associated
with the ordered arrangement of the molecules, the magnitudes of the refractive
index coefficients n, are the same order of magnitude as other organic molecules
discussed above. On the other hand, laser-induced density, temperature, order
parameter, and director axis orientation in nematic liquid crystals are respon-
sible for some of the largest optical nonlinearities discovered to date.

6.2a. Orientational Optical Nonlinearities of Nematic Liquid
Crystals

Isotropic phase: Just above the nematic-isotropic transition temperature 7y,
short-range molecular correlation still persists, and laser-induced orientation of
these highly polarizable molecules exhibits critical pretransitional behavior. These
critical phenomena are described by the Landau—deGennes theory of second-order
phase transition [175]. The free energy per unit volume is of the form

1 1
F=F,+ EAQiiji - ZXijEjEja (6.11a)

Figure 68
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Two nematic liquid crystal molecular alignments obtained between two glass

plates with different surface treatments [173].
|
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A=a(T-T), (6.11b)

where Q;; is a general-order parameter tensor a and 7* (~ T, nematic-isotropic
phase transition temperature) are constants, and £ denotes the applied optical field.
For an x-polarized laser, for example, the total optically induced polarization P,
consists of a linear and a nonlinear term:

2
P.= (80)2-1- SogA)(Q)Ex=P£+P§[L. (6.12)

P)LC =goXE is the linear polarization, y is the linear susceptibility, and the nonlin-
ear polarization is given by

2
P§L=§80AxQE. (6.13)

From Egs. (6.11), the dynamical equation for Q;; becomes

77?+AQijzfij (6.14)
| o
fz:/:gAX E,-E,/—EIEI 8y |- (6.15)

Here 7 is the viscosity coefficient in the isotropic phase.

The solution for Q;; is

Q1) = f_t [f’j (7: )e“")”] dr', (6.16a)
r:Z: ﬁ (6.16b)
a(T—

Here 7 is the relaxation time constant associated with the viscosity.

For a linearly polarized (i=/) square pulse of duration 7, f;=f;=1/9A XE?, we
have

0= TAXEX(1 = e 7)/97. (6.17)

From Egs. (6.16a) and (6.16b), note that as the temperature approaches
T*(~T.), both the response time and the optical nonlinearity (which is propor-
tional to Q) diverge as (7— T *)~!, as reported in previous studies of the optically
induced Kerr effect and optical wavefront conjugation [176,177]. Typical mag-
nitudes of y® for orientational optical nonlinearities in the isotropic phase are of
the order of 107!% esu at temperatures far from Ty;, and ~ 107" esu within a few
degrees of Ty

Nematic phase—purely optically induced director axis reorientation nonlineari-
ties: In the nematic phase, the free energies associated with splay, twist, and
bend deformations in a nematic liquid crystal (shown in Fig. 69) are of the forms
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1

splay, f,= EKI(V ‘R (6.18a)
1

twist, f,= EKz(ﬁ -V X )% (6.18b)
1

bend, f3= 5K3(ﬁ XV X i) (6.18¢)

The optical dipole-field interaction is given by

1 g Ag{(7 - E)?)
Fp=—— | D-dE=——F~——"

0 6.19
P 41 8 8 ( )

The angle brackets denote a time average. Field-induced reorientation of the di-
rector axis arises as a result of the total system’s tendency to assume a new con-
figuration with a new minimum in the free energy. For such processes, the first
term on the RHS of Eq. (6.19) is not involved, whereas the second term shows
that the director axis will align with the optical field polarization as, in general,
the optical dielectric anisotropy Ae for nematic liquid crystals is greater than
Zero.

Consider the interaction geometry depicted in Fig. 70. A linearly polarized laser
in the form of a plane wave is obliquely incident on a homeotropically aligned
nematic liquid crystal with the propagation wave vector K making an angle (3
+6) with the director axis. If the reorientation angle 6 is small, then only one
elastic constant K, (for splay distortion) is involved. A minimization of the total
free energy of the system yields a torque balance equation:

9 Ae(E)
—+
dz*

K, sin 2(B+ 6) = 0. (6.20)

In the small # approximation, this becomes
d*o
2g2;+(2 cos2B3)0+sin2B=0, (6.21)
Z

where &€=47K, /[A8<E20p>].

Figure 69

. (@) (b) ©
equilibrium Splay Twist Bend

(a) Splay, (b) twist, and (c) bend distortions that occur in liquid crystals [173].
|
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Figure 70

Laser

—

s

Nematic liquid crystal

Geometry for the interaction of a linearly polarized (extraordinary ray) laser
beam with a homeotropically aligned nematic liquid crystal film. 77, and 7 are the
directors before and after the application of the optical field [173].

Using the so-called hard-boundary condition, i.e., (6=0 at z=0 and at z=d), the
solution of Eq. (6.21) is

1
g 2
) e sin 28(dz — 22). (6.22)

As a result of this reorientation, the incident laser (an extraordinary wave) expe-
riences a z-dependent refractive index change given by

An(z) =n(B+ 0) = n.(B), (6.23)
where n,(B+ 0) is the extraordinary ray index given by

mn

[nﬁ cos’(B+ 0) + nzL sin?(B+ 6)]"*

n B+ 6= (6.24)

For small 6, the change in the local refractive index An(z) is of the from An(z)

=n,.(2)] where /= %soncEf)p and a,(z) (defined here as the local nonlinearity, not
the 2PA coefficient) is given by

(Ag)?sin*(2B) 5
ay(z) = T(dz —z°). (6.25)

For the oblique incidence geometry, the interaction length is d/cos 6, and thus
the equivalent refractive index coefficient 7, . obtained by integrating and averaging
the local value «,(z) over the interaction length is given by

[Ae sin(2B)d]?

- 24K ¢ cos*(B) (6.26)

n2,lc
Using typical values of d=100 um, Ae ~ 0.6, K;,=10"° dyne, 3=45°, and noting
that in cgs units a factor of 4 X 107 needs to be accounted for in converting

ergs/(s cm?) and W/cm? to the unit for the intensity 7, we have
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e~ 8 X 1072 cm*/W. (6.27)

For more general cases in which splay, twist, and bend distortions are all in-
cluded, the laser-induced director axis reorientation is described by an equation
of the form

2 2
(K, sin® " + K; cos® 6'")d—0— (K5 —K;)sin 6" cos 6"’<d—0)
1 3 de 3 1

dz
Ae
+ F[sin 20'(|E)>— |E,J) +cos 26"(E,E. + E'E,)]=0. (6.28)
aa

In the case of an input laser beam of finite beam size, mutual torques exerted by
molecules situated within and outside the laser beam will also be involved, giv-
ing rise to extra terms that depend on radial derivatives of €, d6/dr; the resulting
reorientation profile is a nonlocal function with respect to the applied field
[178,179]. Such nonlocal nonlinearities are particularly important in nonlinear opti-
cal processes involving the focused laser beam’s transverse intensity dependence,
such as self-focusing, defocusing and soliton formation [180—183].

The dynamics of molecular reorientation by an optical field is described by bal-
ancing the optical molecular and the viscous torques. For the interaction geom-
etry given in Fig. 70, the resulting equation is of the form

90 P60 As(EL)
—=K— +
Ya a2

sin(28+26). (6.29)

If E(Z)p is a plane wave, and for the usual case of < 1, we may write 6(¢,z)
=6(1)sin(mz/d), and Eq. (6.29) yields

. K7 AE)) Ae(EL)
O=——>0+ sin2B+ 6 cos 28, (6.30a)
yd 8y 47
or
. 1
0=——0+a+bo. (6.30b)
Tr

Here a= As(Eip>sin(2 B)/ 8wy, b=A8<E§p)sin(2 B) /4y, and 7, is the relaxation
time constant for reorientation of the director axis:

7,= yd* /K 7. (6.30c)

Again, for a typical cell with cell thickness d~10 um, y=0.1 P, and K,
=107 dyne, 7.~ 10 ms. It is important to note here that the relaxation time constant
in a highly correlated molecular system such as a nematic liquid crystal is strongly
dependent on the interaction geometry as well as the intensity distribution of the in-
cident light. In a two-wave mixing geometry involving a sinusoidal optical intensity
grating, for example, the mutual torques exerted by molecules situated in the optical
intensity maxima and minima will give rise to a dependence on the grating constant
as well as the cell thickness. The corresponding relaxation time constant becomes
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(6.31)

where A=21r/q is the grating constant.

Using a thinner cell with less viscous liquid crystals, the response time can be
reduced further to ~ 1 ms; i.e., the upper limit to the useful optical modulation rate
is ~1 KHz. In recent years, with the development of nematic liquid crystals with
low viscosity and high birefringence, tens of kilohertz modulation rates can be
achieved, making nematic liquid crystals candidate materials for image processing
and display applications.

Although the relaxation dynamics is in the millisecond regime, the switching
onset dynamics can be much faster, since the laser-induced reorientation process
is governed mainly by the intensity, in the limit where the optical torque exerted
by an intense laser on the director axis is much larger than the elastic torque, i.e.,

AE2) 70
sin(28+26)> | K,— |- (6.32)
8 dz
Equations (6.30) then become
) a
0=a+bf— 0(:)=Z(ebf—1). (6.33)

Note that if the laser intensity is sufficiently large such thata7,= AeE gp 7,/ Y, itis
possible to induce a significant reorientation 6(7,) in a time as short as nanoseconds.
Such an ultrafast response of the director axis deformation in nematic as well as
smectic liquid crystals has been demonstrated in early studies by Khoo and co-
workers, using nanosecond laser pulses, and by Eichler and others, using picosecond

lasers [184-186].

6.2b. Giant Orientational Optical Nonlinearities in Doped Nematic
Liquid Crystals

By introducing photosensitive dye or molecular dopants to mediate, facilitate,
and enhance the reorientation process, studies have demonstrated that the optical
nonlinearities 7, ;. can be made even orders of magnitude larger, ranging from 107
to 10> cm?/W [187-193].

One of the mechanisms is mediated by the photoexcited dye molecular dopants.
The excited dye molecules exert intermolecular torques 7, ~ 4 7, on the liquid
crystal molecules that could be stronger than the optical torque 7, i.¢., 4 can be as
large as 100 or more, and it can be positive or negative. In Methyl-Red-doped nem-
atic liquid crystals, 7, ;. can be much larger than 1 cm?/W [187,188]. Studies of
Methyl-Red-doped nematic liquid crystals also show that the nonlinearities can be
modulated by an applied ac electric field by changing the frequency; a low-
frequency (e.g., 300 Hz) ac field will enhance the reorientation nonlinearity,
whereas a high-frequency (30 kHz) ac field will quench the reorientation and turn
off the optical nonlinearity, pointing to the possibility of dual-frequency switching—
modulation applications [194,195].
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In some nematic liquid crystals doped with azo compounds, for example
azobenzenes, studies have shown that the trans-cis configuration changes in the
excited azo-dopant are also an effective mechanism for creating large optical
nonlinearities [196—198]. In these materials, the ground state azo dye molecules
are in the trans configuration that is oblong in shape, and they conform to the
alignment of the director axis. When photoexcited to the bent cis configuration,
they disturb the nematic axis alignment and cause disorder, i.e., induce a nega-
tive change in the order parameter (—AS), resulting in a change in the birefrin-
gence; cf. Fig. 71. Such trans-cis isomerization can happen quite rapidly (in
nanoseconds), and so the resulting index birefringence changes can be effected
very rapidly.

6.2c. Field-Assisted Photorefractivity in Nematic Liquid Crystals

Another mechanism that gives rise to extraordinarily large optical nonlinearities
in nematic liquid crystal is photorefractivity [199-201]. Under the combined ac-
tion of an optical and a dc bias field, the process of photocharge production and
creation of space-charge fields that result in a refractive index change is analo-
gous to the photorefractive (PR) effect occurring in electro-optically active poly-
mers and inorganic crystals as discussed in Section 7, but with an important dif-
ference. In inorganic photorefractive crystals, such as BaTiOj, the induced index
change An is linearly related to the total electric field E—the so-called Pockels
cell effect. On the other hand, nematic liquid crystals possess centrosymmetry
(+7 is equivalent to —#), and the field-induced refractive-index change is qua-
dratic in the total electric field, i.e., An=n,E>—the Kerr effect. As we will see
presently, such a quadratic dependence actually allows the mixing of the applied
dc field with the space-charge field for enhanced director-axis reorientation ef-
fects [199-202,194,203].

For a typical wave mixing interaction (see Fig. 72) a spatially periodic (sinu-
soidal) incident optical intensity distribution 7,,=/,sin(g¢) acting on the
photocharge-producing impurities or dopants such as dyes, C60, and carbon nano-
tubes in the nematic liquid crystals generates a PR-like space-charge field £, of the
form [199]

Figure 71

Trans form

I

Cis form

ik 4R
o %%f

Schematic depiction of the trans-cis configuration changes experienced by an
azo molecule when photoexcited, and their effect in lowering the order param-
eter of an aligned nematic liquid crystal [196—198].
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Eyy= ngl) cos(gé) = [ ] cos(gé), (6.34)

where m is the optical depth of modulation factor, kg is again Boltzmann’s con-
stant, and o is the conductivity under illumination. Furthermore, o, is dark state
conductivity, and v=(D"—=D")/(D*+D"), where D" and D™ are the diffusion
constants for positive and negative ions, respectively, and g=2/A is again the
grating wave vector, with A the grating period.

In nematic liquid crystals, the action of the applied dc field on the director axis
reorientation generates two other forms of space-charge fields in conjunction
with the conductivity and dielectric anisotropies. For an interaction geometry as
depicted in Fig. 72, these space-charge fields are of the form [200,201,204]

[(oy— o )sin G cos 6] [(g,— & )sin O cos 6]

Eprg= Eg, Epns= -
. o sin’ 0+ o, cos’ @ @ . g;sin* O+ &, cos’ @
(6.35)
or, for small 6,
Ao Ae
EAa'z__eEdc; EAsz__aEdC' (636)
o €1

The total electric field in coordinate form then becomes

Figure 72
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Typical experimental setup involving two linearly polarized coherent beams that
are overlapped at an oblique incident angle on an aligned liquid crystal cell.
Transparent conducting electrode coated windows allow application of a small
dc voltage [199].

Advances in Optics and Photonics 2, 60-200 (2010) doi:10.1364/A0P.2.000060 150



o, &

Ao Ae
Eoga=|—\ —+— |EgOcos B—Eycos B, O,

Ao Ae
Eg—\ —+— |Eg0sin B~ E,sin B
g, &
:[_ (EA : 9+Eph)COS B’ 0, Edc - (EA : 9+Eph)Sin ﬂ],
(6.37)
where Ex=(Ao/o | +Ae/e | )E,..

Accordingly, the total free energy of the system becomes

k. R Ae Agy,
F= (¥ nF +19 X 0P}~ = n()F = [y AT

(6.38)

Here Ag is the dc field anisotropy and Ag,, is the optical dielectric anisotropy.
Writing 7= (sin 6,0, cos 6), and minimizing the free energy with respect to the re-
orientation angle 6 yields the Euler—Lagrange equation for 6:

d*0  d*0 Ae
k; + kd_§2 + E[EAEZ cos(p) - 0+ E.E,, cos(B)]
Ae 'E(z)p
+ [sin(2B) +2 cos(2B) - 6] =0. (6.39)
v

Assuming that a hard boundary condition exists, a solution for 6 is of the form

mz

0= 06, sin(;)cos(qg). (6.40)

Equation (6.39) then yields the familiar solution for the reorientation: 6, is non-
vanishing only when the applied dc field is above a threshold:

1 Ag,, . ©
——SEOp -sin(28) + E ) Eq. cos(B)

6,= T (6.41a)
Aeop q
[EAEdC cos(B) + —E, cos(zﬁ)] —Eﬁ[ 1+ (—) ]
Ae T
[1+(gd/m)?*]— (Asop/As)(EOP/EF)2 cos(2) |2
E;=Ep (6.41b)
(AO' As)
—+—|-cos B
o, €5

For 5CB, for example, K ~ 107! N, the ac field difference in the dielectric constant
Ae~11(gy~16,&, ~5)and Ao/ o, ~0.5. For a typical wave mixing geometri-
cal and optical parameters (qd ~ 2, and the internal angle 5=22.5°), Ed=Vg
~1V,a~15,and Vy=aVy~1.5V. ‘
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Experimental measurements have shown that in typical doped nematic liquid
crystals, E, is estimated to be just a few volts per centimeter, but in conjunction
with a Ey; of a few volts per micrometer, the second term in the numerator £,,E . is
over 10000 (V/cm)? and is generally much larger than the optical contribution re-
sponsible for the first term in the numerator of (6.41a) for the milliwatt-power lasers
typically used in these studies [201]. In other words, the occurrence of PR optical
nonlinearities in nematic liquid crystals is due mainly to the applied dc field acting in
concert with the optically induced space-charge field, and its (7,) magnitude de-
pends critically on the dc bias field strength. Figure 73 reproduces the typical ob-
served self-diffraction as a function of the applied dc voltage, clearly showing the
threshold effect as well as the enhanced response from photocharge-producing dop-
ants such as carbon nanotubes. In this particular study, the nonlinear index coeffi-
cients n, obtained were 1.3 X 107> cm?/ W for the undoped sample and 0.8 cm?/W
for the single-wall carbon nanotube doped nematic liquid crystal. Other studies us-
ing a variety of other photocharge-producing dopants have also obtained large n, in
this range.

Note that the E4.E,;, term [ ~ cos(¢£)] is 7/2 phase shifted from the induced opti-
cal intensity grating /; ipt o sin?(g€), similar to that found in inorganic PR crystals dis-

cussed below. The 77/2 phase shift gives rise to strong two-beam coupling effects; cf.
Fig. 74.

6.2d. Optical Nonlinearities Associated with Order Parameter
Changes, and Thermal and Density Effects

In addition to director axis reorientation, there are several other mechanisms that
lead to changes in the refractive indices of the liquid crystal under the action of
an optical field. These include laser-induced molecular internal temperature
change dT, electrostrictive density changes dp” and dp®, and order parameter
changes dS, for a fixed initial director axis arrangement. The total index change
An can therefore be written as

Figure 73
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Dependency of first-order diffraction efficiencies on the applied dc voltage in
undoped (squares) and single-wall carbon-nanotube -doped (circles) nematic
liquid crystals. Sample thickness d=25 um; grating constant A=23 um; wave-
mixing angle 2°; $=22.5°. The incident optical intensities are 200 and 2 mW/cm?
for the undoped and doped samples, respectively [201].
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The first term on the RHS of Eq. (6.42), (dn/dT),dT, can be caused by a very
short-pulse laser that modifies the spectral dependence of the molecular absorp-
tion and emission process [205,206]. This term is usually quite small and is not
affected significantly by the ordering or molecular correlations present in the lig-
uid crystalline phase. The second term on the RHS comes from a laser-induced
overall rise in temperature and the resulting changes in the density. The third
term on the RHS is due to the electrostrictive effect in nonabsorbing materials,
i.e., the tendency of a material to move toward a region of high field strength.
The contribution unique to nematic liquid crystalline systems is the last term,
which is influenced by order parameter changes. This mechanism is the domi-
nant one as a result of the critical dependence of the nematic’s extraordinary and
ordinary refractive indices n,=(g;)"’? and n , =(g )"? on the order parameter S
(see Fig. 75), i.e.,

) ds. (6.42)
T.,p

m=n(p,S), n,=n,(p,S). (6.43)

Figure 74
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Two-beam coupling exponential gain coefficients as a function of (a) the direc-
tion and (b) magnitude of the applied dc bias field obtained with the carbon-
nanotube-doped nematic liquid crystals. Sample thickness d=25 um; grating
constant A=23 um; wave-mixing angle 2°; 8=+22.5°. The incident optical inten-
sity used is 2 mW/cm?. Note that the direction of beam coupling is dependent on
the applied bias field direction as well as the orientation () of the director axis

[201].
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Several mechanisms can be employed to change the order parameter. In Subsec-
tion 6.2b, we briefly discussed trans-cis isomerism of optically excited azo dop-
ants as an effective means of causing order parameter changes. Owing to the or-
der parameter’s critical dependence on the temperature (see Fig. 75), a more
frequently investigated mechanism is laser-induced temperature and order pa-
rameter modification. The corresponding induced temperature index gradients
are of the form [207,173]

dny, 1( dp 2 dp 2 dS

- = Cl_ + _CzS_ + _CZP_ , (6443)
dr )\ 'ar 3 Far 3 Tar
dn, 1 dp 1 dp 1 ds
o= - — S — — —Cyp— |, (6.44b)
dar  n \ ar 3 Par 3 Par

where C; and C, are nematic liquid crystal parameters [207].

Estimating the nonlinear index coefficients associated with these thermal-
density-order parameter effects can be a very complex exercise, since the inter-
action geometries are in general multidimensional and the laser-induced tem-
perature and density changes are strongly coupled by the hydrodynamical
equations [205,206]

& nd ¥
B V) B VAT 4 () = VD),

Po ™

(6.45a)

Jd 5 (Cp_ Cv)
Pva&(AT) — N VA(AT) - B

T

d A u anc 5
— =—=—F" 6.45b
(9t( 2 T 47 ( )

Here pj is the unperturbed density of the liquid crystal, C,, and C, the specific
heats, A\ the thermal conductivity, v the speed of sound, y* the electrostrictive

Figure 75
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Temperature dependence of the extraordinary and ordinary refractive indices of
aligned nematic liquid crystals for three visible wavelengths. The nematic liquid
transition region is defined by the pale blue shaded region [173].
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coefficient [ y*=p,(pe/dp)7], Br the coefficient of volume expansion, and 7 a
viscosity coefficient. Equation (6.45a) describes the effects of thermal expan-
sion and electrostriction on the density change, whereas (6.45b) describes the
photoabsorption and the resulting temperature rise and heat diffusion process.

These coupled equations for the laser-induced temperature and density distribu-
tions AT(z) and Ap(z) will then have to be incorporated into the equation de-
scribing the order parameter S of the system. Following the Landau—deGennes
theory, the free energy density of the system with a temperature distribution 7(z)
and order parameter S(z) is given by [208]

dS(z)
f=a(T(z) — T9)S(z)* + bS(z)* + cS(z)* + L( y

2
) — 2151 — &5,

(6.46)

In this expression, a, 7%, b, ¢, and L are thermodynamic parameters, g, and g, are
the surface potentials per unit volume, and S, and S, are the surface order pa-
rameters. For a typical nematic liquid crystal such as 5CB, b=—5.3 X 10° J/m?,
c=9.8X10° J/m?, T*=307.14 K, and L=4.5 X 107" J m~! [208]. At equilibrium,
S(z) is determined by minimization of the free energy equation:

5 o)
- -0 (6.47)
4S  dz\ d(S/dz)

with the boundary conditions

( of ) s, ( of ) s,
- +—=0, +—=0. (6.48)
aaSlaz) ), aS, aaSlaz) ), S,

Thermal and density effects induced by short intense laser pulses: To render the
problem tractable, most experimental and theoretical studies have adopted inter-
action geometries that reduce the dimensions and complexities of the problem
[209-211]. One example is wave mixing involving a spatially periodic, plane-
wave, optical field, i.e., a 1D optical grating intensity distribution of the form
E*=2E,* cos qy, where =k, —k, is the grating wave vector. Correspondingly, Ap
and AT are of the form Ap=p(#)cos(§-y) and AT=T(¢)cos(§"y), where p(z) and
T(2) are the density and temperature grating amplitudes.

Consider the transient case involving intense laser pulses. For simplicity in illus-
tration, we assume a flat-top square pulse of duration 7,. For 0 <¢/<7,, Egs.
(6.45) can be solved to yield the following temperature and density grating am-
plitudes [209,210]:

aan02
(1) = m (1 —exp(=T'z0)), (6.49)
VEOZ ,BTCVC”EO2
p(t) = P (1 —exp(=T'zt)cos Q) — m (1 —exp(—Tz0)).

(6.50)

The density change p(7)=p°(¢)+p’(#) as given in Eq. (6.50) has two distinct
components:
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p°(t)= m(l —exp(—I'gt)cos 1), (6.51a)
; - ,8Taan02
p (t)—m(l —exp(—Igt)). (6.51b)

The propagating component of p(¢) arises from the electrostrictive effect and is
proportional to 97; it is characterized by the Brillouin relaxation constant (acous-
tic decay time) 75=1"5 '=2p,/ g and frequency Q=1v¢?*1?>—T ;% The p° com-
ponent gives rise to a spectrum of propagating acoustic waves. The other compo-
nent, p’(¢), is the thermoelastic contribution (proportional to 87) caused by thermal
heating and is characterized by the thermal time constant 7,=I" R_l =poC,/\rq?%; itis
a diffusive effect. In liquid crystals n~1.5, 7=7X102kgm's!, v
=1540 ms™!, py=10° kgm, and A/ p,C,=0.79 X 10~" m?/s [173]. For a grat-
ing period of 20 um, 7, =~ 100 us and 753~ 200 ns [207].

In the steady state when 7,>> 75, 7%, the density contributions are generally van-
ishingly small, while the temperature contribution builds up to a maximum value
and produces an index change An given by

aané on

Anp=——"—"—"—
47rpoC 'z 0T

=151, (6.52)

This allows us to define a steady-state nonlinear index coefficient

g — (6.53)
n = — . .
2 pOCVFR T
Recalling that I';=Dg?, Eq. (6.53) becomes
ss(T) a ( on ) (6.54)
n =\ — ). .
2 poCDg?\ T

Using typical liquid crystalline parameters, p~1 g/cm?, C,~C,=2J/g/K,
D=2X1073 cm?/s, a~100 cm™!, dn/dT~=1073 K ! and a grating period A
=2m/q=20 um, we get

100 (20 X 10742

nSS(T) = — X — X 1073 =2.5X10"% cm*W.
4 1X2X2X1073

(6.55)

Near the nematic-isotropic transition temperature, the magnitude of dn/dT [es-
pecially dn;/dT], can be as high as 1072 K™! (cf. Fig. 75), and the nonlinear index
coefficients n, 1, can be as large as 10™* cm?/W. These rough estimates are actually
in good order-of-magnitude agreement with experimental observations.

7. Photorefractive Nonlinearities

The PR effect is known to occur in electro-optic photoconductive materials. It
essentially arises from the space-charge field set up by the diffusion and or trans-
port of photogenerated charge carriers that in turn modifies the index of refrac-
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tion through the Pockels effect [212—223]. In this respect, the refractive index of
a medium can change through photorefraction as a result of optical beam illumi-
nation. This process was first observed by Ashkin and colleagues in 1966, and its
very origin remained for several years a subject of discussion [224]. Today it is
widely accepted that the kinetic model first suggested by the Kiev group
[225,226] can adequately describe the physics of photorefraction. Irrespective of
the details behind the actual mechanisms involved, all types of PR effects share
common characteristics. In all cases the induced refractive index (which can be
significant) can vary anywhere from nonlocal to local and is typically character-
ized by a finite or relatively slow response time. In addition these effects can be
observed at low optical intensities and can persist in the dark over long periods,
unless erased with uniform illumination. This effect can be observed in many
types of materials and over a broad wavelength range—from the visible to long
wavelengths etc. [212-217].

A PR material involves both acceptor and donor impurities with energy levels
lying between the conduction and the valence band. These levels and physical
mechanisms behind the PR effect are schematically depicted in Fig. 76. In this
arrangement, an optical beam photoexcites carriers from donor centers, which in
turn diffuse or move through the conduction band. Charge recombination also
takes place via acceptors. The space-charge field established during this process
can then electro-optically alter the refractive index [225].

In the presence of a static electric field E, the refractive index changes in these
materials are determined by how the electro-optic effect modifies the imperme-
ability tensor [215], e.g.,

1
AnU:A(;) :rijkEk—i_SijkmEkEm' (71)

ij

In Eq. (7.1) 7 and s, represent linear and quadratic electro-optic coefficients,

respectively. Typically, PR index changes are driven by linear Pockels effects. In
this case, the 27 elements of the rank 3 tensor r;; can be contracted, i.e.,

Figure 76

Drift+Diffusion+Photovoltaic

Conduction band P>

Valence band
Sample of a typical PR material showing donor and acceptor impurity states in
the gap between the valence and conduction bands, the raising of an electron via
light absorption from a donor state into the conduction band, electron transport
due to drift and diffusion effects, and the subsequent trapping of the electron in
an acceptor state.
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1
A(_2> :l"lmEm. (72)
i

The dynamics of electron photogeneration and recombination together with
those of diffusion and transport are governed by the Kukhtarev—Vinetskii model
[225,226]. As indicated in Fig. 76, the PR material contains donor impurities
with density Ny, out of which N}, are ionized. The density of acceptor atoms is
also taken to be N,. Under dark conditions charge neutrality requires that (N,)
=N, [219]. Of course the nonionized portion of the donor impurities are candi-
dates for electron photogeneration. From these arguments it follows that the rate
equation for the donor density is given by

INp
7:§(1+1d)(ND_NE)_ YrNNp. (7.3)

In Eq. (7.3), N, is the electron density in the conduction band and 7y is the car-
rier recombination rate; § is the photoexcitation cross section and is related to the
absorption cross section «; via S=a,/hv. I is the externally imposed optical in-
tensity, and /, is the so-called dark intensity that phenomenologically accounts
(through the product s7;) for the rate of thermally generated electrons. The con-
tinuity equation also demands that

d 1.
—(Nj,—N,)+-V -J=0, (7.4)
ot e

where e=|e| represents the electron charge. In the absence of any photovoltaic
contributions (to be considered in Subsection 7.3), the current density can in
general include both a diffusion and a drift component, that is,

J=eNuE +kyTu VN, (7.5)

In Eq. (7.5) u is the electron mobility and is related to the carrier diffusion con-
stant D=kgTu/e. The first term in Eq. (7.5) describes drift transport resulting
from the presence of an electric field component E, while the second (associated
with the thermal energy kyT) accounts for diffusion effects. The total electric
field £ is the sum of the external bias field and that established from the gener-
ated space charge. Finally, Gauss’s law dictates that

V- (eE)=e(N,,~N,~N,) (7.6)

where e=gye, is the static permittivity of the material. The set of Egs.
(7.3)—(7.6) completely describes the PR effect. Once the total space-charge field
E is known, then Eq. (7.2) can be used to analyze any index changes resulting
from an optical illumination /. Of importance is also the relative order of the
densities involved, e.g., N> N, > N, [212-219]. Models accounting for bipo-
lar transport (holes and electrons) can also be developed along similar lines
[227,228].

7.1, Diffusion Nonlinearity

In the absence of any external bias (E£,=0), the PR effect is dominated by the
diffusion process [225]. The way the diffusion mechanism affects optical wave
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propagation is primarily nonlocal, and as a result it leads to an energy exchange
between plane wave components [214,215]. The manifestation of diffusion ef-
fects can vary considerably depending on the nature of optical illumination. For
example two-wave mixing is possible if the illumination is periodic (if it is the
outcome of two interfering plane waves), while for finite optical beams beam
fanning and self-bending can take place [212—214]. For these reasons these two
cases will be dealt with separately.

/.1a. Diffusion-Induced Two-Wave Mixing

Let us consider two monochromatic plane waves (of the same color) interfering
in a PR crystal. The total electric field associated with these two waves is written
in the form E,=E,é, expli(wt—k,*7)|+E,é, expli(wt—k,- 7)), and hence the re-
sulting total optical intensity or illumination is given by I;=I,+[, exp(—iK"7)
+c.c.]. In the last expression 1= |E; |>+|E,|* represents the constant intensity back-
ground of the total intensity, while /,=¢,-é,F 1E; is the amplitude of the periodic
component of this interference pattern. The grating wave vector is defined as K
=k,—k, and is related to the spatial period A of the interference via K=27/A. In
principle this problem cannot be treated analytically. Yet approximate solutions can
be obtained under steady-state conditions (J/ dt=0) by using perturbation methods,
provided that the periodic component is small, i.e., /; < /,,. In this regard, to first or-
der, all the unknown quantities in Egs. (7.3)+(7.6) are written as x=ux,
+[x; exp(=iK-7)+c.c.] [215,219]. After some algebra, direct substitution into Egs.
(7.3)—(7.6) leads to the following result concerning the space-charge field:

—. (7.7)

In Eq. (7.7), kp=e~ N,/ (ekgT) represents the Debye wave number, which in turn
determines the Debye screening radius L,=27/kp [215]. Some of the features of
Eq. (7.7) merit further discussion. To begin with, the imaginary factor i appearing in
the numerator of Eq. (7.7) clearly suggests that the space-charge field £, (and
hence the resulting index grating) is /2 out of phase with respect to the light peri-
odic pattern inducing it. Thus PR diffusion effects are nonlocal. This field is propor-
tional to the depth of modulation /;//; and to the thermal potential k3 77/ e. Finally,
the amplitude of £, reaches a maximum when K=k. Analysis also indicates that
the time required for this space-charge field to form is directly related to the dielec-
tric relaxation time 7,=&/o=¢&/euN,, [214].

To better appreciate two-wave mixing effects we consider the coherent interac-
tion of two plane waves propagating at angles =6 with respect to the z axis. For
demonstration purposes we assume that the periodic pattern forms along the x
axis, e.g., K =k,—k,=Kx. In this case the grating vector is related to the wave
vectors via K=2kyn, sin 6, where n, is the effective refractive index of the crystal.
The index perturbation induced by the periodic part of the illumination pattern can
be obtained from Eq. (7.2). For typical arrangements this index change can be writ-
ten in the form An =—n(3)reffE /2 [215,219], where r. is an effective electro-optic
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coefficient that depends on the electro-optic tensor and the orientation of the space-
charge field with respect to the crystal’s axes. Thus the refractive index in the PR
crystal is given by

1 I,
n=ny+ —| n exp(—ig)— exp(—iKx) +c.c. |, (7.8)
2 Iy
where
fes T
iK—
ny exp(—ig) = n?)reff—KQ- (7.9)
1+—
kp

From Eq. (7.9) it is again obvious that the index grating is indeed 7/2 out of
phase with respect to the periodic intensity pattern resulting from the interfer-
ence of these two plane waves, in agreement with the previous discussion. By
substituting this latter expression into the Helmholtz equation and by retaining
synchronous terms [217-219], one obtains the following coupled evolution
equations for the slowly varying field amplitudes E,(z), E,(z):

dE, N, o) |E,?

— == exp(—ip)é,-e,—————E,|,

dz Ncosg P PO g pt

dE, ™y (io) |E1|2 ( )
—=- exp(ip)ée, - é,————=F,, 7.10
dz Ncosg PNEOTCpp g T2

where in deriving Egs. (7.10) we have omitted any loss effects. These latter equa-
tions describe the two-wave mixing process and together with Eq. (7.9) can be
written in a simpler version:

dE, g |Ez‘2

— = _F
dz 21E, P+ By :

@7§—‘E1‘2 (7 11)
dz 2|EP+|EPT '
where the gain g is given by
27 5 K(kgT/e) ( )
= Ny - 7.12
& Neos@ o0 +(K2/kf))

As expected, in the absence of any losses the overall power in the system is con-
served, e.g., |E,|*+|E,|*=const [215]. Moreover, from Eqs. (7.11) it is evident that
the signal field £, gains energy at the expense of the pump field £,. In the limit
where the signal is weak compared with the pump (|E,| < |E|), one readily finds
that the signal intensity will experience amplification according to I,=1,, exp(gz). It
is also apparent from Eq. (7.12) that the two-wave mixing gain attains a maximum at
a specific angle of interaction 6,,,,, i.e., when K=kp=2k,n, sin 6,,,,, in which case
Zmax= (T ek Thpé, - €,)/ (eX cos 6). To appreciate these effects, let us consider
the following values corresponding to typical PR materials under standard tempera-
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ture conditions: 7y=2.3, r.z=250 pm/V, &,=800, N,=2 X 10?> m 3, A\=0.5 um.
For this case we find that 6,,,, ~4" and g,,,, =~ 20 cm™'. Other arrangements, such
as contra-directional two-wave mixing as well as four-wave mixing configurations,
can be similarly analyzed [215,220,221].

/.1b. Diffusion Effects on Beam Propagation

The nonlocal character of the diffusion PR process also affects in a crucial man-
ner the propagation of optical beams. One such effect is beam fanning
[212-221]. Fanning is a direct outcome of the diffusion nonlinearity, and as its
name implies it leads to asymmetric fanning and self-bending of a single beam
[229]. It typically arises from scattered light from the beam itself when it en-
counters inhomogeneities and impurities in the PR crystal. The scattered light
components are then amplified by all the plane-waves composing the beam via
two-wave mixing. The end result is the amplification of spatial scattering noise
and the subsequent deterioration of the optical beam. This energy transfer has
been investigated in several works using multiple-wave mixing approaches
[229,230].

Another possibility is a two-wave mixing energy exchange between all the spec-
tral components composing an optical beam. This is a deterministic effect and
can be observed only if beam-fanning is carefully eliminated in the experimental
arrangement. To examine this latter mechanism, one has to first obtain the
diffusion-induced space-charge field [231]. Given that under no external bias the
current density is zero, the diffusion-induced space-charge field can be deter-
mined from Eq. (7.5), e.g., E.=—(ksT/e)(VN,/N,). In addition, since N, I+1,,
we find that

kT VI
Bo=—— (7.13)
e [+]d

To see how the diffusion nonlinearity will affect a beam, let us consider a Gauss-
ian beam propagating along z. The space charge in Eq. (7.13) is assumed to vary
only in the x coordinate. In this case, the electric optical field amplitude E of this
wavefront will evolve according to

(7.14)

JE 1 PE Kk ke T [ I(|E*)/ox
. +—_ 3 o _ 0’
d 2k’ 2

— + Ry
el 1+|EP

where in Eq. (7.14) the electric field has been normalized with respect to the
dark intensity level. This problem can be solved in closed form under high-
illumination conditions (|E|?>> 1) provided that beam is initially Gaussian, i.c.,
E(z=0,x)=4 expl—x?/(2w})]. In this case analysis shows that the Gaussian beam
regularly diffracts, while its center self-bends during propagation [232] by an
amount x, that is given by

kz 2 4 . T
xd:%[ﬁtanl E-In(1+8&)], (7.15)

where é=z/kw?. For the same parameters used in Subsection 7.1a, one finds that
a Gaussian beam with an initial spot size of wy=4 um is expected to self-deflect
by a distance of x,=5.7 um after a distance of 10 diffraction lengths (¢§=10). This
effect is schematically depicted in Fig. 77. Intuitively the beam deflection can be ex-
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Figure 77
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Light spreading on propagation due to diffraction and self-bending in a PR me-
dium due to the nonlocality of the optical response.

plained by considering the spatial profile of the space-charge field and consequently
of the index distribution. If the optical beam is Gaussian-like then resulting space-
charge field £, is almost linearly varying across the beam, and as a result the in-
duced index prism leads to self-bending.

7.2. Screening Photorefractive Nonlinearity

When a PR material is strongly biased another type of nonlinearity manifests it-
self: the screening nonlinearity [233-235]. As we will see, this nonlinearity is
primarily local in nature, and in the same PR system it can lead to both self-
focusing and defocusing conditions depending on the polarity of the external
bias. The strength of the screening mechanism can be substantial, and it can re-
spond at very low optical power levels. This type of nonlinearity has been exten-
sively investigated in conjunction with optical soliton effects, self-focusing, and
instability phenomena, and most recently in the exploration of nonlinear opti-
cally induced lattices to mention a few topics [236].

7.2a. Physical Origins of the Screening Photorefractive
Nonlinearity

To understand the origin of the screening nonlinearity, we consider Egs.
(7.3)+(7.6) under steady-state conditions, assuming for simplicity that the
space-charge field is established in only one direction (in this case x). By keep-
ing in mind the inequalities N,>> N, > N, associated with the densities, from
Egs. (7.3) and (7.6) one can show that [233,234]

N ( e JE
=Ny 1+— , 7.16
LV (7.16)
§(ND_NA) e OEg -
N,=—"""I+1)| 1+— . (7.17)
YRV 4 eNy ox

At this point, let us also assume that the power density /(x,z) of the optical beam
attains asymptotically a constant value /., at x — 0. This constant /., can be fi-
nite or zero depending on the experimental arrangement used. In these regions
of constant illumination, the space-charge field is also independent of x, i.e.,
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E (x— £, z)=E,. If the spatial extent of the optical wave is much less than the x
width 7 of the PR crystal, then under a constant voltage bias V, E, is approximately
Ey=V/W.On the other hand, if W is comparable with the wave’s width, then this ap-
proximation breaks down. In this case the intensity profile of the optical beam has to
be taken into account in order to estimate the appropriate correction factors [234].
From Eq. (7.17) the free-electron density N, in these regions is given by

§(ND _NA)
Np=———"—.+1). (7.18)
YrIV4

Under steady-state conditions, Eq. (7.4) implies that V -J=0. Hence in 1D con-
figurations the current density should, as expected, be constant everywhere, i.e.,
J=constant. Therefore N,,E,=N_E .+ (kgT/e)dN,/ dx or

NoE, ksT 1 6N,

N, e N, o

E. =

NY

(7.19)

Substitution of Eq. (7.17) into Eq. (7.19) gives the final expression for the space-
charge field:

(I, +1) ( & aEsc) ke T (01/x)
+ —_—

sc:EO T
(I+1y) eN, ox e (I+1y)
kT & e O0E,\ 'PE,
+——|1+— =, (7.20)
e eN, eN, dx ox

Under strong bias conditions the drift component dominates the transport pro-
cess, and thus any diffusion effects can be neglected [terms associated with
kgT/e in Eq. (7.20)]. In addition, for relatively broad beams in typical PR media
the term (e/eN,)JE ./ dx < 1, and as result Eq. (7.20) can be expressed in a sim-
pler form, i.e., [233,234],

(Ioo + Id)
E, .
(I+1,)

(7.21)

sc

It is interesting to note that one could have arrived at this same relation by con-
sidering an intensity-dependent conductivity o(/) and only drift transport pro-
vided that J=constant. In other words, Eq. (7.21) results if we assume that the con-
ductivity varies with intensity according to o=0,(I+1,)/1;, where o, is the dark
conductivity of the PR material [235]. Under constant voltage bias }” we also expect
that

wi2
V=— f E.dx. (7.22)
W2

The index changes in the PR medium can now be estimated from Eq. (7.2). In
typical arrangements this is given by [233-235]

ng 7’1(3) [w +[d
An=— "1l == ek : (7.23)

2 2

It is important to emphasize that in many experiments the so-called dark-
intensity level /, is artificially elevated by externally illuminating the crystal, ei-
ther from the top or along the other input polarization. Such an elevation not only
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speeds up the PR time response but also allows better controllability in experi-
mental setups.

To get an appreciation of the index changes expected in this regime, let us as-
sume a Gaussian-like beam traversing a biased PR material (/,,=0). If we let
ny=2.3, r.4=250 pm/V, and if the external bias strength is £,=2 kV/cm, then for
a Gaussian having a peak intensity 10 times higher than /,, we find that the index
change between the center and the far tails of the beam is approximately An =3
X 10~%. This level of index change is more than enough to enable a host of nonlinear
self-action effects. The index change corresponding to this case is plotted in Fig.
78(a). As the figure indicates, for £,> 0 the refractive index is higher at the beam
center (in essence the PR effect lowers the index at the tails), and as a result this PR
system behaves in a self-focusing fashion. On the other hand, if £,=-2 kV/cm,
e.g., if the polarity of the external bias is reversed, the index profile is inverted. In this
latter case, the index at the center of the beam attains a minimum, and thus in this
regime the PR medium is defocusing [Fig. 78(b)]. What is interesting is that the
same crystal can be either self-focusing or defocusing depending on the polarity of
the external bias. In other words the sign of the screening nonlinearity can be tuned
at will. Equation (7.23) also indicates that the screening nonlinearity has a saturable
Kerr-like nonlinear response. This issue is of importance to the stability of 2D self-
trapped beams.

In two transverse dimensions the problem becomes more complicated because
of the space-charge field boundary conditions. In many occasions these effects
can be understood by only considering the drift component and by assuming
again that o=0,(I+1,)/1,. Given that E,=—VV and V- (0E,.)=0, the following
equation for the potential is derived [214]:

\%24

V2V + -VV=0. (7.24)

+1,;

In general this latter equation must solved numerically during propagation sub-
ject to appropriate mixed boundary conditions for the potential function V. An
analytic solution can be obtained when the optical beam is cylindrical, e.g., /
=1, circ(r/a) for r < a and zero elsewhere (diffraction effects are neglected here). In
this case the conductivity of the PR medium is o,=o,(I,+1,)/1,; for r<a and o,
= o, for r> a. The space-charge electric field associated with this latter arrangement

Figure 78
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Refractive index change produced by a 1D optical beam with intensity 10/, in a
PR crystal for (a) a self-focusing and (b) self-defocusing nonlinearity.
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can be obtained by using standard methods from electrostatics. To do so we assume
that the electric field away from the high-conductivity rod (r<a) is E,. More spe-
cifically, in polar coordinates (r, ), E. is given by [237]

r

2E X
—Ox 7 < a
2+ (1y/1y)
ESC = ) s
5 I, cos(2¥9)  sin(29)
Ex+a’E X+ | r>a
L 0¥ 0 1y+21, P P Y

(7.25)

The index profile corresponding to this cylindrical optical beam can be deter-
mined from Eq. (7.2). This index distribution is shown in Fig. 79. In general the
index change is azimuthally asymmetric, and this is a characteristic of the
screening nonlinearity. Similar results can be obtained for other classes of opti-
cal beams, e.g., Gaussian.

Typical values associated with screening nonlinearities as obtained in typical PR
crystals are listed in Table 16.

/7.2b. Self-Trapped Beams—Screening Photorefractive Solitons

The possibility of optical PR solitons was first suggested in 1992 [238]. Nonlin-
ear optical wave propagation under the action of screening PR effects can be
considered by starting from the Helmholtz equation. By writing the optical elec-
tric field in the form E=®(x,z)exp(ikz) and by assuming a slowly varying enve-
lope ®(x,z), we find that [233,234]

ob 15D n L.+1,
d=0.

7.26
I+1, (7.26)

i+ ——— — ky— 7k
oz 2k o> g oo

This equation can be more conveniently studied in normalized units and coordi-
nates, i.e., if §=z/kxj, s=x/xo, ®=(29,1,/ny)"?U, in which case one obtains

U 17U ( 1+p> (227
— 4+ —— gl —— |u=0. 7.27
T e Plror

In Eq. (7.27), p=1./1, is an intensity ratio and B=(kyx,)*(ngre/2)E, is the
strength of the screening PR nonlinearity. For singular bright beams that tend to zero
atx— £0o0, p=0in Eq. (7.27). The bright self-trapped states or solitons of Eq. (7.27)

Figure 79

An(x,y)

Index change induced in a PR medium by a 2D cylindrical beam.
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Table 16. PR Materials Used for Screening Nonlinearities and Their Relevant
Material Properties

N Ey.
Material Dopant (um) mreg (pm/V) Taiel (8)° Anpay (KV/em)
Sty.75Bag ,sNb,O, Ce 0.4-0.6 17390 0.1-1.0 0.005 3
Sty sBag 4Nb,Oj Ce 0.4-0.6 3000 0.1-1.0 0.0014 3
BaTiOs Fe 0.4-0.9 21,500 0.1-1.0 0.005 2.5
InP Fe 0.9-13 52 10610 5x1073° 8

At an intensity of 1 W/cm?.
"With enhancement can goto 5X 1074,

can be obtained by assuming that their field profile is given by U
=r12y(s)exp(ivé), where r is the ratio of the soliton’s peak intensity to the dark in-
tensity /,. In this case we find that [233,234],

d’y y
— —2vy—2 =0. 7.28
ds? . '81 +ry? ( )

This last differential equation can be integrated further provided that wv=
—(B/r)In(1+r), e.g.,

dy\?
(d_) = (2B/)[In(1 +ry?) = y* In(1 + )], (7.29)
S

from which the soliton field profile y(s) can be uniquely determined. These so-
lutions are possible only for 8> 0 or E,>0, that is, under self-focusing condi-
tions [236]. The intensity distribution corresponding to a soliton in SBN:60 with
ny=2.3,r.5=225 pm/V, at a bias of £,=2 kV/cm, at A\=0.5 um is shown in Fig.
80. Similarly, dark as well as gray soliton solutions can be identified under defocus-
ing nonlinear conditions [234,235].

7.3. Photovoltaic Nonlinearity

Photovoltaic, or photogalvanic. effects are known to occur in noncentrosymmet-
ric crystals such as, for example, LiNbO;, BaTiO;, and KNbO; [212-220]. This

Figure 80

-10 0 10
Position [pm]

Intensity distribution corresponding to a bright spatial soliton in SBN:60.

Advances in Optics and Photonics 2, 60-200 (2010) doi:10.1364/A0P.2.000060 166



mechanism results from the asymmetric excitation of carriers and essentially gives
rise to a current density [214]. This is because carriers are photoexcited from impu-
rity centers with a momentum preferentially oriented along the ¢ axis. From these
considerations, the current density associated with the photovoltaic effect is pro-
portional to the number of available donors, the optical intensity /, and the pho-
toexcitation cross section s, i.e.,

Jpy=eS(Np— Np)Lpyl. (7.30)

In Eq. (7.30) Lpy is a characteristic length associated with this photogalvanic trans-
port anisotropy—for example, in LiNbO;, Lpy is approximately 5 A. More for-
mally, the photovoltaic part in the current density can be expressed as

Jpy = By iEx (7.31)

where B, represents a third-rank tensor. By adding the photovoltaic component
of Eq. (7.30) to the total current density passing through a PR material, one ob-
tains

J=enuE + kgTuV N, + ko (Np— NpIE, (7.32)

where . is the photovoltaic constant and ¢ is a unit vector along the ¢ axis of the
crystal. For example, under open circuit conditions (J= 0) and provided that dif-
fusion effects can be neglected in Eq. (7.32) we find that E =—k.(Np
—Np)I/(eN). Given that normally Np=~N, and that N,=s(N,—N,)([
+1,)/ ygN 4, from Eq. (7.17) we find the photovoltaic space-charge field in a PR me-
dium [239,240]:

I
E.=—E . 7.33
Ly (7.33)

In Eq. (7.33) Ep=k.YrN,,/ (en) represents the photovoltaic field constant, which is
typically of the order of 10*~107 V/m. Index changes resulting from the photogal-
vanic space-charge field can then be obtained from An =—n(3)reffEsc/ 2,e.g.,[239]

3
noregEp 1

2 I+,

n= (7.34)
As in the case of the screening process, the photovoltaic nonlinearity is also satu-
rable. In addition, in most photovoltaic PR media, the coefficient r.4F p is nega-
tive, and thus this saturable nonlinearity is of the defocusing type. For this reason
dark photovoltaic solitons have been regularly observed in Fe-doped LiNbOj; crys-
tals [240] (see Table 17). On the other hand, by tuning the background illumination,
a transition from defocusing to self-focusing can occur in LiNbO; by exploiting the
anisotropy of the photovoltaic tensor. Self-focusing photogalvanic self-action effects
were also observed in KNSBN [(K,Na,_,),, »(Sr,Ba,_,), 4,Nb,O4][236]. For ex-
ample, in LiINbO3, a crystal characterized by a large photovoltaic constant, if we as-

Table 17. Typical Parameters Associated with Fe-Doped LiNbO;

ry3 (pm/V) Anpay At Intensity Tresponse

30 0.001 ~W/cm? ~minutes
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sume that 7,=2.2, 7.=30 pm/V, and Ep~ 10° V/m, then for />, we find that
An=1.6X10"*. The photovoltaic nonlinearity can be obtained under open and
closed circuit conditions and in conjunction and or competition with the screening
nonlinearity [236].

7.4. Photorefractive Nonlinearities Due to dc Kerr Effects

Nonlinear self-action PR effects are also possible in centrosymmetric media as a
result of the dc Kerr effect [214,215]. In this case, the index change is obtained
from the quadratic electro-optic tensor s, [in Eq. (7.1)] as discussed in the in-
troduction to Section 7. Such crystals include, for example, potassium tantalate
niobate (KTN) and potassium lithium tantalate niobate (KLTN) [241,242]. For
example, KLTN has a perovskite structure, and in its highest symmetry phase it
is cubic. In this cubic phase the material’s PR properties are described by the
quadratic electro-optic effect. The index change in this system because of the dc
Kerr effect is given by [242]
)

An=— ;geﬁcpz, (7.35)

where the induced dc low-frequency polarization P is assumed to vary linearly
with the electric field E, that is,

P=gy(e,— 1)E. (7.36)

In the above equations, g, is the effective quadratic electro-optic coefficient of the
PR material and &, stands for the static relative permittivity. From the latter relations,
the expected index change is [243,244]

n?)geff‘g%(sr - 1)2 )

n=-— 5 sc*

(7.37)

If, for example, such a PR material is externally biased, then the maximum index
change is expected to be approximately An, ., =~ ny(gew/2)eq(e,— 1)2Es, where
again as in the screening case £y=V/W. For example, for a KLTN crystal, where
&,~ 8000, ny=2.2, and g.;=0.12 m* C 2, and for an applied external bias field of
Ey=2 kV/cm, we find that An,,,, =~ 1.3 X 1074,

8. Electrostrictive Effect

“Electrostriction is a property of all electrical nonconductors, or dielectrics, that
manifests itself as a relatively slight change of shape, or mechanical deforma-
tion, under the application of an electric field. Reversal of the electric field does
not reverse the direction of the deformation.” [245] Like the Kerr nonlinearity,
electrostriction is a universal mechanism that occurs in all materials. This is also
true for an optical field, with the difference that in this case the compression is
proportional to the time average of the square of the optical field. This field-
induced stress leads to an increase in the material density. Since the number den-
sity of atoms or molecules also increases, there is an increase in the electromag-
netic energy density and an increase in the refractive index. Thus 7, > 0.
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For an optical field polarized along the x direction, the material displacement i
due to the compression creates an elastic strain in the direction of the applied
strong field, S\, =du,/dx. For a detailed discussion of stresses and strains, see the
book by B. A. Auld [246]. This leads via the elasto-optic effect to a nonlinear
polarization of the form

PYMF D) == egninip oSG EF, 1), (8.1)

in which the p;; is the elasto-optic tensor (also known as the acousto-optic ten-
sor) [167]. For ny (—w;w), i=j=x is appropriate (coefficient p,; in Voigt nota-
tion) and for n, | ,(—w;w), i=j=y (p,; in Voigt notation) for the case of an addi-
tional, weak (“probe”) y-polarized beam.

For an unclamped medium, the work done in compressing the medium (AU) is
equal to the increase in electromagnetic energy density (AW). The work done is

AV Ap
AW=py—="ps > (8.2)
V p

where pg is the effective pressure exerted by the electromagnetic field on the me-
dium and the change in electromagnetic energy is

1
AU= A(ESOS,,)X[EOCOS(/CZ - wz‘)]2> =gy——Ap. (8.3)
p
Setting AU=AW, noting that Ap=[dp/dpylpy, and defining K=[(1/p)
X (dp/dpg)] " as the bulk modulus for pure compressive forces (i.e., only S, # 0,
which corresponds to a plane wave field polarized along the x axis), gives

4 2
Ap €op 2(?8;’,;( 8OnxpllEO
Sll =—=—E = .

(8.4)

p 4K ° ap - 4K
For an isotropic material, K=(c|;+2c¢;,)/3, whereas for anisotropic materials K
depends on the crystal symmetry, propagation direction, etc. Substituting this
equation for S, into PY“(7,¢) finally gives 1y o1 in terms of the electrostrictive con-
stant 1y, (defined below) as

6.2
npPir o Ye
Ny el(— W; ) = = . 8.5
el ) Ko aKe (8.5)
It is straightforward to show that
( ”i”ipuplz (8.6)
Ny —wyw)=—"—". .
2 4Kc

Values for n,, ; are given in Table 18 for a number of materials. In general, the softer
the material, the larger is the nonlinearity. Elasto-optic data can be found in
[247,248].

Turn-on and turn-off times are a complex issue. Turning an optical beam on or
off involves inducing compressive forces in the medium. They lead to the gen-
eration of a spectrum of acoustic waves. The acoustic decay time 7,((),) o Q;z,
and the details of beam shape, sample boundaries, etc., influence the acoustic
spectrum generated, which includes both compressional and shear waves for a
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Figure 81

(@ (© (d (e

Sequence of events that occur when an intense light beam enters and exits a di-
electric medium. (a) Light at entrance facet to medium. (b) Sound waves are
generated by the material contraction induced by the entering beam. (c¢) Steady-
state compression exists in the medium as long as the light is present. (d) The tail
end of the beam exits the medium, releasing the compression and generating
sound waves. (¢) The medium has relaxed to its initial state.

(b)

finite-sized beam. In Fig. 81 is shown the sequence of events that occurs. Figure
81(a) shows the sample before the optical beam enters it. As the beam enters the
sample, material compression occurs accompanied by the generation of sound
waves in all directions; see Fig. 81(b). Beam turn-off is again accompanied by
acoustic phonon generation; see Fig. 81(d). In an infinite medium, the shortest
turn-on and turn-off times are given by the acoustic transit time across the opti-
cal beam (beam diameter) /vy, with v¢~1 um/s, giving microsecond—
nanosecond times. Therefore, the shorter the optical pulse, the smaller the value of
1y ¢1> SINCeE it takes an acoustic transit time to establish this nonlinearity.

The electrostrictive contribution to 7, has typically amounted to a tens of percent
contribution to the Kerr effect in various solids and a somewhat larger contribu-
tion in liquids because of their low velocity of sound. The spurious effects that it
causes have led to important features including spurious optical signals in fused
silica glass fibers, since they have such a small native 7, k., [249-251]. Another
example is the effect of electrostriction in relatively tight focusing geometries for
microsecond—nanosecond pulses in liquid CS, found experimentally and numeri-
cally in optical limiting studies [252,253]. Contributions as large as 30% have been
seen. In materials where there is also some absorption, these effects can be com-
bined with or masked by thermally driven acoustic waves, which have behaviors
similar to those discussed in the next section.

Table 18. Values of ny ¢

Material Polarization N (um)  Elasto-optic Coefficeint K (10'° m?/N) n Ny e (cm?/W)

Fused silica (0.63) P1=0.12 3.69 146 04x1071
GaAs [110] (1.15) p=~0.14 ~76 337 1.6%x10°75
MgO [100] (0.59) P1,=0.08 ~153 174 10x107
ALO, [001] (0.63) 33=0.20 ~27.0 176 37x10V
Polystyrene (0.63) p11=0.31 0.54 1.59 24X1071
Acetone P11=035 0.080 136 85x10°15
Methanol P11=032 0.083 133 57x10°15
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9. Thermo-optic Effect

Although conceptually simple, the index change produced by light absorption is
a very complex problem in general [252—-254]. Absorption leads to a tempera-
ture change 67, which in turn also leads to a change in local density. A change in
density leads to the generation of sound waves, which effectively relieve the
stresses induced by the density changes. Both 67 and Jp lead to changes in re-
fractive index as discussed in Section 6, i.e.,

(8}1) (6}1)
on=—| Sp+|— ] OT. 9.1
" ap Tp aT .1

p

The resulting temperature change is given by the thermal diffusion equation

J(8T)
pcp7 - kVA(8T) =0=ayl, (9.2)

where Q is the absorbed power per unit volume per unit time. To a first approxi-
mation, the temperature change is the dominant contribution to the thermal non-
linearity.

What makes this problem difficult is the calculation of the steady-state tempera-
ture and hence index distribution. On short times scales of single femtosecond,
picosecond, and nanosecond pulses, the initial thermally induced index distribu-
tion mirrors that of the incident optical beam. However, for mode-locked lasers
as well as for cw excitation, the effects are cumulative over microsecond time
scales. At this point the size, shape, and thermal boundary conditions of the
sample become important in establishing the steady-state index change—and
these vary from sample to sample, by geometry, etc.

Optical experiments involve spatially finite beams. Transients due to sound
waves occur over the time it takes an acoustic wave to traverse the optical beam,
similar to electrostriction. The velocity of sound is 1—-4 um/ns. Hence for the
usual cases of 0.1—1 mm beams, acoustic transient effects can be ignored for optical
pulses 1 us long, and shorter. Furthermore, since the effect on index of density
changes is usually much smaller than temperature changes, density changes in the
first approximation are neglected.

It is useful to find some simple approach to estimating how large n, y, is for the
thermo-optic effect. We start by rewriting Eq. (9.2) as

9T ST kV? )
C— —kVT=0=ayl, — 0T |=a,/ 9.3
p §2 ot Q 1 Y 424 ot pCp 1 (
and note that the term «V?/pC, has the units of time. The V267 term indicates
that any characteristic time will depend on the beam shape, an unwelcome com-
plication. It is useful to assume a Gaussian intensity distribution given by

1(7,1) = Io(z)exp[— r/wi = 175, (9.4)

where [ (z) is the on-axis distribution (along the z axis), which decays exponen-
tially with distance z due to absorption. Assuming further that the pulse width
Topt 18 much shorter than the thermal diffusion time 7,, the maximum temperature
distribution is given by the pulse energy absorbed with the spatial temperature dis-
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tribution given by the Gaussian beam distribution. The maximum temperature
change across the beam 8T, () is given by

o o0 o
ST ) = —1(r) | &/ omdt =770 —1(7). (9.5)
Cp —00 pCp
Note that in
- 1o & 4 2
Ol x| = ——+ — [T ax(r) =— =Y 1 = — [ T (7 9.6
[ ("] o (r) B B (r) (9.6)

the largest 6T occurs between =0 and »=w,. This equation can be simplified by
neglecting the 72/wj term, which means that the any solution will be at best ap-
proximate. However, this makes it possible to estimate the time evolution of 6T
and the turn-off time subsequent to removing the optical field from

IOT o (F,1) 4k
= 2 Tmax(Fa t) = 5Tmax(’7, t) = 5Tmax(0,t)e_t/7—th, (97)
ot wopC,

where TchWépCp/ 4 k. Note that 7y, is not just a material constant! It depends on
sample and beam geometry, heat sinking, beam size, etc. A sampling of 7, for a va-
riety of materials (w,=0.1 mm) is listed in Table 19. Note that

1. There is a strong dependence on the beam size, i.e., ;.

2. Excluding metals, the 7, varies by about 2 orders of magnitude for a wide
range of materials.

3. Because they contain the same atoms, mostly carbon and hydrogen, 7, in
the organic solvents varies by less than an order of magnitude.

An effective nonlinearity 7, y, can be estimated as follows:

dn on a) on a
5nmax F) = 5Tmax P)= NI | To —I(F)=n =NT| | T .
( ) |:8T:| ( ) |:(9T] ptpcp ( ) 2,th |:(9T] ptpcp

For a pulse with a Gaussian shape with 7y,>> 7, it is the pulse energy AE,
rather than the intensity that is important and

2520 on |

on max

— | —AE - 9.8
mwg| T | pC, pul ©.8)

As an example, consider GaAs:

Table 19. 7, for a Variety of Materials

Material GaAs Al,O4 NaCl ZnO Acetone C¢Hg Methanol
k (W/em °C) 0.55 0.024 0.065 0.30 0.0019 0.0016 0.0020
C, (joules/g/°C) 0.33 0.75 0.85 0.83 2.2 1.7 24
p (g/cm?) 532 3.98 22 55 0.79 0.90 0.80
Ty, (MS) 0.080 3.1 0.72 0.39 45 24 20
dn/dT X 107 (/°C) 1.6-2.7 0.13 0.25 0.1 -5.6 —6.2 -4.0
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a=1cm 'and Ar=1 us=n,y, =3

X 1071% ¢cm?/W (much bigger than Kerr effect),

a=1cm 'and Ar=1 ns = n, =3

X 107" cm*/W (comparable with Kerr effect)

a=1cm 'and At=1 pS=ny =3

X 107! cm?/W (negligible).

For high repetition rates (mode-locked lasers), the key question is the energy ac-
cumulation over all the pulses within the time window 7;,. For example, a mode-
locked laser operating with 1 ps pulses at a repetition rate of 100 MHz accumulates
energy from 10° pulses over 7, giving a cumulative 7, 3 =-1.2X 1072 cm?/W,
larger than the Kerr nonlinearity!

10. Cascading Nonlinearity

There are two ways in which a second-order nonlinearity can contribute to an ef-
fective n, .. In the first, called “local cascading,” a third-order susceptibility is
obtained as the product of the molecular second-order susceptibilities
B (2w;w,w)BP(~w;2w,~w) and B (-0;w,—w)B?(~w;w,0). The light—
matter interaction occurs at the molecular level, and there is no propagation of a 2w
signal. The second is also proportional to the product between second-order nonlin-
earities [ Y'?(—2w; w, w)¥?(—w;2w,—w)] but does involve the generation of a
second-harmonic beam that exchanges energy with the fundamental on propaga-
tion. This can be called “nonlocal cascading.”

10.1. Local Cascading

Local cascading refers to a pair of two-step processes, each involving the prod-
uct of two optical fields at a noncentrosymmetric molecule. A nonlinear, local
polarization is generated at the sum or difference frequency via the molecular
second-order susceptibility ,851.2,{) (~[w£w,]; 0, £ w,). The local field generated
at w; £ w, then mixes with the fields at w, and w, via ijzk)
and ’ijzk) (F wy; 0+ w,,~w,), respectively, to give new polarization fields at w,
and +w,, respectively. The particular case of interest here, i.e., the contribution
t0 My casel(—@; W), i.e., a single input field, involves the two-step processes w+ w
— 2w (second-harmonic generation) and 2 w— w — w (difference frequency genera-
tion), and the two-step process w— w— 0 (dc rectification) and 0+ w — w (sum fre-
quency generation).

(w010, F w)

A straightforward approach to such a cascading process is to assume that an op-
tically excited electron in an anharmonic potential leads to material polariza-
tions at the frequencies w, 0, 2w, etc. The fotal displacement of the electron from
equilibrium ¢ obeys a nonlinear driven simple harmonic oscillator equation of
the form
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e kijk_ _ kijk€ o

G+ Tigi+ @1q;=——Ei— —qdi— ——G:dsdes (10.1)
m m m

where k, + and k,]k(; are nonlinear force constants that can be related directly to
measured second- and third-order susceptibilities (2)( [w +w ], p,
2

l(jk)( [(1) +w:|5 paw) and Xz]kl( [w to +w]> w,,w (1)) N?’k,( [w
+tw,+o,];0,,0,,,), respectively. The parameter w; 1s a resonance frequency
assocrated with a transition from the ground state to an excited state, and ulti-

@,)

mately a summation over all of the excited states will be required. I'; is a phe-
nomenological damping term related to the lifetime of the excited state. For cas-

cading, the discussion is limited solely to k,/k The inclusion of k sk Would lead
directly to the third-order Kerr nonlinearity in this model.

For a single incident field of frequency w, ¢ is the total electron displacement,
which has components at multiples of w due to the nonlinearity, i.e.,

7:=q,0) + g(w) + ‘i;(w) +32w) +q,8w)+ ... (10.2)

Note that the displacement at w has been separated into the displacement asso-
ciated with the linear polarization, ¢;,(w), and ¢; (w) due to the nonlinear interac-
tions, which also produce a nonlinear polarization at w. Since local nonlinear op-
tical interactions at the molecule level are normally very small,

gw) > ¢,2w),q;(0),40),7,(3w), etc. (10.3)

Hence the linear optics solution for ¢,(w) can be substituted to produce the non-
linear term ¢,(w)g;(w) driving the linear equations for ¢,(0) and §,(2w). In turn,
products of those solutions with g/(w), i.e., 7(2w)g,(w) and ,(0)g;(w), are used
to generate nonlinear terms for obtaining solutions for ¢/ (w) (via 2w—w and 0
+w) and §,(3w) (which is not of interest here). This procedure results in

1| & _ E;(w)Ek(w)Eg(w)

- __5kijmkmk€ *
2| 2m Di(w)Dj(w)Dm(zw)Dk(w)D€(w)

E/(@)E}(0)E (o)
J’_
D(@)D)(w)D,,(0)D(@)Dy(w)

ek 1o c., (10.4)

where D;(w)=&?— w?>—il";w. Clearly the first term is the result from the second-
harmonic pathway and the second from dc rectification. Defining in the usual
way the nonlinear polarization as P“(w)=—eNg/ (w), straightforward algebra re-
sults in

(3) ! m (2)
n2,casl = 4n28 XSR casl, l]kg( w;wﬁ_ w’ w) = 4n2C Ze_zN[D}’l1(2w)ka€
X(-2w;w w)XU)(— i~ 0,2w) +D,, (O)ijk(O w,~ 0)x\2 (- w;,0)].

(10.5)

It is useful to estimate the order of magnitude of n, ., for LINbO; at nonresonant
wavelengths with N=1.89 X 10?® mol/m?, p=4.64 g/cm?, X( '=56 pm/V:

zzZzZ
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mD(0)
4n’ce

M) cast = [Xiﬁi]z = 5% 1076 cm?/W,

which is negligible in this case. Consider also another example, the nonlinear or-
ganic  DSTMS  (4-N,N-dimethylamino-4-N-methyl-stilbazolium  2,4,6-
trimethylbenzenesulfonate), which has the following properties: x®
=424 pm/V, N=1.8X10* molecules/m?, n=2.45, D(0)~ 7X 10" rad/s,
which yield 715 ., =5 X 10""* cm?/W, certainly not negligible [255].

Since this is a local effect, occurring at the molecular level, the turn-on and turn-
off times are essentially instantaneous.

10.2. Nonlocal Cascading

This process in second-order nonlinear materials was identified in the early days
of nonlinear optics by Ostrovskii but was overlooked until future experiments
brought it back to light [256,257]. This process does not lead to a change in the
refractive index of a material, but does result in a nonlinear phase-shift between
interacting beams coupled via a second-order nonlinear process. This nonlinear
phase shift depends in a complicated way on the intensities of the interacting
beams, and it accumulates with distance so that it does mimic the effects of an
intensity-dependent refractive index coefficient [258-262].

The interest here is in a single incident beam [E;(w), w, k;(w)] that experiences
an effective nonlinearity 7, .,s,. In a noncentrosymmetric medium, this fundamen-
tal beam can generate a second-harmonic either by birefringence phase matching
[EQw), 20, k(2w); Ak=2k(w)—ki(2w)=0] or quasi-phase-matching (QPM)
E2w),2w, k(2w); Ak=2k,(w)— ki (2w)+ k=0 where k=27/ A and A is the QPM
period]. Away from the phase match, i.e., Ak # 0, the fundamental and harmonic
waves travel at different phase velocities. That is, if Ak > 0, the harmonic beam trav-
els faster than the fundamental and vice versa for Ak<<0; so the relative phase be-

E(Q)O 0 0 ﬂ n TE(a;)

2
2P 20;0, a)) AE(w) | 7P (020-0)

J‘v“v“v“v“v”r

Schematic representation of the second-harmonic process that leads off-phase
match to a nonlinear phase shift in the fundamental. When some harmonic is
generated by upconversion, it travels at a different phase velocity than the fun-
damental. The harmonic is downconverted back to the fundamental frequency
with a phase shift proportional to the product of the phase velocity mismatch and
the coherence length. Thus the reconstituted fundamental experiences a net
phase shift [258].

Figure 82
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tween the two beams changes with propagation distance. As the energy oscillates be-
tween the fundamental and the harmonic, relative phase information is transferred
also, and this is the basis of the nonlinear phase shift.

Consider the fundamental beam incident on a second-order crystal. As indicated
in Fig. 82, the second harmonic is generated via X(z)(—2w; w,w), and it propa-
gates some distance (typically the coherence length) before it converts back to
the fundamental via Y®(—w;2w,~w). It recombines partially out of phase with
the incident fundamental because of the difference in phase velocities. The in-
cremental phase shift at a given point depends on the interactions that occur ear-
lier in the sample and hence is nonlocal. Furthermore, the higher the fundamen-
tal input intensity, the larger the conversion to the harmonic, and hence the larger
the relative phase shift imparted by the recombining fundamental. This makes
the process nonlinear.

The equations satisfied by the fundamental and harmonic are the standard ones
associated with second-harmonic generation [field notation in Eq. (2.1)], for ex-
ample, for type 1 phase matching:

d
wto—2o, —&(z,20) =i X(e%g(— 20;0,0)EH w)e™F;

dz n(2w)c

d 2w '

20-w— o, —&(z,w) =i XA 020, 0)EQw)E(w)e ™2,
dz n(w)c
2lo) ) 2lo) )
1= T Xert(C 020, 0); H= X 20;0,0); (10.6)
n(w) n2w)

in which th)‘: ¢/ 2w) ngé)(—2w; w,w)é(w)éw), where é(w) denotes the field
unit vectors. Numerical solutions for the fundamental’s nonlinear phase shift, funda-
mental intensity versus distance, and nonlinear phase shift with input intensity are
shown in Figs. 83 and 84 [262]. The increase in the nonlinear phase shift in the fun-

Figure 83
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[258].
|
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Figure 84
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Variation with the incident fundamental intensity of the nonlinear phase shift
A@NT for various phase mismatches AkL [258].

damental, A@"“(w), occurs in steps with the step size increasing with increasing
€ .on=/|AK| with a maximum step size of /2, Fig. 83(a). Also, as shown in Figs.
83(a) and 85, there is a maximum nonlinear phase shift with distance that occurs at
|AkL|= 1.67r. Note that for large phase mismatch, the conversion to the harmonic is
small, A¢p"N(w) grows quasi-linearly with distance, and a definition for n, gy
would be useful. Finally, note that the steps in phase shift occur as the harmonic con-
verts back to the fundamental, in keeping with the simple model in Fig. 82. Note,
however, that there is a local phase shift of 77/2 for fundamental-to-harmonic and
another 7r/2 for harmonic-to-fundamental conversion; so the nonlinear phase shift
due to backconversion of the harmonic to the fundamental exists on the background
of a 7 phase shift. The growth of A $N-(w) with input intensity is initially linear in

Figure 85
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second-harmonic intensity for various values of the normalized nonlinearity. Here
I'=wd2|Ey|/ c\n s, [258].
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intensity but does saturate at very high intensities as shown in Figs. 84 and 85, since
the second harmonic departs from sinc?(AkL/2) under those conditions [263]. Fi-
nally, from Fig. 83(b), it is clear that the sample length has to be chosen so that the
fundamental is fully recovered to its input value in order to maintain high net funda-
mental throughput. As always when looking at nonlinear phase shifts there is the as-
sociated nonlinear loss, which here is the loss of the fundamental. For low conver-
sion this loss mimics 2PA; i.e., two photons go the second harmonic as opposed to
heat in the real 2PA case.

As suggested in Fig. 84, for large AL, i.e., small harmonic conversion, or small
input irradiance, i.e., again small depletion, it is possible to obtain a simple for-
mula for n; o, First, the harmonic generation equation is solved for negligible
depletion of the fundamental, and the solution is inserted into the equation for fun-
damental regeneration. This gives

d &1l
—&(z,w)=i—1 — ™| E(w)|*E(w
0 (z,0) Ak[ JIE(w)PE(w)
(10.7)
d STS _
= —E&(z,w)= —{sin(Akz) + i[1 — cos(Akz) [} E(w) PE(w).
dz Ak

To find a simple definition for the effective n, ,,s coefficient in the negligible fun-
damental depletion regime, one can simply compare the imaginary part of Eq. (10.7)
at some point z with the Kerr formulas d€(z, w)/dz=ik,cn; kel (0)E(z, ). This
procedure yields

(10.8)

nZ,nlcas =

4oldyT . 2( Akz)

sin”| —
Aegn*(w)n(2w)Ak 2

in which L is the sample length. Of course, this definition gives a comparison of
alocal x** nonlinearity to the nonlocal cascading. A different comparison can be
made by integrating both third-order and cascaded second-order equations over
the sample length prior to defining an effective n, (or effective «,), which in-
cludes the effects of copropagating fundamental and second- harmonic beams
[264]. Note that in the final version we use d(z)( 2w;w,w)=2 X ( 2w;0,0),
since it is the material constant d(z) that is commonly tabulated for second-order
interactions. For fundamental 1nput intensities consistent with negligible funda-
mental depletion, the accumulated nonlinear phase shift A@N" at the end of a
sample of length L is given by

20°[dgT
Aegn*(w)n(2w)Ak

L
MG~ | bzl () = L{1 ~sinc{ AL T} ().
0

(10.9)

There are a number of interesting properties exhibited by the cascading nonlin-
earity. For example, for AkL — o, A@"" is proportional to L, similar to the Kerr
case. Furthermore, the sign of the effective nonlinearity 7, ,,.,; depends on the wave-
vector mismatch: it is positive for Ak >0 and changes sign when the wave vector
mismatch condition is tuned through Ak=0; i.e., the nonlinearity can be changed
from self-focusing to self-defocusing.

x? interactions are parametric processes, i.e., they conserve energy. This fol-
lows immediately from the real part of Eq. (10.7), which describes the periodic
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exchange of energy between the fundamental and the harmonic and can be writ-
ten in the negligible fundamental depletion limit as

d AdGT R o)
)=
dz n(2w)n(w)e cAk

sin(Akz)P(z, ). (10.10)

The small loss of the fundamental at z=L due to the generation of the second
harmonic is obtained from

vdlizw)  AdgTklw)
J - f sin (Akz))dz; (10.11)

0 Pz,w __n(2w)n2(w)socAk 0

so the normalized fundamental transmission coefficient for the sample is given
by

100,0) ~ I(L, ®) 2[d{ PR () AKL
- =1 - ——>L%(0,w)sinc’| —
1(0, w) n(2w)n*(w)eyc
(10.12)

This formula is reminiscent of the 2PA process that accompanies the Kerr non-
linearity near a two-photon resonance, but of course there is no absorptive loss in
this process and only a “loss” of the fundamental to the harmonic.

Experiments have confirmed the theoretical predictions for this cascading pro-
cess. A Z-scan experiment measures the nonlinear phase shift experienced by a
beam passing through a sample and hence works for the cascading nonlinearity
as well. Results are shown in Fig. 86 for the phase shift experienced when
second-harmonic generation is tuned through the phase-match condition in a
KTP (KTiOPO,) sample [265]. The small differences between experiment and nu-
merical solutions to the theory are probably because the calculations were done for
cw plane waves, whereas only approximate corrections were applied to the results of
the experiments, which involved pulses and finite beams. However, it is perhaps sur-
prising that results of experiments performed in a limit of strong second-harmonic
conversion bear a strong resemblance to Egs. (10.9) and (10.12), which were derived
in the negligible fundamental depletion limit. Nonlocal cascading also leads to the
spectral broadening normally associated with self-phase-modulation [266]. Further-
more, all-optical switching based on cascading has also been obtained for a number
of device configurations and found to be in excellent agreement with theory [258].

Clearly this nonlinearity will exist in all second-order materials. We illustrate
this with the example at A\=1 um of QPM LiNbQOj;, which is phase matchable, and
the organic crystal DSTMS, which is not phase matchable and has a coherence
length of only 3.6 um but a very large nonlinearity d,;=214 pm/V [255]. For L
=1 cm, 1y 4 is calculated to be 2 X 1072 cm?/W and 3.6 X 107" cm?/W for
QPM LiNbO; (assuming |AkL| ~ 1.677) and DSTMS at \,,,= 1 um [255]. The con-
clusion is obvious, namely, that the material must either be phase matchable or the
second-order nonlinearity huge, or preferably both, for this mechanism to be impor-
tant! Furthermore, this effect saturates, and hence these analytical results are valid
only for small intensities.

The turn-on and turn-off times are given by the transit time for light to cross the
sample.
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Figure 86
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scan. (a) Theory and (b) experiment for effective two-photon loss from the har-

monic to the fundamental. (c) Theory and (d) experiment for the nonlinear phase
shift [265].

11. Conclusions

The phenomena discussed here lead to a large spectrum of possibilities for the
magnitude and speed of an intensity-dependent change in the refractive index
and absorption. The salient question is, what material (or material system) is the
optimum? A panel was convened in 1986 to discuss just this question, and its re-
port was published as a paper [267]. There it was concluded that to within a
couple of orders of magnitude, the product (1, X response time) is a constant.

Twenty years later, this conclusion is still valid for nonlinearities ranging over 16 or-
ders of magnitude!

Also pointed out in that series of papers is that the details of an application dic-
tate which material system is most appropriate. For example, for all-optical
switching that requires picosecond response times, it is usually necessary to ac-
cumulate a nonlinear phase shift of about 7 in a nonlinear medium to get suffi-
cient interference between two beams to perform a switching operation. This
seems to imply that one simply needs to make the nonlinear medium long
enough (L) or the intensity (/) high enough to get r, since A$N-=n,IL. However,
linear and nonlinear loss or even fabrication technology will limit the practical
sample length, especially since high throughput is also an important criterion. Fur-
thermore, the Kerr relation An=n,I is only a low-intensity approximation, and there
is an upper limit to Az due to either saturation or material damage. These consider-
ations have led to the definition of two figures of merit W=2An,,,(I)/ N\, > 1
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and T=\,.a,(I)/n,y(I) <1, where a, is the 2PA coefficient, that need to be satisfied
[268]. The material that best satisfies these conditions and allows nonlinear phase
shifts of >100 is fused silica at 1550 nm in fiber form because of its very low loss
and beam confinement, which arrests beam spreading on propagation and maintains
high intensities for kilometer distances. The lesson here is that materials should be
operated in their nonresonant regime, because there the ultrafast Kerr nonlinearity is
a constant and the loss, linear and nonlinear, is very small. Note however, that even in
fibers, if the operating wavelength is extended into the region in which absorption
occurs due to vibrations, the figures of merit can be violated; so in general specific
materials are useful only over specific wavelength ranges. This is a strong argument
for continuing intensive research into the spectral dependence of nonlinear coeffi-
cients over broad wavelength ranges.

While most of this paper has looked at nonlinear refraction, it is impossible to
fully describe these phenomena without also mentioning the nonlinear absorp-
tion processes that lead to these effects. Just as linear absorption leads to refrac-
tion via causality and Kramers—Kronig relations, similar connections can be
made with nonlinear processes, as the example of the bound electronic 7, result-
ing from a combination of Raman, ac Stark, and 2PA effects. Every change in
index can be attributed to an absorption process occurring at some frequency
even if widely separated.

For applications that do not require fast response times (longer than microsec-
onds), PR and liquid crystal media are ideal. They can have nonlinearities
>1 ¢cm?/W and are ideal as media for exploring new phenomena. In fact, in most of
these cases it is the integrated energy rather than the intensity that is the key param-
eter. Furthermore, the changes in refractive index may not be reversible. For ex-
ample, turning off the index change may require illuminating the medium with ra-
diation of a different wavelength. This is the case for the huge nonlinearities that rely
on trans-cis isomerization of organic molecules.

Thermally related nonlinearities are also very large and easily accessible with
low-power cw lasers. But bear in mind that a temperature change generated lo-
cally diffuses with time, and the final steady state is determined by a sample’s
geometry, thermal conductivity, and thermal boundary conditions. Hence the re-
sults of an experiment may not be reproducible from sample to sample.

The nuclear contribution due to vibrational modes and electrostriction are nor-
mally relatively small effects. We note, however, that they do lead to large stimu-
lated effects such as stimulated Raman and Brillouin scattering under appropri-
ate conditions [1,2].

One of the most common consequences of an intensity-dependent refractive in-
dex on all time scales is the self-focusing or self-defocusing of high-intensity
optical beams with finite cross section. The beam itself creates an effective lens
in the medium as a direct consequence of An(7). On propagation this can lead to
fascinating effects in high-intensity nonlinear optics and ultimately damage (see
[269] for recent reviews). When the nonlinear effect approximately cancels out
dispersion or diffraction, this can result in beams with fascinating properties,
which do not spread in time or space, as solitons or solitary waves or both, better
known as optical bullets [270].

In addition, we note that the intensity-dependent refractive index can have an ef-
fect on second-order nonlinear interactions such as second-harmonic generation
and optical parameteric oscillators, whose efficiency is based on phase matching
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that requires finding conditions to make some index difference vanish. For ex-
ample, in birefringent crystal media, both the intensity-dependent refractive in-
dex coefficients and dn/dT depend on the optical polarization. Hence changing the
incident intensity can detune the phase-matching condition in frequency conversion
devices.

Additional ramifications of an intensity-dependent refractive index and nonlin-
ear absorption can be found in standard textbooks [1,2].
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