
N
m

D
G
1

o

2

S

3

8

*

R
p

1
2

A

onlinear refraction and absorption:
echanisms and magnitudes

emetrios N. Christodoulides,1 Iam Choon Khoo,2 Gregory J. Salamo,3

eorge I. Stegeman,1,* and Eric W. Van Stryland1

College of Optics and Photonics, Center for Research in Optics and Lasers, University
f Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, USA

Department of Electrical Engineering, 121 Electrical Engineering East, Pennsylvania
tate University, University Park, Pennsylvania 16802, USA

Department of Physics, University of Arkansas, 226 Physics Building,
25 West Dickson Street, Fayetteville, Arkansas 72701, USA

Corresponding author: george@creol.ucf.edu

eceived August 6, 2009; revised October 27, 2009; accepted October 27, 2009;
ublished January 26, 2010 (Doc. ID 115416)

We provide an in-depth treatment of the various mechanisms by which an inci-
dent light beam can produce an intensity- or flux-dependent change in the re-
fractive index and absorption coefficient of different materials. Whenever pos-
sible, the mechanisms are initially traced to single-atom and -molecule effects
in order to provide physical understanding. Representative values are given for
the various mechanisms. Nine different mechanisms are discussed, starting
with the Kerr effect due to atoms and/or molecules with discrete states, includ-
ing organic materials such as molecules and conjugated polymers. Simplified
two and/or three-level models provide useful information, and these are sum-
marized. The nonlinear optics of semiconductors is reviewed for both bulk and
quantum-confined semiconductors, focusing on the most common types II–VI
and III–V. Also discussed in some detail are the different nonlinear mechanisms
that occur in liquid crystals and photorefractive media. Additional nonlinear
material systems and mechanisms such as glasses, molecular reorientation of
single molecules, the electrostrictive effect, the nuclear effect (vibrational con-
tributions), cascading, and the ever-present thermal effects are quantified, and
representative tables of values are given. © 2010 Optical Society of America

OCIS codes: 190.4720, 160.4330.
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onlinear refraction and absorption:
echanisms and magnitudes

emetrios N. Christodoulides, Iam Choon Khoo, Gregory J. Salamo,
eorge I. Stegeman, and Eric W. Van Stryland
. Introduction

onlinear processes occur in abundance in nature. Optics is of course no excep-
ion, and nonlinearities are inevitable. At high input optical intensities, there is
n intensity-dependent change in a material’s refractive index, frequently linked
o an intensity-dependent absorption change. (Note that here we adopt the more
ommonly used term “intensity” rather than “irradiance” to describe light in
nits of power/area.) Nonlinear index and absorption changes play the key role
n many important nonlinear phenomenon such as all-optical switching or soli-
on generation; they may be harmless artifacts, for example, in degenerate four-
ave mixing, or they may be deleterious, for example, in second-harmonic gen-

ration or parametric mixing. Nonlinear absorption is the key phenomenon in
onlinear spectroscopy. It is surprising that, given the important role of such
onlinear effects, the relevant information is scattered throughout the scientific
iterature and there is no review of the different physical phenomena responsible
or these effects.

he intensity-dependent refractive index n2�I�, where I is the intensity, is defined
y �n=n2�I�I. Historically n2�I� was first defined for the Kerr effect in terms of
he sum of the real part of the third-order electronic susceptibilities ��3��−� :
� ,� ,��+��3��−� :� ,−� ,��+��3��−� :� ,� ,−��. In this case, the index
hange is local and effectively instantaneous so that �n=n2I. This electronic
onlinearity has proved very useful for probing different nonlinear interactions,
ince many problems can be solved analytically with this particular form for the
ndex change. However, in addition to the Kerr effect there is a myriad of addi-
ional physical mechanisms that also lead to an intensity-dependent refractive
ndex change. Many of them depend on the state of the matter that is being
robed optically, e.g., polymer, semiconductor, liquid crystal, or glass. In this tu-
orial review we discuss the physics of these mechanisms and derive, where pos-
ible, formulas that link index change to intensity, and we provide typical values
or the intensity-dependent refractive index coefficients and the characteristic
imes that it takes to produce the index change when an optical field is turned on
nd the decay time when the field is turned off. In order to achieve these goals, it
roved useful in this review to first describe the pertinent physics of some of the
nique states of matter such as conjugated polymers, semiconductors, liquid
rystals, and photorefractive (PR) materials.

lthough a principal goal of this paper is to discuss the relevant physical mecha-

isms that give rise to an intensity-dependent refractive index and absorption, in

dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 62
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he final analysis it is necessary to evaluate these pertinent nonlinear coefficients
xperimentally. First, the very parameters that enter into expressions for the non-
inearity require experimental determination. Second, although many nonlinear
echanisms can be described on a single-molecule level, the transition to the

ondensed matter phase is not very precise because of intermolecular interac-
ions, collisions, local field effects, etc. Therefore, although many of the gross
eatures, such as location of maxima, symmetry relations, and a first-order esti-
ate of dispersion with frequency, can be obtained successfully from single-
olecule theories, ultimately experimental measurements of nonlinear coeffi-

ients, most specifically in this case the nonlinear refractive index, are needed in
rder to interpret data and accurately predict phenomena. Nonlinear optics is
rimarily an experimental discipline!

he nonlinear mechanisms to be discussed in this review are listed below:

1. Nonlinearities involving transitions between discrete molecular states
2. “Glass” nonlinearities
3. Semiconductor nonlinearities
4. Nuclear (vibrational) contributions to n2.
5. Molecules with anisotropic polarizabilities

(a) Molecular reorientation
(b) Liquid crystals

6. Photorefractive effects
7. Electrostriction
8. Thermal nonlinearities
9. Cascading of second-order nonlinearities

his list is arranged to be approximately in order of increasing time constants,
xcept for cascading, which is a special case. Note that some of the mechanisms
ccur in all materials, and others are material specific.

n Section 2, nonlinear refraction and absorption due to transitions between dis-
rete states in matter, principally dielectric and organic media, are explored.
ince the general case is very complicated, the formulas are reduced, assuming a

wo-level system, to analytical formulas for the nonlinearity near and on the one-
nd two-photon resonances; off resonance, in which case the damping term in
he resonance denominators is set to zero; and finally in the nonresonant limit, in
hich the photon frequency is ignored relative to the resonance frequencies as-

ociated with the transitions. Insights into some general properties of nonlineari-
ies gained from applying a two-level model are summarized. In addition, since
rganic molecules are classical systems with discrete energy levels, the physics
nd magnitudes of their nonlinearities are reviewed. Included are polyenes and
heir polymerized counterparts, i.e., conjugated polymers, a variety of symmet-
ic and asymmetric charge transfer molecules, and the special cases of dendrim-
rs. Finally, the phenomena of excited state and reverse saturable absorption
RSA) are discussed with illustrative examples.

n Section 3 the nonlinearities of glasses are briefly discussed. They are basically
iscrete energy level systems broadened to overlap between states by the ran-
om, amorphous, disordered nature of a glass. Although the focus is primarily
n fused silica, for which the dispersion in n2 is well known and highly relevant
o communications fibers, the effect on the nonlinearities of adding various ox-
des is summarized. To date, the largest nonlinearities have been obtained in
halcogenide glasses whose absorption edge is in the near infrared.
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 63
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ection 4 deals with semiconductors, which exhibit the largest and best under-
tood range of physical phenomena responsible for different nonlinearities. The
argest nonlinearities arise from the absorption of light with the consequent
ransfer of an electron from the valence to conduction bands. Even larger non-
inearities, but over a narrow spectral range, occur as a result of bleaching of ex-
iton states located in the bandgap below the conduction band. The effects of ap-
lying active pumping of electrons from the valence band to conduction bands
ollowed by stimulated emission reverses the sign of the nonlinearities and leads
o nonlinear gain rather than loss. The different effects that lead to nonlinearities
or photon energies below the bandgap are summarized next. The analytical for-
ulas derived in this spectral region are shown to be in excellent agreement with

xperiment. Finally, the results for nonlinearities of the confinement of electrons
o two (quantum wells), one (quantum wires) and zero (quantum dots, QDs) di-
ensions are reviewed. Evidence is presented for modest enhancements in

uantum wells (factor of 2–3). However, it is clear that in most QD systems stud-
ed to date there is no clear measurable enhancement except perhaps for GaAs in
ne case, in which an order of magnitude enhancement has been reported.

ection 5 reviews the nonlinearity obtained from coupling to vibrational modes
n matter. The contributions are of the order of a few tens of percent in glasses.

ection 6 deals with the reorientation of anisotropic molecules, individually or
ollectively, and the resulting contributions to nonlinear phenomena. For single
olecules, the dipoles induced by an optical field tend to align the large mol-

cule polarizability axis with the field, creating a refractive index anisotropy in
he liquid state. In liquid crystals, intermolecular forces lead to collective behav-
or. This results in a spectrum of nonlinearites due to absorption and resulting
emperature changes, which reduce the size of the aligned regions and hence the
nduced index change. If the liquid crystal molecules are anchored at the sample
urfaces, the application of electric fields results in molecular reorientation with
istance into the sample or a field-dependent threshold for decoupling from the
urface anchoring. Both cases lead to an intensity-dependent refractive index.
inally, doping a liquid crystal with dye molecules that undergo structural
hanges (trans-cis isomerization) on light absorption can disrupt collective ori-
ntation in liquid crystals, resulting in huge nonlinearities. All of these effects
re discussed in Section 6.

hotorefractive media, explored in Section 7, are another source of very large
and usually very slow) nonlinearities. Their physics involves absorption that
aises an electron from a donor state to the conduction band, the motion of that
lectron either due to diffusion or applied fields, and then retrapping in an ac-
eptor state some distance from the initial absorption. This process introduces
onlocality and electric fields due to the charge separation, which, via the
lectro-optic effect, yield index changes. The nonlocality is responsible for a
umber of different phenomena such as beam fanning and two-beam coupling.
hese processes are quantified, and typical numbers are given.

ection 8 contains information on the electrostrictive effect, which always com-
resses a material along the field direction. This effect, although relatively slow
nd small, leads to acoustic wave generation, which, depending on sample ge-
metry, can cause spurious effects on the light beam.

he thermo-optic effect (described in Section 9) arises because of beam absorp-
ion, followed by changes in sample temperature and hence index changes. De-
ending on the time scale of measurements of the nonlinearity and the magni-
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 64
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ude of the material absorption coefficient, this can be the dominant nonlinear
ffect. The decay time scale of the index change is slow and depends on beam
eometry and the material’s thermal properties.

he last contribution to nonlinear effects that mimic nonlinear absorption and
hanges in index proportional to intensity occurs owing to the cascading of
econd-order nonlinearities. This can occur at the molecular level (local cascad-
ng) or on propagation coincident with the generation of new frequencies (non-
ocal cascading). The latter can lead to large effects, especially if the second-
rder process is near a phase-match condition, for example, in second-harmonic
eneration. These effects are described in Section 10.

ome concluding remarks are given in Section 11.

. Nonlinearities Involving Transitions between
iscrete Molecular States

he physical origin of nonlinearities involving transitions between discrete mo-
ecular states is the electric dipole interaction between the electrons in atoms and
olecules and an electromagnetic field (see standard textbooks such as [1,2] for

etailed discussions). Electrons are excited from the ground state to excited
tates via the product of three or more electric fields, which can be either the
ame or different electric fields. This changes the electron distribution in the
tom or molecule, and hence the polarization induced by the field has a nonlin-
ar component that is proportional to the product of three fields. The proportion-
lity is calculated from first-order perturbation theory and described in the
ingle-isolated-molecule limit by the sum of three different third-order suscep-
ibilities �̄ijkl

�3� , which are functions of the electric dipole transition elements be-
ween electronic states and the permanent dipole moments in the ground and ex-
ited states. In the condensed matter limit pertinent to nonlinear optics, the
nteractions are described by the sum of three different third-order susceptibili-
ies �ijkl

�3� derived from the molecular susceptibilities.

he starting point for a calculation of�ijkl
�3� is the isolated-single-molecule third-

rder susceptibility �̄ijkl
�3� . For detailed discussions see [1]. (In this tutorial review,

arameters associated with single isolated molecules are identified with an over-
ar.) From a combination of repeated applications of first-order perturbation
heory, the method of averages approach to deal with divergences, limiting the
ight–matter interaction to electric dipole coupling, assuming that the molecule’s
lectrons are initially in the ground state, and limiting the interaction to a single
lectron excitation per molecule, the third-order molecular susceptibility �̄ijkl

�3� for
rbitrary input frequencies �p, �q, and �r is given below by Eq. (2.1). For details
ee the classic paper by Orr and Ward [3]. Here both summations, each over all
f the molecular excited states v, m, and n [see Fig. 1(a)] specifically exclude the
round state g (as indicated by the superscript �); i.e., they are taken over the
xcited states only. Furthermore, the energy separation between states, for ex-

mple m and n, is written as Ēm− Ēn=��̄mn, and the transition dipole moment
etween these states is given by µ̄�mn. The permanent dipole moment in state m is
ritten as µ̄�mm. Usually finite excited state lifetimes for the excited state to the
round state are added phenomenologically by making �̄mn complex for the ex-
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 65
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ited states, i.e., �̄ng→ �̄ng− i�̄ng. Note that subsequent to Eq. (2.1) �̄ng is a real
uantity:

�̄ijkl
�3� �− ��p + �q + �r�;�p,�q,�r�

=
1

�0�
3 �

v,n,m
�� µ̄gv,i�µ̄�n,l − µ̄gg,l��µ̄nm,k − µ̄gg,k�µ̄mg,j

��̄�g − �p − �q − �r���̄ng − �q − �p���̄mg − �p�

+
µ̄gv,j�µ̄vn,k − µ̄gg,k��µ̄nm,i − µ̄gg,i�µ̄mg,l

��̄
�g
* + �p���̄ng

* + �q + �p���̄mg − �r�

+
µ̄gv,l�µ̄vn,i − µ̄gg,i��µ̄nm,k − µ̄gg,k�µ̄mg,j

��̄
�g
* + �r���̄ng − �q − �p���̄mg − �p�

+
µ̄gv,j�µ̄�n,k − µ̄gg,k��µ̄nm,l − µ̄gg,l�µ̄mg,i

��̄
�g
* + �p���̄ng

* + �q + �p���̄mg
* + �p + �q + �r�

�
−

1

�0�
3 �

n,m
�� µ̄gn,iµ̄ng,lµ̄gm,kµ̄mg,j

��̄ng − �p − �q − �r���̄ng − �r���̄mg − �p�

+
µ̄gn,iµ̄ng,lµ̄gm,kµ̄mg,j

��̄mg
* + �q���̄ng − �r���̄mg − �p�

+
µ̄gn,lµ̄ng,iµ̄gm,jµ̄mg,k

��̄ng
* + �r���̄mg

* + �p���̄mg − �q�

+
µ̄gn,lµ̄ng,iµ̄gm,jµ̄mg,k

��̄ng
* + �r���̄mg

* + �p���̄ng
* + �p + �q + �r�

� . �2.1�

Figure 1

a) Schematic of the electronic energy levels for a molecule; g is the ground state
nd m, v, and n are arbitrary excited states. Transition diagrams for (b) ��3�

�−� ;� ,� ,−��, (c) ��3��−� ;� ,−� ,��, and (d) ��3��−� ;−� ,� ,��.
his is called the “sum over states” equation, typically abbreviated S.O.S. The
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sual notation is used in which the frequency of the field affected by the nonlin-
ar interaction ��p+�q+�r� appears as the first argument in �ijkl

�3� �−��p+�q

�r� ;�p ,�q ,�r� and the input interacting fields have frequency components �p,

q, and �r. Note that in this notation all of the fields can be±with the negative
requency components corresponding to the complex conjugate of the fields, which
re written as

Ej,inc�r�,t� =
1

2
Ej���e−i�t + c.c. =

1

2
Ej���ei�k�·r�−�t� + c.c. �2.2�

f the medium of interest is a dilute gas of molecules so that molecules can still
e considered isolated, the macroscopic third-order susceptibility �ijkl

�3� �−��p

�q+�r� ;�p ,�q ,�r� is given by

�ijkl
�3� �− ��p + �q + �r�;�p,�q,�r� = N�̄ijkl

�3� �− ��p + �q + �r�;�p,�q,�r� ,

�2.3�

n which N is the number of molecules per unit volume. However, the principal
nterest in n2,el is for condensed matter in which both intermolecular interactions
nd the electromagnetic fields generated by the dipoles induced at the site of a spe-
ific molecule by neighboring molecules are important. (See standard textbooks
uch as [1,2] for detailed discussions.) The former can lead to changes in the reso-
ances and the lifetimes of the electrons in excited states, whereas the latter results in
he local field at a molecule being different from those fields obtained from

axwell’s equations. (Solving the standard boundary conditions for input beams at
sample’s interfaces yields the Maxwell fields in the medium of interest.) Unfortu-
ately, there is no truly satisfactory way for calculating the local field correction to
he Maxwell fields. One usually resorts to the approximate Lorenz–Lorenz relation
n which each of the incident (Maxwell) fields associated with �p, �q, and �r, i.e.,

j��p�, Ek��q�, and El��r� is multiplied by ��j
r��p�+2� /3, ��k

r��q�+2� /3, and
�l

r��r�+2� /3, respectively, to approximate the local field. Here �j
r��p�=nj

2��p� is
he relative dielectric constant for light polarized along the j axis, x in the current
ase. Thus, in condensed matter,

�ijkl
�3� �− ��p + �q + �r�;�p,�q,�r� = Nf �3��̄ijkl

�3� �− ��p + �q + �r�;�p,�q,�r� ,

f �3� = ��i
r��p + �q + �r� + 2

3
	��j

r��p� + 2

3
	��k

r��q� + 2

3
	��l

r��r� + 2

3
	.

�2.4�

ocusing the discussion to a single input field of frequency � with polarization
long the x axis of the material, there are three separate pathways to n2,el, illus-
rated in Figs. 1(b)–1(d), that affect the field at this frequency. Thus there will be
hree different susceptibilities �xxxx

�3� and a total of 24 separate terms needed to de-
cribe the nonlinear interaction for each summation over the excited states.The elec-
ronic nonlinear refractive index coefficient n2,el is then defined in terms of the these

usceptibilities by

dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 67



w

w
t
t

T
t
c
d
t
l
i
e
d
r
e
t
p
f
z
t
c

2

E
m
i
o
n
m
m

A

n2,el =
1

4nx
2�0c


�R,xxxx
�3� �− �;�,− �,�� + �R,xxxx

�3� �− �;�,�,− ��

+ �R,xxxx
�3� �− �;− �,�,��� =

3

4nx
2�0c

�̃R,xxxx
�3� �− �;�,− �,�� , �2.5a�

here

�̃R,xxxx
�3� �− �;�,− �,�� =

1

3

�R,xxxx

�3� �− �;�,− �,�� + �R,xxxx
�3� �− �;�,�,− ��

+ �R,xxxx
�3� �− �;− �,�,��� ——→

nonresonant,�→0

= �R,xxxx
�3� �− �;�,− �,�� = �R,xxxx

�3� �− �;�,�,− ��

= �R,xxxx
�3� �− �;− �,�,�� , �2.5b�

here the subscripts R and I refer to the real and imaginary parts of ��3�, respec-
ively. This index change is accompanied by an intensity-dependent change in
he absorption defined by �
=
2�I�I with


2,el =
�

2nx
2�0c

2

�I,xxxx

�3� �− �;�,− �,�� + �I,xxxx
�3� �− �;�,�,− ��

+ �I,xxxx
�3� �− �;− �,�,��� . �2.5c�

he spectral breadth of an optical spectrum, for example, the absorption spec-
rum, is related to just the radiative lifetime of the excited state only in special
ircumstances [1,2]. In the formulas above it has been assumed that the decay is
ue to coupling to the ground state, which results in homogeneous broadening of
he susceptibilities. However, there are other possible contributions to the state
ifetime, especially in dense gases or condensed matter. These typically lead to
nhomogeneous broadening of spectral lines and a variety of line shapes differ-
nt from those given above. Examples are intermolecular forces, collisions in
ense gases, and additional decay channels involving virtual states. It is prima-
ily when a multiple of the incident photon energies approximately equals the
nergy difference between the ground and an excited state that the response
akes on the simple form used above. Because of the multiple decay mechanisms
ossible, the results of the S.O.S. approach, which considers only a single,
requency-independent lifetime, cannot in principle be used in the so-called the
ero-frequency limit, although it is frequently used successfully in comparing
he magnitude of nonlinearities in families of molecules in the field of theoreti-
al chemistry [4].

.1. Two-Level Model in Isotropic Media

ven without the above considerations on excited state lifetimes, the above for-
ulas for the general third-order susceptibility are quite complicated, since they

nvolve multiple summations over all of the excited states. However, a great deal
f physical insight can be obtained from a simple two-level model with one reso-
ant frequency �̄10 for a single input beam (x polarized for example) in three com-
on limits. In fact, a single dominant one-photon transition is a very useful approxi-

ation in many molecules for the interaction of radiation with that molecule.
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f the 24 terms that need to be evaluated in the general case, only 2 contain two-

hoton terms of the form ���̄10±2��2+ ��̄10/2�2� due to �µ̄10�2�µ̄11− µ̄00�2, and
learly only the resonance at �̄10
2� gives rise to an enhanced two-photon nonlin-
arity. That is, a molecule must have a nonzero difference in its permanent dipole
oments, which rules out two-photon effects in symmetric molecules in the two-

evel approximation. (Two-photon effects solely due to dipole active transition mo-
ents between states occur in a three-level model of molecules of arbitrary symme-

ry!)

he remaining 22 terms contain terms of the form ���̄10±��2+ ��̄10/2�2�m in
heir denominator with m=1,2 ,3. These terms arise owing to both �µ̄10�2�µ̄11

µ̄00�2 and �µ̄10�4 interactions. Clearly in those cases enhancement only occurs when
¯ 10
�.

ll of the terms were evaluated numerically for �̄10
� and �̄10
2�, and the
esults are summarized in Figs. 2 and 3.

Figure 2

requency dispersion in the normalized (multiplied by ��̄10/2�3) (a) n2��� and

b) 
2��� for the contributions due to �µ̄10�4 for �
 �̄10. Here �̄10=1, �̄10/2
0.01.The exact and approximate (formulas in text) curves for n2,el��� and 
2,el���
oincide.

Figure 3

requency dispersion in the normalized (multiplied by ��̄10/2�3) n2��� and

2��� for the contributions due to �µ̄10�2�µ̄11− µ̄00�2 for 2�� �̄10. Here, �̄10=1 and
¯

10/2=0.01.
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ere, only the frequency dispersion terms are given and these have been multi-

lied in the numerator by ��̄10/2�3 to produce dominant terms of order unity for the
ne-photon resonance case. In the curves labeled “exact” all of the terms were in-
luded, and it was assumed for simplicity that �µ̄10�2�µ̄11− µ̄00�2= �µ̄10�4. In brief sum-
ary, near the one-photon resonances almost complete cancellation occurred ��̄10

��, although the individual contributions to the �µ̄10�2�µ̄11− µ̄00�2 terms were large,
nd the net results were 4–5 orders of magnitude smaller than the leading �µ̄10�4 term,
.e., negligible unless �µ̄11− µ̄00� is of the order of 25 or greater.And in all cases it was
he triple resonance, m=3, term associated with ��3��−� ;� ,−� ,�� [Fig. 1(b)] that
ominated the response. Based on these numerical results, approximate formulas
ere obtained for n2,el and 
2,el and are given below:

n and near resonance ��̄10� �̄10�

ne-photon resonance: �� !�− �̄10 ! �5�̄10�:

n2,el � −
1

4nx
2�0c

N

�0�
3
f �3��µ̄10�4

2��̄10 − �����̄10 − ��2 −
�̄10

2

4
	

���̄10 − ��2 +
�̄10

2

4
	3

, �2.6a�


2,el � −
�

2nx
2�0c

2

N

�0�
3
f �3��µ̄10�4

�̄10��̄10 − ���2�̄10��̄10 − �� +
�̄10

2

4
	

�̄10���̄10 − ��2 +
�̄10

2

4
	3

.

�2.6b�

owever, off resonance, for which the contribution of �̄10 in the denominators
an be neglected, the contributions of all 24 different terms become comparable, and
xactly equal in the �→0 limit. Exact formulas appropriate to these cases are given
elow.

ff-resonance �� !�− �̄10� �̄10�:

n2,el =
Nf �3�

4nx
2�0

2c�3� �µ̄10�2�µ̄11 − µ̄00�212�̄10

��̄10
2 − �2���̄10

2 − 4�2�
−

�µ̄10�44�̄10

��̄10
2 − �2�3

�3�̄10
2 + �2�� ,

�2.7a�


2,el =
N

2nx
2�0c

2�3

�2�̄10�̄10

��̄10
2 − �2�3

f �3���µ̄10�2�µ̄11 − µ̄00�2
104�4 − 25�̄10

2 �2 − 7�̄10
4

��̄10
2 − 4�2�2

+ �µ̄10�4
4�3�2 − �̄10

2 �

��̄10
2 − �2� �. �2.7b�

¯
onresonant (limit �→0, i.e., �10�2�):
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n2,el = 3
Nf�3�

nx
2�0

2c�3�̄10
3


�µ̄10�2�µ̄11 − µ̄00�2 − �µ̄10�4� . �2.7c�

ote the interference between the �µ̄10�2�µ̄11− µ̄00�2 and �µ̄10�4 terms.

imilar calculations were for the frequency region �̄10
2� with results summa-
ized in Fig. 3. Here only the �µ̄10�2�µ̄11− µ̄00�2 term has a resonance. Given below are
pproximate formulas for both for n2,el and 
2,el.

wo-photon resonance �� !�− �̄10/2 ! �5�̄10�:

n2,el �
1

4nx
2�0c

N

�0�
3
f �3��µ̄10�2�µ̄11 − µ̄00�2� 8���̄10 − 2�� − � �̄10

2

2�̄10

�	
�̄10

2 ���̄10 − 2��2 + � �̄10

2
�2	� ,

�2.8a�


2,el �
�

2nx
2�0c

2

N

�0�
3
f �3��µ̄10�2�µ̄11 − µ̄00�2� 4�̄10

�̄10
2 ���̄10 − 2��2 + � �̄10

2
�2	�.

�2.8b�

he difference between the exact and the approximate curves for the dispersion
n n2,el shown in Fig. 3 results from the neglect of the term with the denominator

��̄10+2��2+ ��̄10/2�2� in the approximate formula.

he question of “nonresonant” susceptibilities merits further comment. The lit-
rature is replete with measurements of n2 that are claimed to be “nonresonant.”
uch claims are frequently erroneous and most likely refer to off-resonance. The

ey consideration is usually whether both ��̄10−��� �̄10 and �̄10�� are satis-
ed for a measurement to be in the nonresonant regime.

ecall that light of a given frequency can propagate with a specific wave vector
� for a given frequency and direction in one of two orthogonally polarized eigen-

odes. The refractive index of one of these eigenmodes can be changed by its
wn high intensity as discussed above and/or by an intense beam of the same fre-
uency but with orthogonal polarization. Furthermore, the index can also be
hanged by a beam at a different frequency of either polarization. And, unless the
requencies of interest are clearly in the nonresonant regime, each of these can
ave different numerical values and different dispersion with frequency, even in
sotropic media.

or an amorphous isotropic material the symmetry relations for ��3� lead directly
o n2�,el�−�a ;�a�= 2

3n2�,el�−�a ;�a� at any frequency �a, where the polarization of
he index change of interest is identified by � and the orthogonal one inducing the

hange by �. In the nonresonant regime (only), the nonlinear refractive index co-
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fficient at �a by a copolarized beam of frequency �b is n2�,el�−�a ;�b�
2n2�,el�−�a ;�a� and by an orthogonally polarized beam is n2�,el�−�a ;�b�
4
3n2�,el�−�a ;�a�. Unfortunately, in the literature there is frequently no distinction

rawn between these different coefficients and they are assumed to be equal.

or crystalline media, the relations can be much more complex. The pertinent
onzero ��3� coefficients for crystalline media can be found in textbooks (see
tandard textbooks such as [1,2]).

n this review we focus primarily on the frequency degenerate case

2�,el�−�a ;�a�, usually written as n2 for convenience.

.2. Onset of Saturation of Electronic Transitions

n the preceding section the results for n2,el were based on the assumption that a
egligible fraction of electrons were excited out of the ground state (subscript g) into
he excited states Nm, implying that Ng�N in the ground state; i.e., Ng is effectively
constant. This is, however, an approximation, especially in spectral regions charac-

erized by strong absorption, i.e., �
 �̄mg for some state m where Nm can become
onnegligible. Since ��p�� �Ng−Nm�, where p is an integer, this leads to a decrease
n the magnitude of ��p� from its value with negligible population in the excited
tates. More important, for Nm→Ng /2 it also leads to a saturation effect for the
inear absorption at �, which over some time scales mimics the Kerr ��3� and has
ometimes been interpreted as ��3� ,��5� ,��7�, etc. Here we discuss only effective

2 due to saturation, 
2,sat, the contribution that is linear in the intensity.

gain we resort to the two-level model to quantify this effect in the simplest pos-
ible case. As stated previously, the two-level model can yield a very good ap-
roximation, since frequently the largest transition dipole moment occurs from
he ground state to just a single excited state we have labeled m.

he linear susceptibility ��1� for electric-dipole transitions from the ground to
he mth excited state is given by

�xx
�1��− �;�� =

�Ng − Nm�

��0

�µ̄mg�2f �1�
�̄mg − � + i�̄mg/2

��̄mg − ��2 + �̄mg
2 /4

, �2.9�

n which f�1�= ��r���+2� /3 is the local field correction. The excited state decays

symptotically to the ground state with relaxation time 
̄mg= �̄mg
−1 , and it is as-

umed that the decay to all other excited states occurs over much longer times.
hen a cw beam of intensity I��� illuminates the material, the time dynamics of

he ground and dominant excited state, under the assumption that both are only
eakly coupled to other states, is given by

d

dt
Nm = B̄�Ng − Nm��f �1��2I��� −

Nm


̄mg

,

d

dt
Ng = − B̄�Ng − Nm��f �1��2I��� +

Nm


̄mg

. �2.10�

ere B̄ is the Einstein coefficient. In the steady state, for small population of the

xcited state and N=Ng+Nm, the leading term for the population difference is
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Ng − Nm �
N

1 + I���/Isat���
. �2.11�

ince the first of Eqs. (2.10) can be rewritten in terms of the linear absorption

oefficient, this saturation intensity Isat��� is defined in terms of B̄ by

1

Isat���
=

B̄�f�1��2

�̄mg


1��� =
kvac

2��nx��0

�f�1��3�µ̄mg�2
1

��̄mg − ��2 + �̄mg
2 /4

.

�2.12�

herefore for small values of I��� / Isat���

�xx,eff
�1� �− �;�� =

N

��0

f�1��µ̄mg�2
�̄mg − � + i�̄mg/2

��̄mg − ��2 + �̄mg
2 /4


1 − I���/Isat���� ,

�2.13�

hich now contains an intensity-dependent contribution of a form similar to
n=n2,elI.

or input intensities approaching Isat���, the linear susceptibility (and hence the
ontribution to the refractive index) is reduced, i.e., the oscillator strength of the tran-
ition is bleached out.The nonlinear term ��I� is written as �sat

�3��−� ;� ,−� ,�� with
real part �

R,sat
�3� �−� ;� ,−� ,��, which gives

n2,sat =
�R,eff

�3� �− �;�,− �,��

4nx
2�0c

= −
N

16nx
2�0

2c�3
�f�1��4�µ̄mg�4

�̄mg − �

���̄mg − ��2 + �̄mg
2 /4�2

.

�2.14a�

nd the corresponding contribution to the nonlinear absorption is


2,sat = −
Nkvac

8nx
2�3�0

2c
�f�1��4�µ̄mg�4

�̄mg

���̄mg − ��2 + �̄mg
2 /4�2

�2.14b�

hus the saturation effect always leads to absorption that decreases with increas-
ng intensity. As a result, this effect is sometimes called “bleaching” of the state.
or an example in which both 
2,sat and 
2,el occur, see [5]. This effective nonlin-
arity proportional to �µ̄mg�4 is sometimes (mistakenly) identified as the one-photon
esonant component of the electronic nonlinearity given by Eq. (2.6a). In fact it is a
omponent of the Kerr nonlinearity with n2,Kerr=n2,el+n2,sat.

t is interesting to compare this contribution near resonance for a fictitious mol-
cule with zero permanent dipole moments and only one dominant electric di-
ole transition. (This corresponds to a symmetric molecule for which a single,
arge electric dipole transition may not be realistic.) The result is shown in Fig.
(a). Clearly n2,sat is an important ��25% � contribution to n2,Kerr near the one-
hoton resonance. Its relative contribution decreases with increasing frequency.
ote that although it is not strictly valid to extend Eq. (2.14a) too far from resonance

nd certainly not to the zero-frequency limit, since other considerations about radia-
ive loss from virtual states would have to be included, such an extrapolation shows a

ontribution of only �2% in the nonresonant limit.
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hese contributions due to the terms n2,el and n2,sat can be differentiated from each
ther. The first way is by turning off the optical field abruptly (turn-off time
t� 
̄mg) and observing the return of the refractive index to its zero-intensity value.
or the electronic case, the return is instantaneous for a detuning from resonance

�� �̄mg, which involves virtual states, whereas the return due to the saturation ef-
ect takes place over the time scale of
̄mg, since it involves real population of the ex-
ited state, as shown in Fig. 4.

here are a variety of other examples similar to the one just discussed where in-
ex changes are produced by the redistribution of population densities via ab-
orption, both linear and nonlinear absorption. The index changes occur both
hrough the reduction of oscillator strength caused by saturation as discussed
bove, but also through the production of new absorbers. They will be discussed
n Subsection 2.6 below. The signs of the respective refraction changes depend
n the frequency position relative the absorption resonances.

.3. Summary of the Two-Level Model

lthough the above results are based on a simple two-level model and the as-
umption that there is only one contribution to the excited state lifetime that cor-
esponds to homogeneous broadening, some useful conclusions can be made
hat are useful for more general cases.

1. Although there are resonant enhancements in the denominator of the ex-
ressions for n2 and 
2 near the one- and two-photon (and multiphoton in the
eneral case) resonances, this does not necessarily mean that enhancement ac-
ually occurs, because the numerators may vanish or be very small. For example,
ancellation effects make the contributions of the �µ̄10�2�µ̄11− µ̄00�2 terms to n2,el

nd 
2,el negligible relative to the �µ̄10�4 term, which has a ���̄10−��2+ ��̄10/2�2�−3

erm near the one-photon resonance.
2. An intensity-dependent change in the refractive index is always accompa-

ied by a nonlinear change in the absorption.
3. The magnitude and dispersion of the one-photon resonant change in the in-

ex and absorption is negligible compared with the magnitude and dispersion in
he linear refractive index and absorption, which occurs at exactly the same fre-
uency and over the same spectral width. However, the 2PA occurs in a fre-
uency region far from the dominant one-photon absorption (1PA) spectrum, it
s resonantly enhanced and can be measured and used.

4. Intensity-induced population changes between the ground state and the ex-

Figure 4

ecovery of the dispersion in the refractive index induced by the saturation ef-
ect after an optical field is turned off at t=0.
ited state(s) produce significant contributions to the nonlinear index and ab-
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orption near the one-photon resonance. However, their relative contribution de-
reases with increasing ��10−��, and their contributions are negligible in the zero-
requency limit.

5. Off resonance the sign of the nonlinearity depends on the relative magni-
udes of the contributions due to �µ̄10�2�µ̄11− µ̄00�2 and �µ̄10�4, and these contribu-
ions depend strongly on frequency. In contrast to the on-resonance case where one
erm dominates, the contributions of the different terms become comparable. If the
olecule is symmetric (no permanent dipole moments), the nonlinearity is negative

nless contributions from other states are included.
6. The nonlinear index coefficient approaches a constant value with decreas-

ng frequency in the nonresonant limit, whereas the absorption change dies of as
2. Here all of the terms (except for the saturation) contribute equally to n2,Kerr.

requently third-harmonic generation, which depends on ���3��−3� ;� ,� ,���2,
s used to estimate the nonlinear refractive index coefficient given by Eq. (2.5a).
n the nonresonant limit �

R,xxxx
�3� �−3� ;� ,� ,��=�

R,xxxx
�3� �−� ;� ,−� ,��=�

R,xxxx
�3�

�−� ;� ,� ,−��=�
R,xxxx
�3� �−� ;−� ,� ,��, which makes this a valid procedure in

hat limit. However, in general for symmetric molecules

�xxxx
�3� �− 3�;�,�,��

= −
N

�0�
3
f �3��µ̄10�4� 4�̄10 + i�̄10�̄10/�

����̄10�2 − 9�2� − 3i��̄10�����̄10�2 − �2� − i��̄10�
� ,

nd it is clear that there is a different resonant structure for third-harmonic gen-
ration than for n2 and 
2. Therefore in practice the input frequency must be cho-
en so that 3���10 for the two-level model, and in the more general case
���mn for all transition frequencies �mn.

isted in Table 1 are the measured n2 and 
2 coefficients for a number of mate-
ials. Note that although the table contains the net n2, which includes all of the
ontributions (some still to be discussed), these values (with the exception of ni-
robenzene, which has a large rotational component) should be due mostly to the
err effect to within the accuracy of the measurements. There can be large dif-

erences �±50% � in reported values, depending on the measurement technique.
he first comprehensive measurements for n2 were reported by Adair et al. [6]. See
hase and Van Stryland [7] for extensive recent tabulations. Note that these values
re either off-resonance or nonresonant, depending on the difference between the
avelengths of the absorption maxima and the measurement beams, and the spectral
idths of the absorption features as discussed above. Furthermore, they may well

ontain small contributions from some of the other effects discussed here below.

rom the simple two-level model results in Eqs. (2.6), (2.7a), (2.7b), (2.7c),
2.8), (2.10)–(2.13), (2.14a), and (2.14b), large n2s can occur near one and two-
hoton resonances, i.e., when �� �̄10 or 2�� �̄10, and when �µ̄10�2 is large and/or
he difference between permanent dipole moments between the states, i.e., �µ̄11

µ̄00�2, is large, preferably both.

hese conditions for large ��3� due to electronic transitions between discrete
tates are best satisfied in organic materials. To the nonchemist there seems to be
semi-infinite number of possible molecules for nonlinear optics. In fact, to date

our special classes of organic materials were identified as promising and have
eceived most of the attention: (1) linear or quasi-linear molecules and conju-

ated polymers with large �-electron delocalization lengths resulting in large
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µ̄ng�2 and/or �µ̄mn�2; (2) linear molecules with strong charge transfer groups, an
lectron donor at one end and an electron acceptor at the other end, with
-electron bridges between them, and hence large dipole moments and hyper-
olarizabilities; (3) symmetric linear molecules with an electron acceptor group
n the middle and an electron donor group at both ends, separated again by
-electron bridges, and (4) 3D molecules, with and without conjugation, such as
orphyrines, phthalocyanines, and dendrimers. These properties can be molecu-
arly engineered in many materials by judicious choices of chains of carbon
onds, which leads to electron delocalization along the chain. For detailed dis-
ussions, see Nonlinear Optical Properties of Organic Molecules and Crystals,
olumes 1 and 2 [12]. Otherwise the values for n2 in organic materials are typical
f those found in Table 1.

.4. Conjugated Molecules and Polymers

hese systems are characterized by electron orbitals normally associated with
he individual atoms becoming delocalized and extending over the whole mol-
cule (polyenes) or even connected chains of molecules in the case of conju-
ated polymers. They were initially of interest in the field of electrical conduc-
ors, and much of the early development of these materials was focused on this
pplication. Electrical conductivity rises by orders of magnitude when poly-
cetylenes are appropriately doped [13]. Interest in using such materials also for
onlinear optics was triggered by the seminal paper by Sauteret and co-workers
14] in which they reported large third-order nonlinearities from third-harmonic
easurements at 1.89 and 2.62 µm in a number of conjugated polymers in their

Table 1. Representative Materials with Values of n2 and 
2
a

Material
Eg

(eV)

n2	10−15 �cm2/W� 
2 (cm/GW)

1064 nm 532 nm 355 nm 266 nm 532 nm 355 nm 266 nm

LiF 11.6 0.081 0.061 0.061 0.13 �0 �0 �0

MgF2 11.3 0.057 0.057 0.066 0.15 �0 �0 �0

BaF2 9.2 0.14 0.21 0.27 0.31 �0 �0 0.06

NaCl [6] �8.7 1.8

SiO2 �7.8 0.21 0.22 0.24 0.78 �0 �0 0.05

MgO [6] 7.77 0.39

Al2O3 7.3 0.31 0.33 0.37 0.60 �0 �0 0.09

BBO 6.2 0.29 0.55 0.36 0.003 �0 0.01 0.9

KBr 6.0 0.79 1.27 �0

CaCO3 5.9 0.29 0.29 0.37 1.2 0.018 0.8

LiNbO3 3.9 0.91 8.3 0.38

KTP 3.8 2.4 2.3 0.1

ZnS [9] 3.66 6.3 3.4

Te Glass �3.6 1.7 9.0 0.62

ZnSe [9] 2.67 29 −68 5.8

ZnTe [10] 2.26 120 4.2

CdTe [10] 1.44 −300 22

GaAs [10] 1.42 −330 26

Nglass [11] �1.4 2.2

aOrdered according to bandgap energy, Eg, or cutoff wavelength, taken from [8] except
here noted. The values quoted were obtained by using multiple pulse widths in order to

solate the Kerr response. See the references for details. Blank cells indicate no measure-

ent at this wavelength.
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esonant and near-resonant regimes. Specifically, for polydiacetylene [PTS, poly
is(p-toluene sulfonate) of they estimated n2,Kerr=1.8	10−12 cm2/W.

ased on carbon chemistry, there are three basic conjugated polymer types that
re shown schematically in Fig. 5. In their pure form, they exhibit dominant ab-
orption maxima (sometimes called exciton lines) in the 500–900 nm range with
ypically the longer the peak absorption wavelength, the more effective the conjuga-
ion. Of these three classes, namely, polyacetylenes, polydiacetylenes, and polyphe-
ylvinylenes, in general it has not been possible to make optical-quality materials
rom their pure forms, and it has been necessary to add side groups to achieve solu-
ility in solvents etc. In this way, polydiacetylenes and polyphenylvinylenes have
een made suitable for optical applications. The backbone chains still dominate the
olecular nonlinearity, which in the first approximation is independent of these side

roups, although it does reduce the n2 by the fractional extra volume due to the side
roups; i.e., N is reduced.

onjugated molecules are a result of the delocalization of the 2pz orbitals asso-
iated with carbon atoms into � orbitals, which extend over the whole molecule
s shown in Fig. 6 for the acetylene molecule. Consequently the electrons asso-
iated with the initial 2pz orbitals can easily be displaced relatively large dis-
ances in the � orbitals, leading to enhanced polarizabilities along the carbon–
arbon bonds. Furthermore, since the potential wells associated with these
elocalized molecular orbitals are relatively shallow, they are strongly nonpara-
olic and are easily distorted by electric fields, leading to strong nonlinearities.

he prototypical molecules, which can be polymerized via heat or �-ray illumi-
ation into conjugated polymer, are shown in Fig. 5 [15]. For acetylenes,
�uCvCuCvCuR, and diacetylenes,

R� u C v C u C w C u C v C u R,

he bonds shown as double and triple are the ones that delocalize; i.e., they share
heir bond character with the single bonds. R� and R are end groups that termi-
ate the molecule. In the liquid state, these quasi-linear molecules are randomly
riented, thus reducing the net nonlinearities to 1/5 of the value along the chain.
hese molecules can in some cases be polymerized to form amorphous media,

n which case the orientations are essentially random, or thin films deposited on
pecially prepared surfaces for which some degree of alignment is also possible.
ome molecules (unfortunately very few) can be polymerized into optical-
uality single crystals so that the full nonlinearity can be obtained for one polar-
zation. On polymerization, the bonds to the end groups are broken and multiple

Figure 5

tructures of three generic types of conjugated polymers: (a) polyacetylene; (b)
olydiacetylene, where R denotes PTS , 4BCMU, 3BCMU, etc; and (c) polyphe-
ylvinelyne, where R denotes H, , alkyl, aryle, MEH etc.
nits are joined together, producing a polymer, an example of which (polydi-
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cetylene PTS) is shown in Fig. 7. Note that the end groups R and R� actually
erve two functions, the coupling between the carbon–carbon chains in the crys-
al and also used to make the molecules soluble for crystallization from solution.
lthough the polymer chain may be hundreds or thousands of units long, in
ractice the electron coherence length (effective electron delocalization dis-
ance, important to nonlinear optics) is usually limited to at most a few tens of
epeat units.

ure trans-acetylene has been measured via third-harmonic generation to ex-
ibit large third-order nonlinearities in the resonant and near resonant regimes
16,17]. However, it is not readily soluble and has not found application in non-
inear optics. Henceforth the polydiacetylenes (like PTS) and the polyphenylvi-
ylenes [like MEH-PPV, (poly2-methoxy-5-(2�-ethylhexyloxy)-1,4- phenyle-
evinylene)] will be used as illustrative examples in the nonlinear optics
omain.

he backbone chain (characterized by delocalized � electrons due to carbon–
arbon bonds) responsible for the large nonlinearity has no permanent dipole
oments in either its ground or excited states because of the linear symmetry.
urthermore, the linear symmetry means that the electronic states are either

Figure 6

a) Typical electron distribution in acetylene molecule. The �-shell electron
tates (originating from carbon atomic p=2 states), the �-shell electron states
riginate from the carbon atomic s=2 states, and the tightly bound K electrons
ome from the atomic s=1 states. (b) Molecular potential well for the electrons.

Figure 7

a) Crystal structure of the polymer diacetylene PTS [poly bis(p-toluene sul-
onate) of 2,4-hexadiyne-1,6-diol]. The large n2 occurs along the b axis of the
rystal. (b) End groups R and R� (of the diacetylene molecule now link the ad-
acent polymer strands in the crystal lattice [22].
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 78
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ymmetric (gerade) or antisymmetric (ungerade). For allowed electric dipole
ransitions, the initial and final states must have different symmetries. It turns out
hat in this class of materials it is necessary for nonlinear optics to consider three
tates, two of which have even symmetry and one that has odd symmetry [18]. In
oth polydiacetylenes and polyphenylvinylenes, there are strong dipole allowed
ransitions from the even symmetry (gerade) ground state to the first odd sym-
etry (ungerade) excited state 1Bu (transition moment labeled �µ̄10�), and from

his excited state to a higher-lying even symmetry state mAg ��µ̄21��. For nondelocal-
zed or only weakly localized molecules, the ordering of the electronic states in en-
rgy normally mirrors that of particles in a square well potential, alternating between
erade and ungerade. The electron correlation effects are sufficiently strong in these
onjugated polymers that the first even symmetry �1Ag� excited state frequently lies
elow 1Bu, but the dipole allowed transition moment between these two states is
mall and usually neglected [19,20]. The locations of the 1Bu and mAg ��3Ag�
tates are measured from the linear and 2PA spectra.An example of each is shown in
igs. 8 and 9 for single-crystal polydiacetylene PTS [21,22]. Note that in both cases

he existence of transitions within the vibrational subbands located to the high-
nergy side of the main peak arise because of the strong coupling to the vibrations of
he main polymer chain [23,24]. The 1PA and 2PA spectra found in PPV-MEH also
re broadened owing to vibrational subbands [24,25].

ased on the above discussion a minimum three-level model with µ̄ii=0 (no per-
anent dipole moments in the three important states) is needed to describe the

hird-order nonlinearity in conjugated polymers. Furthermore, the decay from
he even symmetry excited state mAg is down to the 1Bu state, i.e., only 
̄12�0
nd 
̄10�0. In the off-resonance regime

n2,Kerr =
Nf �3��µ̄10�2

nx
2�0

2c�3��̄10
2 − �2�2��µ̄21�2� �̄20��̄10

2 + �2� + 4�̄10�
2

��̄20
2 − 4�2�

+ 2
�̄10

2

�̄20
	

− �µ̄10�2� �̄10

��̄10
2 − �2�

�3�̄10
2 + �2� +

��10 + ��2

16��̄10 − ��	� , �2.15a�

nd for the nonresonant case

Figure 8

Linear absorption spectrum of the crystal polymer diacetylene PTS [22].
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n2,Kerr = 3
Nf �3��µ̄10�2

nx
2�0

2c�3�̄10
3 � �̄10

�̄20

�µ̄21�2 −
49

48
�µ̄10�2� . �2.15b�

ote that the interference between the ground to first excited state transition
�µ̄10�2� and the first antisymmetric to the higher-lying symmetric excited state tran-
ition ��µ̄21�2� in such conjugated systems can be actually detrimental to obtaining
arge nonresonant nonlinearities! Furthermore, since the two terms have both differ-
nt signs and different frequency dispersion, the net sign of n2 can depend strongly
n frequency. This is illustrated in Fig. 10, which shows calculations of the fre-
uency dispersion of n2 typical of polydiacetylenes and squaraines (discussed be-
ow). As predicted by Eqs. (2.15a) and (2.15b), the sign of the nonlinearity can
hange with photon frequency depending on the relative magnitude of �µ̄21�2 / �µ̄10�2.

Figure 9

PA spectrum (100 fs pulses) of the crystal polymer diacetylene PTS. Inset, details
f the main two-photon spectrum measured with 100 fs, 2 ps, and 60 ps pulses
21,22].

Figure 10

requency dispersion of n2,Kerr for �̄21=10�̄10, �20=1.33�̄10, and different rela-
ive values of �µ12�2 / �µ10�2. (a) For �µ̄10�2= �µ̄21�2, the contributions due to �µ̄10�2 (red
urve), �µ̄21�2 (green curve) and the sum of the two (black curve) are shown. (b) Sum
f the contributions for different relative values of the transition dipole moments.
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 80
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n polydiacetylenes the sign of n2 is negative between the one- and two-photon reso-
ances, becomes positive near the two-photon resonance, and generally remains
ositive all the way to zero frequency (nonresonant case). In contrast to this behav-
or, the nonlinearity in squaraines, which have weaker two-photon transition
trength, remains negative over the full range �̄10���0.

any of the parameters such as �̄10, �̄20, �µ̄10�2, and �µ̄21�2, that are needed to evalu-
te n2 depend on the lengths, distribution, and orientation of the conjugation chains,
nd these in turn depend weakly on the details of the R and R� groups, but strongly
n the preparation techniques, temperature, and density of defects. An example of
he variation in the linear absorption spectrum and its effect on the nonlinearity is
hown in Fig. 11 for PPV [26]. Another example is the polydiacetylene 4BCMU,
hich comes in blue, yellow, and red forms that are due to different molecular con-

ormations possible with absorption maxima in the spectral regions for which they
re named [27]. Dependences of the same factors on the even symmetry state prop-
rties are just not known. Furthermore, the propagation loss is known to be very sen-
itive to preparation technique, for example [28,29].

Figure 11

a) Examples of absorption spectra for PPV prepared from precursors synthe-
ized with sodium hydroxide base and water solvent (curve 1), organic base and
0% water, 80% methanol solvent (curve 2), and organic base and methanol sol-
ent (curve 3). (b) Variation of the third-order nonlinearity of PPV as a function
f the wavelength for maximum absorption �max [26].
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 81
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lthough in principle independent measurements of all of the above parameters
re possible, there is an additional complication that is the main reason why a
near- and on-resonance” formula is not given here. In conjugated polymers,
learly a significant fraction of the oscillator strength occurs in transitions that
ccur at energies higher than the peak of the absorption involving the vibrational
idebands, and detailed theoretical treatments of such problems for calculating

2 are not available.

ome of the best single-crystal polymers grown to date have been polydiacety-
enes, of which PTS is the most thoroughly investigated [30]. The PTS crystal
tructure was shown in Fig. 7. It is characterized by large transition dipole mo-
ents, multiple debye, for the dominant transitions from the symmetric ground

tate to the first antisymmetric �1Ag→1Bu� excited state and from this excited
tate to the second symmetric excited state �1Bu→2Ag� [31]. The decay times
rom these excited states are in the few picosecond to �100 fs range for 
̄10 and

¯21, respectively [32].

here are too many reports of the nonlinearity in such polydiacetylene materials,
rimarily in the on- and near-resonant regime, to be summarized here: using a
ariety of techniques they collectively confirmed that the nonlinearities are in-
eed very large in the near-resonant and nonresonant regimes, where the 1PA
nd 2PA is also large. (Some examples are given in [33–36].) It is generally ac-
epted that n2�0 in the region between the 1PA and 2PA peaks, partially due to
leaching of the one-photon �1Ag→1Bu� transition; see Fig. 12(a). This has
een confirmed by both Z scan and the negative absorption change associated
ith bleaching of the 1PA there [5,21]. However, in the off-resonant regime, spe-

ifically at 1064 nm, some controversy exists about the sign of n2, although the
agnitude in the range �5–10�	10−12 cm2/W appears consistent [37,38]. This

ifference could be due to the different fabrication techniques used resulting in dif-
erent values of dipole transition moments. In this region the nonlinear absorption
hange is positive. For example, see Fig. 13 [5]. The dispersion with increasing
avelength as shown in Fig. 12(b) indicates that indeed �̄10�µ̄21�2��̄20�µ̄10�2 and

hat the nonresonant value is positive (Fig. 11) at least for the sample studied, in
greement with calculations of transition dipole moments in polyenes [31].

Figure 12

a) Wavelength dispersion in �n2� over the range 0.72–1.06 µm measured by spec-
ral broadening due to self-phase modulation in a sample made by the shear tech-
ique [22,36]. (b) Wavelength dispersion in n2 over the range 1.2–2.2 µm measured
y Z scan for hundreds of micrometers thick platelets of single-crystal polymer di-
cetylene PTS made by crystallization from solution. The dashed curve is a guide to
he eye.
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 82
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n contrast to the conjugated polymers polyacetylene and polydiacetylene,
hich contain only carbon in their backbone chain, the main backbone chain of
henylenevinylene contains phenyl (benzene) rings as well as linear carbon–
arbon bonds. Note that although the phenyls have double carbon bonds from
hich electrons can be delocalized, the benzene structure does not appear to lead

o delocalization that is as effective as in the polyacetylenes and diacetyelenes.
he PPV absorption maxima occur at shorter wavelengths than those of polydi-
cetylenes and polyacetylenes (�450 nm versus 620 and 650 nm, respectively).
o improve the solubility and reduce the defects in PPV, side groups like MEH, i.e.,

o make MEH-PPV, are added. Thin film samples of both random and highly ori-
nted forms have been fabricated and characterized for optical studies [39,40]. The
etails of the fabrication determine the optical losses that can be minimized to be as
ow as 0.1 dB/cm, orders of magnitude lower than in pristine PPV, as shown in Fig.
4.

here have been a number of nonlinear optical studies of PPVs. There is a strong
PA maximum along with vibrational subbands for incident radiation at ��̄20/2
s shown in Fig. 15. Detailed measurements of n2 have been reported around
00 nm by the Australian National University group for a number of PPV-related
aterials [41], and the wavelength dispersion at longer wavelengths of PPV-MEH

y Chris Bubeck and collaborators at Max Planck Mainz [29]. Of particular interest
s the dispersion (Fig. 15), which clearly shows a change of sign of the nonlinearity
ith increasing wavelength, as might be expected from Eqs. (2.15a) and (2.15b),

imilar to the results in polydiacetylene PTS.

isted in Table 2 are values of n and 
 for a number of conjugated polymers

Figure 13

bsorption change induced by an intense pump pulse as measured in the poly-
iacetylene 3 BCMU by a probe pulse for three different delay times between
he probe and the pump. The negative absorption change is due to the dominance
f bleaching of the 1Ag→1Bu transition whose peak is located at 620 nm. At
ower photon energies, interference with the two-photon transition 1Ag→2Ag with
peak located at 930 nm occurs, and after 660 nm the 2PA term dominates. These

esults also show that the decay time from 1Bu to the ground state is �1 ps [5].
2 2
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nd the measurement technique used. The values are much larger than those
ound in normal dielectric media. More complete listings of n2 at �=0.8 µm can
e found in [41]. Structures are shown in Fig.16.

he nonlinearity n2 of 30–100 nm sized nanocrystallites of polydiacetylene in so-
ution has been investigated by Nakanishi and co-workers [46].The results were cor-
ected for the random crystallite orientation and its concentration in solution. Al-
hough the magnitude and sign of n2 was of the same order as that in bulk crystals, a
umber of quantum effects were clear in their measurements. Namely, the absorp-
ion peak was shifted to longer wavelengths, the spectrum of the vibronic sidebands
n the low-wavelength side of the absorption peak changed in structure, and n2 did
epend on the crystal size.

he effect of metallic coating of polydiacetylene [with R1= �CH2�11CH3 and

2= �CH2�8COOH] was evaluated in [47]. After polymerization via � irradiation,

Figure 14

Comparison of residual absorption of PPV and MEH-PPV [29].

Figure 15

onlinear optical spectra of MEH-PPV measured at the laser wavelength �. (a)
omparison of data of 
2 from nonlinear prism coupling (films, filled large dots,

eft-hand scale), from two-photon excitation spectra of fluorescence (solutions,
pen circles, arbitrary units scaled to the peak of film data, error bars are smaller
han symbol size), and from Z scan (solution, small dots, right-hand scale). (b)
ispersion of n2 from nonlinear prism coupling (films, filled large dots, left-
and scale), and Z scan (solution, small dots, right-hand scale). See [29] for
etails.
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 84
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he absorption spectrum resembled that of bulk polydiacetylenes. An enhancement
ue to the silver coating of �	2 was measured for n2 at 532 nm.

.5. Charge Transfer Molecules

he generic form for charge transfer molecules (also called chromophores) is
hown in Fig. 17(a) [12]. For detailed discussion see, for example, [12]. As in-
icated in the cartoons in Fig. 17(b), the end groups have contrastingly different
roperties. The donor (D) groups, for example N�CH3�2, OCH3, H2N have
oosely bound electrons. At the other end, there is an acceptor (A) group, for ex-
mple NO2, CN, etc., which easily accommodates additional electrons. The in-
ermediate bridge group should facilitate the transfer of electrons between the
wo end groups. This is usually achieved by a structure for which 2pz electrons
re partially delocalized, such as a single or multiple benzene ring(s), or a se-
uence of single–double carbon bonds as discussed above. As indicated in Figs.
7(b) and 17(c), there is a partial transfer of charge from the donor to the accep-
or groups, resulting in a permanent dipole moment in the ground (and excited)

Table 2. Kerr and Nonlinear Absorption (Where Available) Coefficients for a
Selection of Conjugated Polymers in Thin Film Form

Material
n2	10−12

�cm2/W�

2

(cm/GW)
�

�µm�
Measurement

Technique

PPV [26] �n2 � =1–10 a80 0.8 D4WMb

2,5-Dimethoxy p-PPV [42] �n2 � =4 0.8 D4WM

2,5-Dimethoxy p-PPV [41] n2=−4 25–80 0.8 Kerr gate

MEH-PPV [43] n2=−3 180 0.5 Z scan

PPV-AC8H [41] n2=−1.1 40 0.8 Z scan

DBSA-PANI [45] n2=−1.7 42 1.054 Z scan

Polydiacetylene 4BCMU [44] n2=0.05 �0.25 1.31 Mach–Zehnder

aMeasured by power-dependent transmission.
bDegenerate four-wave mixing.

Figure 16

Structures for conjugated polymers of Table 2.
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tate(s). An example for which there are both large dipole moments as well as a
eversal of their signs is shown in Fig. 18 [48]. In such molecules it is typical that
heir nonlinearity is dominated by the ground and first excited states; i.e., a two-
evel model is a reasonable approximation, i.e., in the nonresonant limit n2,el

�µ̄10�2�µ̄11− µ̄00�2− �µ̄10�4. The nonlinearity n2,el can be dominated by the perma-
ent dipole moments for large values of �µ̄11− µ̄00�2.An example is shown in Fig. 19
49].

ypically, quantum chemical calculations (AM1, Austin Model 1) are needed to
valuate the molecular parameters as well as the molecular nonlinearities in such
ystems [50]. Such calculations have shown that the nonlinearity is linked to the
egree of charge transfer from the donor to the acceptor, which is related to the

Figure 17

a) Prototype charge transfer molecule with an electron acceptor group on one
nd, a donor group on the other end, separated by a bridge. (b) Change in charge
istributions introduced by an electron acceptor group A, an electron donor
roup D, and both A and D. (c) The charge transfer molecule nitroaniline [12].

Figure 18

a) Chromophore structure (KJS-1) with strong charge transfer properties. (b)
lectron distribution in the ground state. (c) Electron distribution in the first ex-
ited state. Permanent dipole moments have different signs in the two states
48]!
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 86



b
d
g
n
v
z
m
h
l
s
l
f
l
g

T
s
c
g

T

P
t
g
4
s

A

ond-length alternation (the average difference in length between single and
ouble bonds in the molecule due to the charge transfer from the D to the A
roup). This led to a simple physical two-level model based on a linear combi-
ation of the two extreme (resonance) structures, the cyanine limit (called the
alence bond configuration, VB) in which no electron transfer occurs and the
witterionic limit (called the charge transfer configuration, CT) in which the
aximum electron transfer occurs [51–53]. These limiting resonance structures

ave different single–double carbon bond linkage structures. Assuming a two-
evel model, which frequently is adequate for charge transfer molecules, the
tructure for a specific molecule is assumed to be a linear combination of the va-
ence and charge transfer bond configurations. Writing �VB and �CT as the wave
unction of the two limiting configurations, the corresponding ground state energy
evels as EVB and ECT, and −t as the interaction between the donor and acceptor
ives a molecule’s Hamiltonian as

H0 = � 0 − t

− t V
�, V = ECT − EVB, − t = ��VB�H��CT� . �2.16�

he Schrödinger wave equation is then solved for the ground state and excited
tate wave functions �gr and �ex and energies Egr and Eex, respectively of the
oupled system in terms of the fraction f of the charge transfer configuration in the
round state, i.e., �gr=�1− f�VB+�f�CT and

Egr =
1

2
�V − �V2 + 4t2�, Eex =

1

2
�V + �V2 + 4t2�,

f =
Egr

2

t2 + Egr
2

=
1

2
−

V

2�V2 + 4t2
. �2.17�

Figure 19

lot of the molecular second hyperpolarizability ��̄�3�� (averaged over all orien-
ations) on permanent electric dipole-moment difference between excited and
round states �µ for three charge transfer molecules [49]. DEANST,
-(N,N-diethylamino)-�-nitrostyrene; 2,6-ANS, 2-anilinonaphthalene-6-
ulfonic acid; PRODAN, 6-propionyl-2-dimethylamino naphthalene.
he problem now requires finding the change in the carbon bonding distances in
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erms of the above parameters. This change involves an additional elastic energy
ith force constant k associated with the optical phonon with displacements

long the charge transfer axis. Noting that EVB=0.5k�q−qVB
0 �2 and ECT=V0

0.5k�q−qCT
0 �2, where the decoupled state energy EVB has been set to 0, V0 is the

diabatic energy difference between the ground and excited states (i.e., at their mini-
um energy value), q is the molecule’s bond length due to the charge transfer, and

CT
0 and qVB

0 are the equilibrium bond lengths in the decoupled valence and charge
ransfer bond configurations, the ground state energy is now given by

Egr =
1

2
�V0 +

1

2
k
�q − qVB

0 �2 + �q − qCT
0 �2� − �V2 + 4t2	 . �2.18�

he ground state corresponds to the minimum energy of Egr�q�, i.e.,
Egr�q� /dq=0, which yields [51]

→qopt =
1

2
�qVB

0 + qCT
0 � +

1

2
�qVB

0 − qCT
0 �

V

�V2 + 4t2
⇒ f =

qVB
0 − qopt

qVB
0 − qCT

0
.

�2.19�

ow an optical field is introduced in order to find the optical response. µCT

Q �e �LDA is defined as the dipole moment created in the charge transfer state,
here Q is the maximum charge transferred over a distance LDA and the dipole
oment of the coupled ground state is given by fµCT. The application of an electric
eld E polarized along the charge transfer axis leads to a perturbation Hamiltonian
dded to the original Hamiltonian so that

H = �EVB − t

− t ECT − µCTE
� → VE = ECT − EVB − µCTE →

df

dE
=

df

dV

dVE

dE
=

2t2µCT

Egr
3

.

�2.20�

n the preceding formulation, V is now replaced by VE, and the polarization in-
uced along the charge transfer axis by the application of the field is p�E�
−dEgr /dE, which contains all the contributions, linear, quadratic, cubic, etc., in the
eld E. The nonlinear polarizability �̄�3� is now given by

�̄xxxx
�3� = � 1

6

d3px

dE3 �
E=0

= − µCT
4 � d3f

dVE
3�

E=0

=
4t2µCT

4 �V2 − t2�

Egr
7

. �2.21�

ore detail can be found in [51–53].

he plot of �̄�3� versus the charge transfer fraction f in Fig. 20(a) shows how this
pproach can be used to optimize the third-order susceptibility in charge transfer
olecules [53]. Clearly f=0.5 produces the largest nonlinearity ��̄�3��. This formu-

ation has been verified experimentally as shown in Fig. 20(b) for a family of triene
ompounds by using solvents with different polarity (which contribute an additional
eld component) and donor-acceptor groups [53]. Therefore proper molecular de-
ign (molecular engineering) can lead to large values for �̄�3�.

uch molecules can be used in any number of pure forms which, depending on
he operating temperature, are single crystals or neat liquids. They have also
een dissolved in appropriate solvents and, as shown in Fig. 21, in solid-state
olymers. The chromophores can be included as “guests” dissolved uniformly in

host polymer and are not chemically attached to the polymer. Alternatively, the
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hromophores can be attached as pendants oriented more or less orthogonal to
he main chain of the polymer by chemical bonding at one end of the molecule.
t is also possible to bond (cross link) both ends of the chromophore to different
r even the same polymer backbone chain (which can be folded) inside the poly-
er matrix. A fourth alternative is main chain attachment in which the chro-
ophore is inserted (bonded) on both ends into the polymer backbone chain.
he doping levels of the molecules into the polymers depend on the particular
hromophore details, the host polymer and the form of attachment, increasing
rom 1%–30% for side-chain and guest–host systems to about in 50% doping in
he main-chain and cross-linked cases. For random orientation of the molecules,
he value of the macroscopic third-order susceptibility (and n2) is reduced to
bout 1 /5 of the molecular value along the charge transfer axis. However, the
echnology for partially orienting the chromophores and forming the solid-state
olymer solutions discussed here is very well developed because of the interest
n using them for electro-optics applications [54,55]. Because the chromophores
ypically have large dipole moments in the ground state, electric field poling has
een used to achieve some degree of alignment of the chromophores and hence

Figure 20

a) Calculation of �̄�3� due to varying amounts of f, the fractional charge transfer
rom the donor D to the acceptor A. (b) Measurement of ��3� by third-harmonic
eneration on the triene family of molecules in different solvents [53].
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 89
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ncrease the net nonlinearity back toward its molecular value along the charge
ransfer axis.

hromophore nonlinearities can also be accessed by dissolving them in compat-
ble solvents, but of course with the 1/5 random orientation factor. Many of the
uitable solvents tend to be polar, which can change the electron transfer char-
cteristics of the chromophore dissolved in them and hence the nonlinearity. In
act, experimental verifications of the calculations shown in Fig. 20(b) were per-
ormed by using well-characterized solvents to change the electron transfer
roperties [53].

word of caution is necessary when using bridge groups with double bonds
uch as carbon or nitrogen in the bridge group. Oxygen-induced photodegrada-
ion of the double bonds of the bridge when illuminated with light primarily in
he visible or UV can lead to changes in chemical structure, drastically reducing
he electron transfer properties of the bridge and hence the nonlinearity [56].
inhole-free encapsulation of the polymer is necessary for long-term stability.

ome representative values for large n2 measured in polymers as well as in so-
ution are given in Table 3. Structures are shown in Fig. 22. Clearly the values
isted are higher than those in Table 1 for nonorganic dielectric media.

Figure 21

ifferent ways of including charge transfer molecules (chromophores) inside
olymer matrices. (a) Guest–host system in which the molecules are dissolved in
he polymer without bonding to it. (b) Chromophores bonded as pendants at one
nd to the polymer chain. (c) Charge transfer molecules bonded directly into the
olymer chain. (d) Chromophores tethered at both ends either to the same poly-
er or to different polymers (case shown).

Table 3. Representative n2 and 
2 (Where Available) Values for Some
Randomly Oriented Charge Transfer Molecules

Material
n2	10−14

�cm2/W�

2

(cm/GW)
�

�µm� Material
n2	10−14

�cm2/W�

2

(cm/GW)
�

�µm�

ANSa[57] +7 �1–2 1.06 DMSMb[59] 16 �1 0.7

AN2a[57] +20 �1–2 1.06 DEANSTc[59] 19 �1 0.7

NAd[58] 25 1.06

a�20%wt in PMMA.
b20 wt. % in formamide.
c30 wt. % in nitrobenzene.
d
Extrapolated from measurements of 17% MNA in PMNMA.
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.6. Miscellaneous Molecules

ymmetric squaraine dyes have exhibited large nonlinearities. They are essen-
ially linear molecules that have identical donor groups at both ends of a D-A-D
tructure and hence have no permanent dipole moments. Their linear nature
eans that their ground and excited states have either even �Ag� or odd �Bu�

ymmetry, similar to that discussed previously for polyenes and conjugated
olymers. Hence a three-level model of the type discussed previously for conju-
ated polymers is appropriate as a first approximation. Their absorption spectra,
ypically peaked in the 650–900 nm range, exhibit dipole transition moments

10 debye for the 1Ag→1Bu transition with very narrow linewidths and a transi-
ion dipole moment to the dominant two-photon state, i.e., 1Bu→mAg, whose value
s about one half of the 1Ag→1Bu value [60,61]. Equation (2.15a) and Fig. 10 pre-
ict a negative n2 off-resonance and nonresonant value, and magnitudes in the −5
10−12→−10−14 cm2/W range have been measured for 1500 nm��
1064 nm [42,62–64]. Values for a few specific cases are given in Table 4. In most

ases, significant 2PA was also found. Squaraine-based molecules have been suc-
essfully doped into polymer films and low-loss fibers [63].

nother family of molecules that have been of interest because of their large
onlinearities is the polymethines [65]. An example of the large nonlinearities
vailable in the communications bands due to the electron delocalization along
he acetylenelike bridging structure consisting of single and double carbon
onds is given in Table 4. Since the main absorption maxima occur around
000 nm, the listed nonlinearities are off resonance, i.e., in the tails of the linear ab-
orption spectra. Structures are shown in Fig. 23.

Figure 22

Structures for molecules in Table 3.

Table 4. Representative n2 and 
2 (Where Available) Values for Miscellaneous
Moleculesa

Material
n2	10−14

�cm2/W�
�

�µm� Material
n2	10−14

�cm2/W�

2

(cm/GW)
�

�µm�

1 wt. %) ISQ 4.1 ��n2 � � [63] 1.3 D-A-D squaraine −80 [64] 46 1.3
b0.1 wt. %) ISQ 2.1��n2�� [62] 1.06 cPyrole squaraine −13 [140] 0.8

1 wt. %) BSQ 8.8 ��n2 � � [63] 1.3 Polymethine −490 [65] 50 1.3
b2 wt. %) BSQ 20 ��n2 � � [62] 1.06 Polymethine −290 [65] 1.55

d(6.4 wt. %) SBAC 0.9 [59] �0 0.8

aRandom orientation of linear molecular axis.
bPercentage in PMMA fiber.
cEstimated from solution measurements in chloroform.
d
SBAC dye in PMMA (a D-A-D structure) .
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inally, dendrimers have been of increasing interest for nonlinear optics [66].
hey have proved useful as molecules for certain applications because of their
bility to incorporate multiple functionalities needed, for example, for photore-
ractivity. For third-order nonlinear optics, specifically nonlinear absorption,
hey offer the possibility of broadband 2PA needed, for example, for optical lim-
ting [67]. In fact limited cooperative effects have been observed in an experi-

ent where the number of two-photon active species was doubled in a den-
rimer, and a factor of 6 increase in the 2PA cross-section was measured [68].
ven though some large molecular nonlinearities �Real
�̄�3�� have been re-
orted, these dendrimers occupy much larger volumes than the molecules previously
iscussed here, and it is not clear whether the macroscopic ��3� will also be large.
oodson and colleagues have reported n2 and 
2 measurements on the dendrimer
ZD4NS2 (see Fig. 24) at a concentration of 3	10−3 mol/L in chloroform [69].
rom their Z-scan data they calculated n2=−1.1	10−13 cm2/W and 
2

10−2 cm/GW at 800 nm. (The peak linear absorption occurs at 450 nm.) In addi-
ion they also observed higher-order nonlinear refraction effects. To check for coop-
rative effects potentially leading to an enhanced n2 they measured the nonlinearities
or both the nitroaminostilbene and carbazole functional groups (Fig. 24) alone.
hey found that the dendrimer nonlinearity was completely accounted for by the two
itroaminostilbene groups and that the carbazole had no effect on n2. More experi-
ents are clearly needed to truly assess the potential of dendrimers for enhanced n2.

ere we have presented a very brief review of the origins and magnitude of n2 in
he two common organic material systems, namely, conjugated polymers and
harge transfer molecules. More detailed information about the chemistry etc.
an be found in review books containing many pertinent chapters such as
70,71] and discussions of the current status of materials for organic nonlinear
ptics in [52,53].

Figure 23

Structures for molecules in Table 4.
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.7. Excited-State Absorption and Reverse Saturable
bsorption

here are a variety of examples such as the above where index changes are pro-
uced by the redistribution of population densities of two or more excited states
ia absorption, both via successive linear and nonlinear absorption processes
72,73]. The index changes occur through the reduction of oscillator strength
ue to saturation as discussed above, but also through the production of new ab-
orbers as discussed in this subsection. The signs of the respective refraction
hanges depend on the frequency position relative to the absorption resonances.

inear absorption can promote species to excited states that serve as the lower
tate of a second electric dipole allowed transition before the excited state elec-
rons decay back to the ground state. Figure 25 shows a quasi-three-level system,
escribed in more detail below, that is a good approximation for many organic
yes.

his process produces what is called excited state absorption (ESA). It is con-
enient to describe the second absorption process by an absorption cross sec-
ion, �21, related to the dipole matrix element �µ21�2, since the ESA coefficient is
imply


21 = �21N1, �2.22�

here N1 is the electron density of the first excited state, i.e.,

dN1

dt
=


1gI

��
. �2.23�

ere 
1g is the absorption coefficient from the ground state g (also described by
cross section �1g times the density of ground state absorbers Ng) and �� the

Figure 24

CZD4NS2 dendrimer structure and its constituents [69].
hoton energy—one excited state produced per photon absorbed.
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uch equations can be integrated in time to see the effect of the ESA on the
ransmitted intensity. First, integrating Eq. (2.23) yields

N1�t� =

1g

��
�

−�

t

I�t��dt� �

1g

��
F�t� , �2.24�

here F is defined as the fluence, energy per unit area, which when plugged into
he equation describing the intensity change,

dI

dz
= − �1gNgI − �21N1I , �2.25�

ives

dF�t�

dz
= − �1gNgF�t� − Ng

�1g�21

2��
F2�t�. �2.26�

similar equation can be obtained for 2PA in which the fluence F (integrated
nergy of a pulse) is replaced by the intensity, and the product of density times
ross sections divided by photon energy is replaced by a quantity called the 2PA
oefficient, 
2. The process represented here is a pair of sequential linear ab-
orption processes, as opposed to the usual nearly instantaneous 2PA, which is
roportional to the product of the squares of the transition dipole moments

µ21�2�µg1�2. Thus, Eq. (2.26) is a precursor to the results of perturbation theory for
PA, and the transition from sequential 2PA [Eq. (2.26)] to instantaneous 2PA given

2

Figure 25

evel structure of a three-level system, showing the vibration-rotation manifold
f the excited states, the absorption cross sections, and the relaxation routes.
y dI�z�=−
2I becomes apparent [74].
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realistic depiction of one-photon-absorption-induced ESA is shown by the
hree-level system with vibrational–rotational manifolds in the excited states in
ig. 25. Notice that, although many levels are shown, there are only two domi-
ant transitions. For molecules with rotational and vibrational degrees of free-
om coupled to the electronic transitions, excitation to higher-lying states in
ach manifold is rapidly followed by intrasystem relaxation to the bottom of the
and. The ESA then proceeds from this relaxed excited state into a higher
otational–vibrational manifold. Rapid intersystem relaxation returns the elec-
rons in the second excited state manifold to the bottom of the first excited band,
here they can again absorb. Thus a single excited state absorber can efficiently

bsorb multiple times even for pulsed inputs.

f the ESA cross section is larger than that of the ground state, �21��1g, where
he absorption cross sections are now understood to be averages over the
ibrational–rotation manifolds, then the absorption process is also referred to as re-
erse saturable absorption (RSA), and increasing input yields increasing loss [75].
his model is a useful model that can be used to describe ESA in many organic mol-
cules, and as we will see in the discussion of semiconductors, can also describe
ome free-carrier absorption phenomena. Figure 26 shows Z-scan data on the or-
anic dye chloro-aluminum phthalocyanine, CAP, showing the fluence dependence
f both nonlinear absorption, following Eq. (2.26), and the nonlinear refraction fol-
owing that discussed at the end of this Subsection [73]. In this figure, two sets of
ata are shown for the same energy but with pulse widths differing by a factor of 2.
hus the fluence used is identical, but the intensity differs by 2	. The fact that the
onlinearities are the same shows the fluence dependence. Table 4 gives parameters
or a sampling of molecules showing RSA.

n cases where the input pulses deplete the population of the lower level and de-
ay of the upper state is possible, the equations governing the process become
ore complicated [76]:

Figure 26

pen (left) and closed (right) aperture Z scans on chloro-aluminum phthalocya-
ine at 532 nm; triangles, using 30 ps pulses (FWHM); squares, 62 ps pulses
FWHM) [73].
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 95
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dNg

dt
= −

�1gNg

��
I +

N1


1g

, �2.27a�

dN1

dt
=

�1gNg

��
I −

N1


1g

, �2.27b�

dI

dz
= − �1gNgI − �21N1I. �2.27c�

he refraction from these absorption processes is simply related to the redistri-
ution of the population of levels when we are creating and/or removing absorb-
ng species. Depending on which side of resonance, the index can be increased
r lowered. For pulsed input, the index change follows the population in time.
or pulses short compared with the population decay time, the index change fol-
ows the integrated energy, which has the shape of an error function.

n many situations involving organic molecules triplet states become involved,
nd the appropriate level structure is a five-level system [77]. Solutions of these
quations show an increasing loss with increasing intensity that eventually turns
nto saturation for high inputs. More sophisticated approximations to Eq. (2.21)
ield overall saturable absorption for �21��1g, and RSA (i.e., increasing loss
ith increasing intensity) for �21��1g, as seen in Fig. 27 [78]. References [79,80]
ive ESA including triplet states along with the dynamics.

e conclude this discussion of excited-state nonlinearities with the nonlinear re-
raction associated with the population redistribution. These refractive changes
re a result of the changes in the linear absorption arising from creating excited
tates and removing population from the ground state. They were calculated
rom the Kramers–Kronig relations. The prediction is that there should be a de-
rease in index below resonance and an increase above resonance if the creation
f the excited state absorbers dominates the absorption changes (as opposed to
he loss of ground state absorbers). This should be the case where RSA domi-
ates saturable absorption. As shown in Fig. 27 and listed in Table 5 (Fig. 28),
he observed nonlinear refraction in CAP is positive, indicating above-resonance
xcitation. As for the absorption, defining a refractive cross section, �R, is more

Figure 27

ransmittance versus input fluence for, curve 1, �21��1g; 2, �21=�1g; 3, �21

�1g [78].
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ppropriate than using n2. Values of �R for representative molecules are given in
able 5, using the following definition to give units of square centimeters for the
ross section (another definition sometimes used is to drop the wave number k,
ielding a cross section with units of cubic centimeters):

kvac�n = �RN1. �2.28�

t is interesting to note that if one calculated an n2for CAP using, for example,
he 30 ps data in Fig. 27, one would obtain a value of n2=1.2	10−14 cm2/W at a
oncentration of only 1.3 mM, i.e., a very large value if given a neat material. And,
sing the 62 ps data would yield a value for n2 approximately twice as large, given
hat the intensity is only half as large.

. Glass Nonlinearities

here are many definitions for a “glass.” For example “any of a large class of ma-
erials with highly variable mechanical and optical properties that solidify from
he molten state without crystallization. They are typically made by silicates fus-
ng with boric oxide, aluminum oxide, or phosphorus pentoxide, are generally
ard, brittle, and transparent or translucent, and are considered to be supercooled
iquids rather than true solids” [81]. In optics, glass usually refers to silica, i.e.,
morphous SiO2 (silicon dioxide) doped with various atoms and/or molecules. Pure

Table 5. Parameters of RSA Dyes

Material/Solvent �1g �21 �21/�1g �R 
a

olymethine/ethanol [78] 0.7	10−17 cm2 60	10−17 cm2 81 0.3 ns

AP/methanol [73] 2.2	10−18 cm2 2.3	10−17 cm2 10 1.8	10−17 cm2 7.0 ns

iNc/toluene [73] 2.8	10−18 cm2 3.9	10−17 cm2 14 4.7	10−18 cm2 3.2 ns

aHere 
 is the singlet state lifetime. In CAP and SiNc, much of the population goes to the
riplet state in this time where it can strongly absorb as opposed to the ground state for the
olymethine.

Figure 28

Structures of RSA dyes with parameters listed in Table 5.
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ilica, typically doped with Ge to increase its refractive index, is routinely used in
bers for transmission, and hence its linear and nonlinear optical properties have
een studied extensively in optics, especially in the communications bands. On the
ne hand, a nonlinear refractive index is essential to soliton propagation, and on the
ther hand, it can produce detrimental crosstalk due to four-wave mixing etc. [82].

s stated in the above definition, the optical properties are not the same for every
ample, as they would be, for example, in a single crystal of quartz. The reasons
re primarily twofold. One, glass properties vary with the details of the prepara-
ion technique, which is usually proprietary to each commercial supplier. Differ-
nt complexes can form on a local scale, especially for multicomponent glasses.
econd, the optical properties depend on the purity of the starting materials, as
ell as upon small amounts of impurities added to the fabrication for stability,
tc. In addition, the glass properties may depend on the location in the melt from
hich the sample was taken, the center, the edges, etc., although this aspect is
robably less of an issue with glasses from commercial sources than with re-
earch grade samples made in small melts. Because of its importance in optics,

2 has been measured in silica and lightly doped silica by many different tech-
iques. Table 6 gives an indication of the variability in n2 with supplier.

t 1.55 µm, which is far from all of the electronic resonances in the UV and hence
s in the nonresonant regime, the recommended value is n2=2.5±0.1

10−16 cm2/W. This corresponds to one of the very few cases in nonlinear optics
here such precision is possible, primarily due to the elaborate schemes for in situ
easurements in fibers (see references cited in [83]). The dispersion with wave-

ength for fused silica is shown in Fig. 29. Note that the spread in values is the
east at 1.55 µm because of the importance of this wavelength region. In the spectral
egions where these glasses are used for nonlinear optics, the Kerr response is fem-
oseconds or less.

ver the past 10–20 years many new glasses, mostly heavy oxides and chalco-
enides, have been synthesized with the goal of improving n2 in glasses. The range
f values along with the glass classification is documented in Fig. 30 [84]. However,
he values for loss (
1 in inverse centimeters) achieved to date in many of these ma-
erials have resulted in lower net figures of merit defined by n2 /
1 than in fused
ilica. There are two principal reasons for this. In general, the larger the nonlinearity,
he more the absorption edge due to electronic transitions is shifted to longer wave-
engths, and hence the larger the residual absorption in the near infrared and
–1.5 �m regions relative to fused silica. Second, fabrication techniques optimized

or low loss have been pursued vigorously only for silica, Er-doped glasses, and
ome specialty glasses developed for applications other than nonlinear optics (with
mall to moderate n2). Hence there is hope that scattering and other losses can be
educed in highly nonlinear glasses in the future.

number of glasses in standard glass catalogs that were deemed promising for a

Table 6. Measured n2 in Fused Silica at 800 nm from Various Suppliers [83]

Sample Source n2	10−16 cm2/W

Suprasil 3.2

Schott SQ1 2.5

Heraeus 3.5

Herasil 3.3
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 98
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ombination of fiber processability and potentially high n2 were investigated,
rimarily in the late 1980s and early 1990s. The range of values for n2 was
0−15–10−14cm2/W [11,85–88]. The inclusion of metal oxides in glasses for in-
reasing the nonlinearity occupied members of the French glass community in the
990s; the metal oxides included oxides of Te, Ti, Th, and Nb, which produced n2

alues in the range 10−15 to 6	10−14 cm2/W [89–91].

he chalcogenide glass family has been of special interest because of its high
onlinearities in the near and mid-infrared. Values are typically in the 10−14 to
	10−13 cm2/W range as shown in Fig. 31. Many of these glasses have absorption
utoffs in the near infrared and are prone to optical damage for wavelengths that, de-
ending on the specific glass composition, can extend to 1.3 µm [92–97].

n principle the S.O.S. Eqs. (2.1) and (2.3) can be used to calculate glass nonlin-
arities. In practice, the random, amorphous, disordered nature of a glass leads
o broad distributions of resonant frequencies and decreased excited state life-
imes. The effect of this disorder on, for example, the linear spectrum of glasses

Figure 29

ispersion in n2 with wavelength for bulk fused silica as reported in Santran et
l. [83].

Figure 30

Summary of the trends in n2 for different families of glasses [84].
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 99
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s dramatic. Although the absorption spectrum of silica still has structure that
an be identified with the electronic transitions in the dominant glass constitu-
nt, gaseous SiO2, the absorption spectrum is quasi continuous and not discrete.
urthermore, this corresponds to inhomogeneous broadening; so the inverse of the
readth of the spectrum does not yield the homogeneous relaxation times associated
ith S.O.S. Because of these complexities, there have been a number of approxi-
ate formulas proposed from which the n2 of a multicomponent glass can be esti-
ated based on the glass’s linear optical properties. One such formulation that is
idely used, and has been moderately successful provided that it is used in the off-

esonant regime, is the BGO equation named after it’s originators [98], namely,

n2 �cm2/W� =
0.29�nd − 1��nd

2 + 2�2

n���vd�1.52 + �nd − 1��nd
2 + 2�vd

6nd

	 10−13, �3.1�

r in its simplified form

n2 =
1.64

n

�nd − 1�

��4 vd�5
	 10−13 cm2/W, �3.2�

here vd is the Abbé number defined as vd= �nd−1� / �nF−nc� and nd, nF, and nc

re the linear refractive indices at 0.48613, 0.58756, and 0.65627 µm, respec-
ively. The Abbé number and �nd−1� reflect the strength of the glass dispersion, and
nd−1� as well as �nd

2+2� the glass polarizability, both of which are in the S.O.S. ex-
ression. A comparison of the n2 values measured at 1.55 µm and estimated from
q. (3.2) is shown in Table 7. Although the agreement deteriorates when the glass’s
bsorption edge approaches the refractive indices on which the Abbé number is
ased in multicomponent glasses, these formulas provide a useful estimation

Figure 31

ariation of n2 with normalized photon energy in chalcogenide systems with se-
enide, sulfoselenide, sulfide, and heavy-metal-doped oxides, all at 1.25 µm.
used silica is also shown for comparison. The horizontal error bars account for ab-
orption edge conventions different from that used in [96]. Smektala et al. refers to
95].
ethod.
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. Semiconductor Nonlinearities

emiconductors are very important in optical technologies, since they emit and
etect radiation efficiently and can be used to optically and electro-optically ma-
ipulate signals etc. As a result their optical properties are very well known, in-
luding their nonlinear optical properties [99].

here are multiple mechanisms that contribute to �n�I� in semiconductors. In
ome ways bulk semiconductors are more complex than molecules because they
ave multiple continuous bands and not discrete states. On the other hand, most
emiconductor properties can often be well characterized by simply specifying
he bandgap energy and wavelength of interest. The full spectrum of ultrafast
onlinearities can be predicted from a single material-related number to within
actors of 2 or 3. This cannot be done for materials with discrete states where
here are multiple two-photon (2PA) states and therefore knowledge of the full
pectrum is required. In a semiconductor, a single measurement of the nonlinear
ptical response at a single wavelength, along with the bandgap energy, can give
he full nonlinear spectrum [100]. Table 1 lists n2 and 
2 for several representa-
ive semiconductors at different wavelengths.

hown in Fig. 32 are the allowed electron states in an ideal semiconductor with a

Table 7. Comparison of Measured and Calculated n2 Based on Eq. (3.2)

Fused Silica BK7 SF6

vd 68 64 25

nd 1.46 1.52 1.81

Theory n2 �cm2/W� 2.6	10−16 3.0	10−16 13	10−16

Experiment n2 �cm2/W� 2.5	10−16 3.4	10−16 20	10−16

Figure 32

a) Electron occupation (dark blue) of the valence and conduction bands in a
wo-band semiconductor at zero temperature as a function of electron energy E
nd wave vector �kxky�. The red line indicates allowed transitions from the va-
ence to the conduction band. (b) Incidence of optical field of photon energy
��Egap. (c) Electron occupation of the bands subsequent to the optical field.

gap� �Egap defines the resulting bandgap between the lowest energy unoccupied
tates in the conduction band and the highest energy occupied states in the valence
and. 
 is the spontaneous recombination time for a conduction band electron to re-
urn to the valence band.
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 101
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ingle valence and conduction band [101]. The states lie on the surface of
bowls,” upright for the conduction band and inverted for the valence band, and
ny electrons occupying the states at the top of the valence band and bottom of
he conduction band have zero momentum (kinetic energy), i.e., away from this
oint �k� � �0. In fact, a 4D representation of the densities of state in E–k� space is
ecessary, since the electrons can move in all three spatial coordinates; i.e., Fig.
2 represents a cut in this space. At 0 K, all of the electrons exist in the valence
and, none in the conduction band. At finite temperatures, the electrons pick up
n additional energy �kBT, and some electrons are excited into the lowest re-
ions of the conduction band.

he largest changes in refractive index are associated with the absorption or
mission of radiation that results in transfer of electrons to or from the conduc-
ion band, respectively [99]. Absorption of an incident beam of frequency �

�gap=Egap/� and intensity I leads in the steady state to a partial filling of the con-
uction band near its bottom and a lowering of the electron occupation level at the
op of the valence band. This results in a change in the effective gap with Egap�I�

Egap�0� and a change in the optical properties of the semiconductor called “band
lling” or “band blocking,” as indicated in Fig. 33.

urthermore, when a negatively charged electron leaves the valence band it
eaves behind a positively charged “hole.” As a result of the coulomb interaction
etween the two, additional states called “excitons” are introduced into the
andgap near k� =0; see Fig. 34 [99]. Because of their close proximity to the bot-
om of the conduction band, these states can be easily bleached out, either by
hermal fluctuations �kBT or by incident light, producing another change in the
ptical properties called “exciton bleaching.”

he dimensionality of allowed electron motion (3D in bulk semiconductors) can
e reduced to 2D in quantum wells and superlattices (kx and ky), to 1D in quan-
um wires �kx� and 0D (k� =0, full confinement in all three directions) in QDs
102]. This reduction in dimensionality changes (1) the nature of the density of
tates in the valence and conduction bands, for example, from continuous in 3D
o discrete states in 0D, as well as (2) the magnitude of electric dipole transition

Figure 33

a) Absorption spectrum and its change �−�
� before and after the passage of an
ptical field with ���Egap through the semiconductor. (b) Spectral dependence of
he absorption and refractive index changes. The index change refers to GaAs.
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 102
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lements due to changes in the overlap of the initial and final state electron wave
unctions. Hence n2 also changes!

he nonlinearity is called “active” when a field is incident on a semiconductor in
hich the conduction band is initially occupied by pumping electrons from the
alence band, either by electrical injection or by optical pumping so that for cer-
ain transition regions the occupation is higher in the conduction band than in the
alence band and gain is achieved [103–106]. As shown in Fig. 35, similar

Figure 34

a) Location of the exciton states relative to the conduction and valence bands.

0 is the maximum binding energy. (b) Model for the electron–hole pair for ex-
iton states. (c) Energy of the lowest-lying exciton state (E0, n=1) versus the
andgap energy for a number of semiconductors [99].

Figure 35

a) Semiconductor with electrons in the conduction band resulting from optical
solid black arrow) or electrical pumping. An incident field stimulates an elec-
ron to drop down to the valence band, producing gain at the optical output. (b)
nd (c) Induced change in the absorption spectrum due to the stimulated emis-
ion. (d) Resultant change in the refractive index.
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 103
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hanges but opposite in sign occur in the refractive index, and the absorption is
ow negative; i.e., gain exists. Such semiconductor optical amplifiers are the
ost versatile all-optical signal processing elements available to date [105].

he characteristic time for both passive and active nonlinearities is the recombi-
ation time 
r for electrons returning to the valence band from the conduction
and, typically 10 ns for GaAs at room temperature. For example, for high input in-
ensities the index change associated with the passive nonlinearity can be turned on
n subpicosecond time scales but the turnoff time is dictated by the recombination
ime; i.e., the index change lingers for 

r as indicated previously in Fig. 4 , or by
he time it takes to sweep out the electrons, for example, by an applied electric field
107]. There are also other mechanisms associated with electron dynamics in the
onduction band that will be discussed with respect to semiconductor optical ampli-
ers and active nonlinearities [103–106].

n addition, there are other ultrafast nonlinearities like the usual Kerr effect,
PA, and the Raman effect, which are relatively much weaker in spectral regions
here there is significant linear absorption [100]. The quadratic (or ac) Stark ef-

ect (QSE), which is a significant contributor to the overall ultrafast nonlinear
esponse below the band edge, is often referred to as “virtual saturation,” since it
ecomes real saturation or band filling for input frequencies above the bandgap.
or input frequencies lower than the bandgap region and Urbach tail, these ul-
rafast mechanisms dominate the nonlinear response of the semiconductor.

.1. Carrier-Related Nonlinearities (Excitation and
e-Excitation of Carriers)

.1a. Bulk (3D) Semiconductors

t 0 K incident radiation of frequency �gap=Egap/� can be absorbed to move an
lectron from the top of the valence band to the bottom of the conduction band, and
he absorption is zero for �gap��. For ���gap, absorption occurs via near vertical
ransitions [Fig. 32(a)] that conserve k� with a maximum probability given by the
roduct of the density of states in the valence band times the density of unoccupied
tates in the conduction band times the electric dipole transition matrix elements
which are a measure of the overlap of the spatial wave functions in the initial and
nal states) [99]. Thus the absorption spectrum rises smoothly from zero for �
�gap. At finite temperatures, the electrons pick up an additional energy �kBT, and

he top and bottom of the bands are now blurred and extend into the gap over ener-
ies typically of order kBT. In practice, defects also contribute to this additional re-
ion, which is called the Urbach tail. As a result, the absorption spectrum now de-
ays smoothly to zero in the gap region even for �gap��. The more intense the
ncident light, the larger the change in the occupation of states in both bands with a
esulting decrease of the absorption; see Fig. 33. The contribution to the refractive
ndex is different for an electron in the valence versus the conduction bands, and
ence the dispersion in the refractive index is also changed with increasing intensity
linked to the absorption change via the Kramers–Kronig relation). These nonlin-
arities are called “passive.” Furthermore, since the density of states is high and the
ransition matrix elements large, the index change can be saturated at moderate in-
ensities. For details, see [108].

and filling (blocking): There are multiple theories of carrier nonlinearities in
emiconductors; however, for most cases of interest they give comparable re-

ults. Here we follow the discussion of [100]. The theory of Banyai and Koch
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109], which includes the effects of electron–hole Coulomb interaction, plasma
creening, and band filling, is perhaps the most general; however, in order to give
quantitative analysis, a knowledge of the value for the interband matrix ele-
ent is required. This is often difficult to calculate from first principles, and the

alue is often approximately determined by comparing the computed and mea-
ured linear absorption spectrum. This theory is beyond the scope of this paper
nd luckily is often not needed, as the following theories give good agreement
ith experiments. The theories that we refer to as band-filling models are the
odel attributed to Aronov et al., [110] and Austin et al., [111] (BF1), and the

ynamic Moss–Burstein model with Boltzmann statistics [112–114] (BF2). In
oth theories the refractive changes are attributed to carriers independent of the
eneration mechanism, for example by single-photon absorption or 2PA. In BF1
he nonlinear refraction from free carriers is calculated directly from the real
art of the complex dielectric function. Creating a density �Nc of free electrons
n the conduction band accompanied by the elimination of a density −�Nc of
ound electrons in the valence band changes the index of refraction for off-
esonance excitation �q�Eg� by �n [111],

�n = −
�Nce

2

2�0n0�
2mcv

Eg
2

Eg
2 − ����2

, �4.1�

here mcv is the reduced effective mass of the electrons in the conduction band and
he holes in the valence band. Hot-carrier effects are neglected in Eq. (4.1) for pulses
onger than a few picoseconds, which is the time carriers take to reach the band edge
thermal equilibrium with the lattice discussed later in the context of active nonlin-
arities) for most semiconductors [111]. Shorter pulse excitation requires the more
ophisticated analysis of Banyai and Koch [109]. The factor Eg

2 / �Eg
2−q2�2� can be

hought of as an enhancement factor of the usual plasma index change. This simple
heory explains most of the nonlinear refraction encountered for carrier nonlineari-
ies where the carriers are generated by single- or multiple-photon absorption. We
hould also mention that the carrier nonlinear refraction is always negative, i.e., leads
o self-defocusing nonlinearities. While the following heuristic is too simplistic to
xplain the details, if one thinks of creating zero-frequency oscillators, one is always
bove resonance so that the index change is negative.

somewhat more sophisticated analysis is given in the BF2 model below. The
xcited carriers block the absorption at frequencies higher than the energy gap
y filling the available states in the conduction band with electrons taken from
he valence bands, Fig. 32. This model uses the Kramers–Kronig integral of the
hange in absorption to obtain the change in index. The total change in the index
f refraction, including contributions from electrons, heavy holes, and light
oles, is given by Wherrett et al. as [113]

�n = −
e2

2n0�
2��Nc

mc
�1 + Z�mck

m
Jhe +

mcl

m
Jlc�	 +

�Ph

mh
�1 + Z

mch

m
Jhh�

+
�Pl

ml
�1 + Z

mcl

m
Jll�� , �4.2�

here

Z =
2 Ep ����2

, �4.3�

3�� kBT Eg
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Jij = �
0

� x2e−x2

x2 + aij

dx , �4.4�

aij =
Eg − ��

kBT

mci

mj

, �4.5�

nd where the photogenerated electron and hole densities are given by �Nc and
Ph. The subscripts c, h, and l represent the conduction, heavy hole, and light
ole bands respectively. Similarly m is the free-electron mass, and the subscripts
enote the bands as above. The electron charge is e, kB the Boltzmann constant,
the temperature in kelvins, and Ep is the Kane momentum parameter, where EP

s �21 eV for most semiconductors [115]. In Eqs. (4.4) and (4.5), i and j are dummy
ubscripts that represent c, h or l. �Ph and �Pl are determined from [113]:

�Nc

�Ph

= 1 + � ml

mh
�3/2

,
�Nc

�Pl

= 1 + �mh

ml
�3/2

. �4.6�

quations (4.2)–(4.5) are an approximation that is adequate for near-resonant
xcitation. Off resonance, as is the case for 2PA, Jij should be replaced by Fij,
ith Fij defined by

Fij = − 2J�mci

mj

Eg

kBT
� + J�mci

mj

Eg − ��

kBT
� + J�mci

mj

Eg + ��

kBT
� , �4.7�

here the J defines the integral as in Eq. (4.4). For q��Eg and Eg�kBT, the
econd term on the right-hand side (RHS) of Eq. (4.7) is dominant, and Fij re-
erts to Jij as in Eq. (4.4) [101,103,104]. In 2PA experiments Eg-q� is compa-
able with Eg, and all three terms in Eq. (4.7) should be retained.

he contribution of the electrons to the index change, �Nc in Eq. (4.2) includes
locking due to electron transitions from the heavy-hole band and light-hole
and in addition to the change in the electron population in the conduction band.
Ph and �Pl give the contributions of the holes from the respective transitions.

n semiconductors like ZnSe, CdTe, and GaAs with two-photon excitation of
arriers (thus using Fij in Eq. (4.2) rather than Eq. (4.4) for Jij) the change in in-
ex from transitions between the light-hole and the conduction band (electron
locking, light hole blocking, and free-light-hole generation) are nearly equal
nd contribute about one-third each to the total index change. This shows that for
hese semiconductors it should be a good approximation to use a two-band
odel. This is the case discussed in what follows. Examining Jij in Eq. (4.4), we

ee for aij�1 that Jij
�� /4aij. Substituting this value for Jij into Eq. (4.7), Fij be-
omes proportional to x2 / �1−x2� with x=q� /Eg. Assuming a two-band model and
ubstituting Fij for Jij in Eq. (4.2) gives a change in index due to carrier transition
locking �nb as

�nb �
����2

�Eg
2 − ����2�

. �4.8�

he dominant frequency dependence here comes from the denominator and is
he same as the enhancement factor in the theory of BF1 using a two-band

odel. This agreement is expected, since the same physical mechanism is used
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n both calculations. Comparison of these theories for 2PA excitation in semi-
onductors like ZnSe, CdTe, and GaAs shows good agreement [10].

n this case we can write an equation for the nonlinear refraction by using a re-
ractive cross section �R with units of square centimeters (as was used in Sub-
ection 2.6 for molecules), using Eq. (4.2) to obtain a function of the ratio
� /Eg=x as

�n =
�R�N

kvac

=
�2e2

2�0n0m

Ep

Eg
3

1

x2�x2 − 1�
�Nc, �4.9�

here we replaced the effective mass with mEg /Ep [100]. Often in the literature
he kvac is not used in the definition, leaving a cross section in cubic centimeters.
ere we use kvac so that we can compare these semiconductor free-carrier refractive

ross sections with the molecular cross sections discussed in Subsection 2.6. There
e saw values in the 0.5 to 2	10−17 cm2 range, which as we will see is comparable
ith those for semiconductors; seeTable 8 below. Since the hole densities are related
y Eqs. (4.6) to the conduction band carrier density, the key parameter for describing
he band filling effect is the electron density in the conduction band at energy E,
Nc�E�. Assuming that the population of the conduction band can be neglected
rior to the incidence of the optical beam, for a semiconductor with a single direct
andgap (two-band model),

d

dt
�Nc�E� = 
1�I�

I�t�

��
−

�Nc�E�


r

, �4.10�

here 
1 is the intensity absorption coefficient and 
r is the recombination time.
n steady state,

�Nc�E� = 
1�I�
I�t�

��

r. �4.11�

efining �R as the cross section for the index change (from Eqs. (4.2)–(4.7)
hen a carrier is promoted from the valence to the conduction band and assum-

ng minimal change in the absorption spectrum, the band-filling nonlinearity

2,scbf is deduced to be

Table 8. Parameters Needed for Carrier-Related Nonlinearities in Selected
Semiconductorsa

Parameter InSb GaAs ZnSe ZnS CdS ZnO CdTe

g (eV) 0.18 1.42 2.67 3.66 2.42 3.2 1.44

�cm2� 8	10−16

[116]
4.4	10−18

[9]
7	10−18

[9]
3	10−18

[117]
6.5	10−18

[118]

R �cm2� 2–4	10−15

[119]
3.8	10−16

[10]
4.7	10−17

[10]
3.8	10−16

[117]
9	10−17

[118]
3.0	10−16

[10]

r (ns) 50 1
[9]

�1
[9]

3.6
[117]

2.8
[118]

10 µm 1064 nm 1064 nm 1064 nm 532 nm 532 nm 1064 nm

4.0 3.43 2.7 2.4 2.6 1.9 2.7

aDefect-dependent and Auger (which dominate at high intensities) decay rates are not

nowingly included.
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�n =
�R�Nc�E�

kvac

=

r
1�R

kvac��
I → n2,scbf =


r
1�R

kvac��
. �4.12�

ote that saturation of the index change will occur when 
1 is reduced with in-
reasing intensity. Furthermore, the electrons (and hence the index change) in
he conduction band can diffuse over distances of a few micrometers so that the
ndex change is not local. This nonlocality can be utilized to reduce the effective
urnoff time in semiconductor waveguides with cross-sectional dimensions of a
ew wavelengths by applying an electric field to sweep out the carriers from the
ptical path [107].

n Table 8 are listed �R, 
r, and Egap for a number of common semiconductors. For
aAs, which exhibits an absorption maximum of �104 cm−1, this gives n2,scbf

10−9 cm2/W. Of course, the distance that the incident beam penetrates the semi-
onductor is only a few micrometers. Table 9 breaks down contributions to the re-
ractive index change caused by plasma and blocking.

requently short pulses are used with pulse width �t�
r. In this case, subse-
uent to the passage of the pulse, the induced index change �np is given as

�np =
�RNc�E,t�

kvac

——→

r�t��t 
1�R

kvac��
�

0

t��t

I�t��dt� =

1�R

kvac��
F , �4.13�

here F is the fluence. This index change decays in time as

�np�t� = �np exp�− t/
r� . �4.14�

ore on free-carrier refraction and absorption: In Subsection 2.6 we discussed
SA and RSA in molecules. The absorption and refraction from excited states is
nalogous to that occurring in semiconductors that is due to photogenerated car-
iers (electrons and holes). Free-carrier absorption takes the role of ESA, and
ree-carrier refraction, as discussed above, takes the role of excited-state refrac-
ion. The discussion of nonlinear absorption is otherwise nearly identical to that
f Subsection 2.6. The bands take on the role of the vibrational–rotational mani-
olds, and the equations describing the loss are the same with simple redefini-
ions of the quantities. For example, for linearly excited carriers in Eqs. (2.25) 
1

eplaces the product of the ground state absorption cross section times the den-
ity, i.e., Ng�1g, where N1 is the density of excited carriers (electrons and holes)
nd �21 becomes the free-carrier absorption coefficient �. Here the assumptions are
hat band filling can be ignored and that phonon relaxation to the bottom of the con-
uction band (top of the valence band) is rapid on the time scale of the pulse. The
esulting nonlinear loss is then given by Eq. (2.26), reproduced here with the substi-
utions made for semiconductors:

Table 9. Contributions to Change in the Index of Refraction Caused by Plasma
and Blocking

Semiconductor
Plasma
Electron

Blocking
Electron

Blocking
Electron

lh-c
Plasma
h-hole

Blocking
h-hole
hh-c

Plasma
l-hole

Blocking
l-hole
lh-c

ZnSe 20% 33% 23% 4% 16% 2% 2%

CdTe 27% 23% 21% 7% 15% 4% 3%

GaAs 34% 25% 24% 3% 10% 2% 2%
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 108
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dF�t�

dz
= − 
1F�t� −


1�

2��
F2�t� . �4.15�

ere the relaxation process within the band comes from phonon emission, and
he free-carrier absorption takes the place of ESA. Of course, associated with
ach absorption process are the corresponding refractive changes described by a
ree-carrier refractive cross section, �R, as discussed in this section. Values for
ample cross sections are given in Tables 8 and 10. While RSA is an important
roperty for organic dyes, semiconductors cannot be diluted in solvents; so the
inear absorption is usually too large to utilize this nonlinear response except
erhaps in a few thin indirect bandgap materials [120]. However, free-carrier ab-
orption and free-carrier refraction are independent of the method of photoge-
eration. Thus, for example, 2PA can create the excitation, resulting in further
bsorption from excited states in molecules or free carriers in semiconductors.
hese processes will appear as fifth-order nonlinearities, i.e., ��3� :��1� processes

10].

xciton bleaching: As mentioned briefly before, exciton levels exist in the gap
ust below the conduction band in the vicinity of k� =0 [dashed curves in Fig.
4(a)] [99]. Since the hole–electron binding is weak, these are Wannier excitons,
nd their spectrum is hydrogenlike [Fig. 34(a)], with the levels becoming the
ontinuum reaching the bottom of the conduction band, [99]

En = Egap − E0

1

n2
− Coulomb correction, �4.16�

E0 =
�2

2mraB
2

, aB =
�2�0

e2mr

,
1

mr

=
1

me

+
1

mh

. �4.17�

ere En is exciton energy offset from the conduction band for states for n
1,2 ,3. . ., aBis the Bohr exciton radius for the n=1 state, and mr is the reduced
xciton mass; see Fig. 34(b). Variation of the n=1 energy offset E0 versus band-
ap energy is shown in Fig. 34(c) for a selection of semiconductors and indicates
n exponential relation between the two parameters.

n three dimensions well-defined exciton levels exist primarily at very low tem-
eratures T, where kBT is smaller than the binding energy as shown in the calcu-
ations reproduced in Fig. 36 [99]. As the carrier excitation increases with in-
reasing incident light intensity due to absorption, at low temperatures the
xciton line is rapidly bleached out and becomes essentially indistinguishable

Table 10. Comparison of Experimental and Theoretical Values for the Index
Change per Unit Carrier Density �R [10].

Material � (nm) Eg (eV) mc /m mv /m

�R �10−21 cm3�

Expt.
Theory
(BF1)

Theory
(BF2)

ZnSe 532 2.67 0.15 0.78 0.8 1.6 1.6

CdTe 1064 1.44 0.11 0.35 5.0 5.9 5.9

GaAs 1064 1.42 0.07 0.68 6.5 7.2 6.2

ZnTe 1064 2.26 0.12 0.60 0.75 2.4 2.2
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 109
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rom the absorption band edge, which moves to higher energies because of band
locking as discussed above. At room temperature in GaAs, the exciton peak is
ssentially bleached out owing to thermal excitation into the conduction band.
learly at low temperatures the peak nonlinearity �n2,exc�10−7 cm2/W� associ-
ted with the exciton line can be much larger than that due to band renormalization
ut can also be much narrower in spectral width [99,121].

igure 37 shows the measured absorption of GaAs and its refractive index cal-
ulated from the plasma model via the Kramers–Kronig relations for different
w input power levels at room temperature [108]. Initially, the index change is
inear in the input power, showing that an effective n2 provides a useful descrip-
ion for the nonlinearity. Note, however, that the saturation of the absorption and
ndex change since the absorption change for 1→3.2 mW is comparable with the
hange for 20→30 mW.

.1b. Active Nonlinearities (with Gain)

n this process an electron population inversion ��Nc�Ec�−�Pv�Ev��0� be-
ween the conduction and valence bands for some range of energy difference
Ec−Ev� must be created [103–106]. This population inversion is produced ei-
her by pumping optically (by absorption) electrons from the valence to the con-
uction band or by injecting these electrons via electrodes attached to the semi-
onductor. When a beam of frequency � is incident inside the region of
nversion, stimulated emission can occur, and the beam is amplified, accompa-

Figure 36

heoretical (includes plasma screening and coulomb interactions) curves for the
requency dispersion of the (a) absorption and (b) refractive index at 10 K and
c) absorption at room temperature in GaAs for different electron densities Ne in the
onduction band. For (a) and (b), curve1, Ne=0; 2, Ne=5	1015 cm−3; 3, Ne=3

1016 cm−3; 4, Ne=8	1016 cm−3; and for (c), curve 1, Ne=1	1016 cm−3; 2, Ne

1	1018 cm−3; 3, Ne=2	1018 cm−3; 4, Ne=3	1018 cm−3 [99]. Here me

0.0665m0 mh=0.457m0, aB=12.5 nm, and E0=4.2 meV. Dashed curve, density
f states.
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ied of course by electrons giving up energy by returning to the valence band.
his amplification process is shown schematically in Fig. 35(a) and is described
y

d

dt
�Nc�E� = − BI�t���Nc�E� − �Pl,h�E − ���� −

�Nc�E�


r

. �4.18�

ypically optical pumping with radiation fields of frequency �pump��gap is used
o achieve and maintain the population inversion, and very fast electron dynamics
ccurs in the conduction band when an optical pulse is applied to produce the
teady-state Fermi electron distribution as shown in Fig. 38 [103,104]. The corre-
ponding electron temperature Tc of this Fermi equilibrium distribution can be very
igh.

o understand the fast time dynamics, consider what occurs when a short pulse
f frequency � is incident [103,104]. As indicated in Fig. 38(b), stimulated
mission occurs and the gain is reduced. This results in a hole in the electron dis-
ribution in the conduction band, Fig. 38(b), panel II. This process is called
spectral hole burning.” This hole is filled in [Fig. 38(c), III] on a time scale of
100 fs by electron scattering, and subsequently this distribution relaxes (carrier

eating) on a picosecond time scale to a new Fermi equilibrium distribution [Fig.
8(c), IV] at a lower electron temperature (since the total number of conduction band
lectrons is reduced). Since pumping continues, eventually the conduction band
lectron distribution [Fig. 38(c), V] returns to that prior to the incidence of the pulse.
his occurs on a time scale that depends directly on the pumping rate.

hese dynamics have been probed experimentally and confirmed by modeling

Figure 37

xperiment (left-hand side) and theory (right-hand side) of the frequency spec-
rum of the absorption and refractive index change in GaAs at different input
owers. The experimental refractive index change was obtained by taking the
ramers–Kronig transform of the experimental absorption spectrum at different
owers [108].
or very short pulses by passing an ultrashort probe beam through the sample
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nd evaluating the nonlinear phase shift imparted on the probe as a function of
ime delay between pump and probe [106]. The calculated temporal evolution
hown in Fig. 39 agreed well with experiment. The integrated conduction band
lectron density �Nc recovers on the time scale of nanoseconds in this example.
he dominant effects are the Kerr effect, carrier heating, and partial depletion of

he conduction band electron density. Note that an effective n2 over the picosec-
nd time scale is not a useful parameter for the active case. The off-resonance
onlinear response of these active devices can also be modeled by using
ramers–Kronig relations in a way similar to that done for the bound electronic

esponse discussed in the next Subsection [122].

.2. Ultrafast Passive Nonlinearities (Kerr Effect etc.)

ere we discuss the nonlinear refraction (along with the nonlinear absorption)
ssociated with bound electrons in semiconductors and/or dielectrics. This non-
inear refraction is called the bound electronic Kerr effect. These nonlinearities
re only dominant in the transparency range of the material where other nonlin-
ar optical effects are negligible, as they are usually the smallest of the nonlinear
esponses discussed in this paper (but the fastest!). In the transparency range the
onlinear optical response is due to the anharmonic motion of bound valence
lectrons that have low mass and can respond at optical frequencies. Thus they
re often referred to as “instantaneous” nonlinearities; however, because of the
nite response time ��10−15 s� they still show dispersion, as we will see.

here are three nonlinear processes that need to be taken into account, 2PA, Ra-
an absorption, and the so-called QSE, often referred to as the ac Stark effect or

irtual band blocking; see Fig. 40. The nonlinear refraction can then be calcu-

Figure 38

a) Photon field incident on a semiconductor with conduction band partially
opulated. (b) Stimulated emission reduces the gain as the conduction band is
epopulated. (c) I, Conduction Fermi band population distribution before opti-
al field incidence. II, Hole produced in electron distribution due to stimulated
mission. III, Relaxation to new electron distribution due to collisions. IV, Re-
axation to new Fermi band distribution. V, Return to original (before field inci-
ence) Fermi distribution by pumping (electrical or optical) [103,104].
ated by frequency nondegenerate Kramers–Kronig relations derived from cau-
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ality. The change in index at �1 due to the presence of a strong excitation beam
t frequency �2 is related to an integral over all frequencies � of the nondegen-
rate nonlinear absorption at frequency �2 that is due to the presence of the
trong excitation light beam of frequency �2 by [123]:

n2��;�2� =
c

�
P�

0

� �
��1;�2�

�1
2 − �2

d�1 �4.19�

here P denotes the principal value of the integral, and

�
��1,�2� = K
�Ep

n01n02Eg
3
F2�x1,x2� �4.20�

ith x1, x2 given by ��1,2 /Eg, is the nonlinear absorption with F2 containing the
pectral information as given in Table 11. K is a material-dependent constant
iven by

Figure 39

heoretical modeling of the nonlinear phase shift (due to the index change) ex-
erienced by a probe beam as a function of delay time between an intense excit-
ng beam and the probe beam. TPA, 2PA (Kerr effect); SHB, spectral hole burn-
ng; CH, carrier heating; TOT, total nonlinear phase shift; Ne, electron density in
onduction band [106].

Figure 40

rincipal ultrafast nondegenerate two-photon processes that dominate semicon-
uctor nonlinearities below the bandgap [122].
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K =
25

5�

1

�0
2

e4

�m0c
2

, �4.21�

nd m0 is the free-electron mass. The frequency degenerate n2=n2scuf�−� ;�� is
iven by setting �=�2 after the integral has been performed.

he QSE functions in Table 11 are derived in [100] and come from a two-
arabolic-band model of semiconductors, i.e., a single direct bandgap. Remark-
bly this simple theory gives excellent predictions for the magnitude and spec-
ral dependence of the observed nonlinear absorption and refraction in
emiconductors and even dielectrics. Refinements of this theory to include four
ands (or even higher bands) have been performed [124] and can give even bet-
er descriptions of the nonlinear response to ultrashort pulses. This simple two-
arabolic-band model gives the spectral dependence of degenerate 2PA as

F2 = � �2x − 1�3/2

25x5 � , �4.22�

here x=�� /Eg, which is shown in Fig. 41. Also shown in Fig. 41 are 2PA mea-
urements of several semiconductors with the data scaled according to

F2���

Eg
� =

1

K�Ep

n2Eg
3
2

exp, �4.23�

here K=3100 cm GW−1 eV5/2 (the experimental best fit) is used with Ep and Eg

n electron volts. Values of the measured 2PA coefficients �
2
exp� for representative

emiconductors along with several dielectrics are shown in Table 1.

lugging the F2 components into Eq. (4.19), performing the integrals, and tak-
ng care to subtract divergences yields the nonlinear refractive index n2,scuf:

n2,scuf��1,�2� =
�cK

2

�Ep

n01n02Eg
4
G2�x1,x2� , �4.24�

here the dispersion function G2 is given by

G2�x1,x2� =
2

�
�

0

� F2�x�;x2�

x�2 − x1
2

dx�. �4.25�

s pointed out in [125], this integral, when E� ·r� Hamiltonians are used as op-
�

Table 11. Components of Nonlinear Absorption Spectral Function F2�x1 ,x2�

Process F2�x1 ,x2�

2PA x1+x2�1 �x1 + x2 − 1�3/2

27x1x2
2 � 1

x1

+
1

x2
�2

Raman x1−x2�1 �x1 − x2 − 1�3/2

27x1x2
2 � 1

x1

−
1

x2
�2

QSE x1�1
−

1

29x1x2
2�x1 − 1�1/2� x1

x1
2 − x2

2
−

2�x1 − 1��x1
2 + x2

2�

�x1
2 − x2

2�2
+

8�x1 − 1�2

x2
2 �
osed to A ·p� , can prove to be difficult to perform, since it includes some diver-
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ences that need to be subtracted out. However, this has been done with results
hat agree with experiments. The nonlinear absorption that goes into Eq. (4.19)
s given in Table 11. The result is

n2,scuf��� =
A

n0
2Eg

4
G2���/Eg� , �4.26�

here the spectral dependence is in the G2 function as given in Table 12 and is
uite complicated.

Figure 41

unction F2 (for 2PA) of Eq. (4.22) plotted as a function of �� /Eg (solid curve)
long with data scaled according to Eq. (4.23) [124].

Table 12. Components of Dispersion of n2 from Various Nonlinear Absorption
Processes with G2�x1 ;x2�=G2

2PA�x1 ;x2�+G2
Raman�x1 ;x2�+G2

acStark�x1 ;x2�

Process G2�x1 ;x2�

2PA H�x1 ,x2�+H�−x1 ,x2�
Raman H�x1 ,−x2�+H�−x1 ,−x2�

QSE
x2�x2

1

29x1
2x2

2�−
1

2
−

4

x1
2

+
4

x2
2

−
x2

2

x1

��1 − x1�−1/2 − �1 + x1�−1/2�

x1
2 − x2

2 �
+

2x1
2�3x2

2 − x1
2�

x2
2�x1

2 − x2
2�2

��1 − x2�1/2 + �1 + x2�1/2�

� −
2x2

2�3x1
2 − x2

2�

x1
2�x1

2 − x2
2�2

��1 − x1�1/2 + �1 + x1�1/2��
x1=x2 1

29x1
4�3

4

�1 − x1�−1/2 − �1 + x1�−1/2

x1

−
�1 − x1�−3/2 + �1 + x1�−3/2

8
−

1

2
	

dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 115



H

T
G
n

I
a
t

T
n
r
r
T
a
w
d
c
i
i
n
t

T
n
l
	
e
f
b
a

A

ere

H�x1,x2� =
1

26x1
4x2

4� 5

16
x2

3x1
2 +

9

8
x2

2x1
2 −

9

4
x2x1

2 −
3

4
x2

3

−
1

32
x2

3x1
2�1 − x1�−3/2 +

1

2
�x2 + x1�2

	��1 − x2 − x1�3/2 − �1 − x1�3/2�

−
3

16
x2

2x1
2��1 − x1�−1/2 + �1 − x2�−1/2�

+
3

2
x2x1

2�1 − x2�1/2 +
3

2
x2

2x1�1 − x1�1/2

+
3

4
x2�x2

2 + x1
2��1 − x1�1/2 −

3

8
x2

3x1�1 − x1�−1/2

+
1

2
�x2

2 + x1
2��1 − �1 − x2�3/2�.� �4.27�

he last term in Table 12 allows one to calculate the limit of the nondegenerate

2 QSE. When the limit x1→x2 is taken, the contribution to the usual degenerate

2,scuf is obtained.

t is noteworthy that the bandgap scaling predicted can also be obtained by using
quasi-dimensional analysis. Such an analysis was used by Wherrett to obtain

he bandgap energy scaling of n2,scuf�Eg
−4 [126].

he different contributions are plotted in Fig. 42. In general, below the 2PA reso-
ance, 2PA, and Raman effect contribute nearly equally to the small, positive,
elatively dispersion free region of n2,scuf, and then 2PA takes over around the 2PA
esonance and begins to decrease n2 to take it negative above the 2PA resonance.
here the strong one-photon resonance negative contribution from the QSE kicks in
s well to take n2 very negative near the 1PA bandgap. This region of the spectrum
here n2 decreases rapidly for ��→Eg is shown in Fig. 43 along with experimental
ata. This response evolves smoothly into the real band-blocking nonlinearity dis-
ussed in the paragraphs titled “4.1a Band filling (blocking).” Nonlinear refractive
ndices of several materials have been measured, covering a broad range of normal-
zed frequency as shown in Fig. 44. Figure 45 shows the wavelength dispersion of

2,scuf in ZnS along with its 2PA spectrum [127]. In both cases, the agreement of
heory with experiment is good.

he hidden Eg
−4 scaling can be displayed more conveniently on a log/log plot of

2 scaled by the dispersion function G2 as in Fig. 46. Here it is seen that the non-
inear index at 1064 nm varies from −3.3	10−13 cm2/W for GaAs, to +3.1

10−16 cm2/W for Al2O3, to +1.23	10−13 cm2/W for ZnTe. We also see that, for
xample, the measured values of n2 for ZnSe at 1.06 and 0.532 µm, which have dif-
erent signs, are consistent with the scaling law derived from a simple two-parabolic-
and model. Again, several of the experimentally measured nonlinear parameters

re shown in Table 1.
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.3. Low-Dimensional Semiconductors

s we have seen in the previous discussion on semiconductor nonlinear optics,
t telecommunications wavelengths of about �=1.55 µm, typical bulk semicon-
uctors have a nonlinear refractive index insufficient for many applications. For ex-
mple, silicon has an n2,el of 0.5	10−13 cm2/W, while GaAs is a bit larger at 1.5

10−13 cm2/W [128,129]. Both, however, fall far short of the needed strong optical
err effect of an n2 of about 10−10 cm2/W to produce attractive index changes of

he order of 10−2–10−4 with MW/cm2 intensities. Yet, since these semiconductor
aterials are exactly what is used in today’s electronic platforms, optical devices
ade of compatible materials are needed if they are to be integrated as an active el-

Figure 42

pectral dependence of the different ultrafast contributions to the nonlinearity n2

or Egap���. Here 2PA refers to the two-photon absorption mechanism (Kerr ef-
ect), RAM to the Raman effect, and QSE to the quadratic Stark effect [125].

Figure 43

pectral dependence of the function G2 ��n2� as ��→Egap along with data for a
ew measured semiconductors [125].
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ment. One potential approach (still unproved) is to make use of low-dimensional
emiconductors. Confinement in one or more dimensions of the conduction band
lectrons can change the nonlinear optical response of a semiconductor in a number
f ways. This includes confinement structures that are of the order of and smaller
han the exciton Bohr radius in either one (quantum well), two (quantum wire), or all
hree (QD) spatial dimensions [99,102]. In each of these structures an excited elec-
ron is confined by the dimensions of the structure, and its behavior can be signifi-
antly altered from that of a bulk semiconductor of the same material [99,102].

s discussed previously, the transition matrix elements are a product of the den-
ity of electron states �Ne� times the integral over the spatial overlap of the elec-
ron wave functions in the valence and conduction bands. The overlap integral
eferred to above depends on the details of the confined structure, and it can ac-

Figure 44

pectral dependence of the function G2 ��n2� for 0��� /Egap�1 along with
easured data for a few semiconductors [125].

Figure 45

Wavelength dispersion of n2 in ZnS (left) and 2PA spectrum (right) [127].
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ually be enhanced (or reduced) relative to the bulk case. For interband transi-
ions between the valence and the conduction band(s), the oscillator strength µcv

epends on

µcv � �
V

�v
*�r�,k���E� · p���c�r�,k��dr3, �4.28�

here p� is the electron momentum operator, �v�r� ,k�� and �c�r� ,k�� are the electron
ave functions in the valence and conduction bands, respectively, and the al-

owed wave vectors k� depend on the dimensionality. For the confined states we
an write

��r�,k�� = � ck��k�,r�� � ��0,r�� � cke
ik�·r� = ��0,r��F�r�� , �4.29�

here the function F�r�� is traditionally called the envelope function while
�0,r� is the Bloch wave function at k� =0. As a result Eq. (4.28) can be expanded
s

�
V

�v0
* Fv

*�E� · p��Fcdr3 + �
V

Fv
*Fc�v0

* �E� · p���c0dr3. �4.30�

he first integral vanishes owing to the orthogonality between the valence and
he conduction band Bloch wave function, while the other terms are slowly vary-
ng over any one unit cell. These terms can therefore be pulled out of the integral

Figure 46

og-log plot of the scaled dispersion function G2 showing the Eg
−1 dependence

f n2 [125].
o give
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�
V

Fv
*Fc�v0

* �E� · p���c0dr3 � � �Fv
*Fc��

V
�v0

* �E� · p���c0dr3, �4.31�

here the sum is over unit cells in which F
v
*Fc is slowly varying so that

� �Fv
*Fc� = �

V
Fv

*Fcdr3. �4.32�

s a result the oscillator strength of the transition is determined by the integral

VF
v
*Fcdr3, which is the overlap of the envelope functions and is either zero or

onzero depending on the parity of F
v
* and Fc.

n a similar way we can examine the intraband oscillator strength of the transi-
ion between two states in the conduction band. This is particularly important,
ince some two-photon transitions of interest will likely involve both a band-to-
and transition and an intersubband transition. In this case we have

�
V

�cj
* �E� · p���cidr3 �4.33�

here i and j represent two different states in the conduction band. This can be
xpanded to

�
V

�cj0
* �ci0Fcj

* �E� · p��Fcidr3 + �
V

Fcj
* Fci�cj0

* �E� · p���ci0dr3. �4.34�

ere again we can examine both of these integrals over unit cells, and in this
ase the first integral is nonzero and the second is zero if we take them as Block
ave functions. The first integral can again be zero or nonzero depending on the

arity of F
ej
* and Fei. However, one must consider that the �E� ·p�� operator will

hange the parity of Fei.

he changes in the electron density of states in going from a bulk semiconductor
electron motion allowed in full three dimensions, kx, ky and kz) to quantum wells
electron motion allowed in two dimensions, ky and kz), to quantum wires (elec-
ron motion restricted to one dimension, kz) and finally to QDs in which the elec-
ron is completely confined (zero dimensions) are illustrated in Fig. 47 [102]. As
he dimensionality is decreased, the electron density becomes progressively
ore localized in energy. In fact, in zero dimensions (for QDs), the resulting dis-

rete energy spectrum resembles that found in molecular systems.

he interest in dimensionally reduced semiconductors for nonlinear optics has
een limited primarily to quantum wells and QDs [102]. The reason is simply
hat these structures can be fabricated in a number of different ways. High-
uality quantum wires have proved to be difficult to fabricate, and the main
river for their development has been quantum wire lasers [130].

hile the physics of electron confinement from one to three dimensions on
anoscales is a fascinating and current subject, here we will focus on the nonlin-
ar optical properties of such structures. Quantum wells have become a mature
echnology, and indeed nominal enhancement of resonant nonlinear optical
roperties has been reported. For type II–VI semiconductor crystallites imbed-
ed in glass matrices (QDs) it is not clear whether significant enhancement oc-
urs [131], although there has been a report of large enhancement for III–V
anocrystals in glass [132]. The magnitude of enhancement experimentally pos-

ible in GaAs QDs is still unresolved although progress has been made on iden-
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ifying fabrication conditions which yield the desired geometries of the dot
tructures, etc. where materials research, especially in the GaAs system, is still
t the frontiers of the field.

.3a. Quantum Wells

uantum well structures have been fabricated in a surprisingly large number of
aterials, AlxGa1−xAs/GaAs, InxGa1−x As/GaAs, InGaAsP/InP, and
aN/AlxGa1−xN, to name but a few [133–135]. However, the onus for nonlinear
ptics has been on AlGaAs/GaAs structures for a number of important reasons.
irst, this material system is widely used in the optics industry for making lasers and
etectors, as well as modulators of various kinds. Second, the molecular beam epi-
axy (MBE) fabrication technology is very highly advanced, and the proliferation of

BE machines throughout the world has resulted in easy availability of high-quality
amples.Third, on the physics side, not only is there an excellent lattice match for the
omposite structures, which reduces the internal strain, the reduced electron mass is
lso very small, leading to large nonlinearities. Hence here we focus on this material
ystem. Shown in Fig. 48 (top) is a typical quantum well structure composed of al-
ernating AlGaAs and GaAs layers deposited by MBE [136]. As indicated in Fig. 48
bottom) periodic modulation of the bandgap results, with the bandgap energy of
aAs being lower than that of AlGaAs. As a result, the lowest energy conduction
and electrons are confined to the GaAs regions in allowed discrete energy states
hose location and number depend on the detailed composition of the AlxGa1−xAs.
he electron wave functions are essentially sinusoidal across the GaAs layers and
xponentially decaying in the AlGaAs layers. The general parity conditions dis-
ussed above require that states of the same symmetry in the valence and conduction

Figure 47

a) No confinement in electron motion in conduction band (3D bulk sample). (b)
lectron confinement in 1D (2D quantum wells). (c) Confinement in 2D (1D
uantum wires). (d) 3D confinement (0D QDs). (e)–(h) Electron energy E versus
ensity of states Ne�E� for (e) 3D, (f) 2D, (g) 1D and (h) 0D semiconductors
102].
ands be connected by transitions, i.e., the even symmetry states (e.g., cosinelike
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ave functions) and the odd symmetry states. (When there is significant overlap of
he wave functions between next-nearest-neighbor GaAs layers, the structure is
alled a “superlattice”). The resulting calculated absorption spectrum consists of a
eries of steps with transitions to confined energy levels Em occurring from the va-
ence band when the photon energy ���Em occurs as indicated in Fig. 49(b), until
��Egap AlGaAs, at which point it becomes a smooth continuum of the kind associ-
ted with bulk semiconductor samples; see Fig. 49 [102]. Associated with each
ound electronic state is an exciton level that produces discrete peaks in the absorp-
ion spectrum lying below the photon energy associated with that bound state.

he observed absorption spectra of quantum wells agree with these predictions,
ee Fig. 50 [136]. As expected, the onset of the absorption of bulk GaAs occurs
t a lower photon energy than the quantum well. Furthermore the quantum well
xciton features even at room temperature are better defined (narrower) than in
he bulk sample. In addition they show new features not discussed above that re-
uire a more sophisticated treatment of the valence electrons than that allowed in
two-band model. Most specifically, the excitons associated with the light hole

nd heavy hole valence bands produce two separate peaks in the absorption
pectrum.

he early definitive experimental work on the nonlinear properties of multiple
uantum wells (MQWs), which showed enhanced nonlinear properties due to
lectron confinement and hence galvanized the field, is shown in Fig. 51 and re-
orted in Table 13 [137]. This work focused on the nonlinear index change due to
aturation of the exciton level. The intensity-dependent change in the exciton ab-
orption coefficient was measured around resonance in a series of MQWs of dif-
erent thickness, and the Kramers–Kronig relations were used to evaluate the
orresponding index change. Both the maximum index change and the bandgap
nergy increase with decreasing well width were found. A very important fea-
ure of these results is that for a given MQW, the index change is sublinear in the
ncident intensity; i.e., an effective n2 is not a useful concept similar to the results
ound in bulk semiconductors and discussed above. Enhancements of a factor of

3 occur in the maximum refractive index change per excited electron in going

Figure 48

a) Typical MBE-deposited GaAs–AlGaAs quantum well. (b) Example of en-
rgy levels and wave functions associated with electrons confined to the AlGaAs
egions [136].
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 122
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rom bulk GaAs to relatively small GaAs MQWs [137]. Because the absorption
s different for each data point in Fig. 51, it is more useful (see Fig. 52) to discuss
he index change per electron raised from the valence to conduction bands. How-
ver, this calculation also shows about a factor of 3 maximum enhancement for
he MQWs. That is, the �r we used for describing bulk materials is enhanced.

ubsequent experiments on GaAs/AlAs quantum wells at frequencies around half
he bandgap also showed enhancements of a factor of 2–3 in n2 [138]. In yet another
et of experiments, the nonlinearities of InGaAs/ InAlGaAs quantum wells were
easured near their bandgap. The resonant excitation and saturation of the exciton

ine in the 1.48–1.55 µm spectral range gave a value of n2 of 6	10−10 cm2/W or

Figure 49

a) Idealized absorption spectrum for bulk GaAs including the exciton. (b) Ide-
lized absorption spectrum of an AlGaAs–GaAs quantum well [102].

Figure 50

easured room temperature absorption spectrum of a 1 µm GaAs platelet and
f a 50 period quantum well of comparable thickness. Note that the net thickness
f the quantum well sample is one half of the bulk sample [136].
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 123
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n index change of 6	10−4 for intensities in the 100 MW/cm2 range [139]. How-
ver, unfortunately no comments were made on enhancements relative to bulk me-
ia [139]. Finally, large enhancements were reported for GaAs/AlGaAs quantum
ells measured with 532 nm radiation, although no indication is given of the bulk
alues used for comparison at that wavelength [140].The net conclusion is that mod-
st enhancements of a factor of 2–3 have been measured.

.3b. Quantum Dots

n fact, by reducing the size in all three dimensions, forming what is called a QD,
he material properties exhibit the largest changes relative to the bulk semicon-
uctor. The reason for this is that each atom in a bulk material sees its neighbors
s replicas of itself. Hence very few atoms are at the edge or interface surface of
he material, so that the material parameters or response of the material to an ex-
ernal stimulus is basically determined by the atoms in the bulk. Thus in bulk
edia the surface atoms can almost always be neglected, even though their en-

ironment or bonding to their neighbors is very different.

Figure 51

efractive index change calculated by using the Kramers–Kronig relation on
easured absorption coefficients for a variety of different quantum well widths

t five incident power levels 0.67, 1.27, 2.65, 5.4, and 7 KW cm2. Here

2,eff�max��1.5	10−6 cm2 W [137].

Table 13. Measurements of Nonlinear Refraction Coefficient n2 and Absorption
in Various MQWs

Material �bandgap (nm) n2 �cm2/W� 
NL (cm/GW) � (nm)

GaAs/AlGaAs [137] �840–870 �1.5	10−6 6 816

GaAs/AlAs [138] �740 5.5	10−13 4 1545

InGaAs/ InAlGaAs [139] �1600 6.0	10−10 6.6	104 1500

GaAs/AlGaAs [140] 6.5	10−11 6.5	105 532
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 124
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n the other hand, for a nanosize structure like a QD the situation is dramatically
ifferent [102]. In this case all of the atoms are influenced by the fact that the
tructure has a surface even though the nanostructure may be a cube of 100 at-
ms on a side or composed of a million atoms. The consequence of the effect of
he surface atoms and small volumes is that the energy level structure of the ma-
erial is dramatically changed. Since the optical properties of a material depend
ntimately on its electronic structure, all of the material properties become de-
endent on size. This result implies that the nonlinear optical coefficients at a
pecific wavelength can be tuned by changing QD dimensions.

n many ways QDs made by MBE have features that resemble those of mol-
cules such as discrete optical transitions. However, it is not at all obvious that
he change in behavior due to a decrease in size will in practice always enhance
onlinear optical parameters as opposed to decreasing their nonlinear efficien-
ies.

he simplest approximation is to assume spherically symmetric crystallites and
two-band model. (Assuming ellipsoids has had only a minor effect on theoret-

cal results [141,142]. For example, the conduction band wave function Fc�r��
an be expressed in terms of the product of spherical Bessel functions of order �,

����p�r /r0��, where r0 is the crystallite radius and ��p is its pth zero and spheri-
al harmonics Y�

m�� ,��, so that [131]

Fc�r�� = B�pj����p�r/r0��Y�
m��,�� , �4.35�

here B�p is a normalization constant. The valence band wave function Fh�r�� has
similar form. Taking the zero of energy at the top of the valence band, the en-

rgy levels for the conduction electrons occur at

E�p
c = Egap +

�2��p
2

2m r2
, �4.36a�

Figure 52

aximum change in refractive index per carrier concentration versus the carrier
oncentration [137].
c 0
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ith successive levels 1s (�=0, p=1), 1p (�=1, p=1), etc. and for the valence
and

E��p�
h =

�2���p�
2

2mhr0
2

. �4.36b�

he valence and conduction band energy levels are shown schematically in Fig.
3. Since µcv��VF

v
*Fcdr3, the selection rules are ���� ,�nn� ,�mm�; so allowed tran-

itions (in this model) can occur only between similar symmetry states in the valence
nd conduction bands. In addition, there is a correction to the energies due to the in-
eraction between the hole and electron pair; so the resonance frequency for a tran-
ition is given by

���p = Eg +
�2��p

2

2mhr0
2

+
�2��p

2

2mer0
2

− b
e2

�rr0

, �4.37c�

here b is a numerical factor equal to 1.8 for ps→ps transitions.

ote that a different notation is frequently used when electron spin and spin–
rbit coupling is included [131]. The valence band(s) arises from p orbitals,
hich in the simplest case are sixfold degenerate (i.e., px, py, and pz with two
ossible spin states each). Normally spin–orbit coupling lifts the degeneracy and
esults in a fourfold degenerate pP3/2 valence band level and a twofold degener-
te pP1/2 level. The complication arises because of the coupling between the
tomic angular momentum J and the angular momentum L associated with the
nvelope functions. As explained in detail in [131], for the lowest energy levels,
ven symmetry states involving �=0 and �=2 are denoted pS3/2 (in the valence
and and pSe in the conduction band) and the lowest odd symmetry energy levels
re pP3/2 for �=1 and �=3, etc. It is this notation that is frequently used to de-
cribe transitions in QDs.

lasses doped with II–VI semiconductor crystallites: Semiconductor crystal-
ites doped into various glasses have been known for many decades as absorp-

Figure 53

chematic representation of the energy spectrum of the valence and conduction
ands for a QD.
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ion edge filters produced commercially by companies such as Schott and Corn-
ng. By varying the crystallite size down to nanometer dimensions, the
bsorption edge can be tuned over �100 nm, a well-known feature of QDs in gen-
ral. Early degenerate four-wave mixing experiments near resonance by Jain and
ind stimulated interest in the nonlinear optics community in these systems [143].
he most common semiconductor constituents have been the II–VI compounds
dS, CdSe, and CdTe (reviewed in [131]).

consensus on the nonlinear properties of these semiconductor doped glasses
as been slow to emerge in the literature because of the complexity of these sys-
ems. Much of the work has been summarized in the excellent review article by
anfi et al. [131]. Three mechanisms for exciting the semiconductor electrons
ut of the valence band have been identified. First there is the usual absorption of
photon to move an electron from the valence to conduction band as discussed

bove. The narrow luminescence peak associated with this process has a relax-
tion (recombination) time of nanoseconds. Second, there are trapping states
ue to bonds dangling from the glass or semiconductor or both at the interface
ith the glass. This process leads to a broad fluorescence peak with relaxation

imes of microseconds. The broad distribution is indicative of a broad spectrum
f trap states. Third, photodarkening of the glass, which depends on the inte-
rated optical flux, also occurs. This effect is believed to be due to the ejection of
lectrons out of the semiconductor into the glass disordered matrix where they
re trapped. This darkening, which is strongly sample dependent, can be elimi-
ated by heating the sample [144]. The contributions of these processes to the
et nonlinearity can have different signs and different relaxation times, depend-
ng on the particular system under consideration. Furthermore, these processes
re coupled. For example, in a darkened sample the recombination time goes
rom nanoseconds to picoseconds [145,146].

hether quantum size effects are relevant depends on the ratio of the crystallite
adius r0 to the exciton Bohr radius aB, i.e., R=r0 /aB. For example, aB is 3.2, 5.6
nd 7.4 nm for CdS, CdSe, and CdTe respectively [131]. For R��3, significant
uantum size effects have been found to appear. See, for example, the complex ab-
orption spectrum measured in CdSe-doped glasses shown in Fig. 54 [147]. Many
ifferent transitions with widely differing transition strengths between localized
tates are shown theoretically to contribute and their relative contribution depends
trongly on the crystal size.

he situation with respect to the nonlinear properties has been complicated by a
umber of factors [131]. For example, there is always a distribution in the crys-
allite sizes resulting from the fabrication methods used, which, given the strong
ependence of the electronic states and transition dipole moments between them
n size as illustrated in Fig. 54, tends to smooth out the optical response [131].
his affects primarily the resonant response. Unless specifically measured, the
verage size of the crystallites and their density is estimated to at best an accu-
acy of ±10%. Still another complicating factor is the fact that the crystallite com-
osition, for example in CdSSe glasses, is not the same as that of the starting ma-
erial [148]. Furthermore, free-carrier absorption is an important contribution to
he effective 2PA when measured with picosecond and longer pulses, and the
wo effects were infrequently separated from one another experimentally [131].
n summary, the detailed properties of the samples and their contributing physics
ere in many cases not sufficiently well defined.

he resonant intensity-dependent index and absorption change was measured,
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 127
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or example, in a CdSSe-doped glass with average crystallite size of 11 nm, at
he boundary between quantum confinement and bulk sample behavior [149]. The
xperimental results for the index change are shown in Fig. 55 for a crystallite con-
entration of �10−3. The index change reported was �10−5, in reasonable agree-
ent with the values both predicted from the partly phenomenological semiconduc-

or plasma theory based on bulk semiconductor parameters and by applying the
ramers–Kronig relations to the observed absorption change [149].

anfi and coworkers have carried out extensive measurements on the nonreso-
ant properties of II–VI doped glasses, accompanied by complete characteriza-
ion of relevant sample properties [131]. The key definitive results summarized
n the excellent review paper by these authors are shown in Figs. 56–58 [131].
oth femtosecond and picoseconds pulses at different frequencies were used on
oth bulk samples and a series of nanocrystallites with crystal radii varying over
.8–14.0 nm for CdTe and 5.2–13.5 nm for CdS0.9Se0.1. To within a factor of 2
which is comparable with the overall experimental uncertainty), no significant
ariation in Imag���3����
2� versus crystallite size was found for all the cases and
avelengths studied, and the values were essentially equal to the bulk sample value,

.e., no enhancement was observed; see Fig. 56. Given that varying the crystal radius
aries the semiconductor bandgap, the authors also tested whether the nonresonant
onlinearity of quantum confined samples followed the trends predicted for bulk
amples discussed in Subsection 4.2, specifically the functions F��� and G��� in

Figure 54

ow-temperature absorption spectra and their second derivative for three CdSe-
oped glasses with mean crystal radii of 3.8, 2.6, and 2.1 nm, from top to bottom.
he calculated contributing transitions are shown as stick spectra and are identified

n the inset [141,142].
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qs. (4.20) and (4.4). The results in Figs. 57 and 58 show agreement with the bulk
emiconductor results to within a factor of 2.The key conclusion from these detailed
tudies is that quantum size effects have at most a factor of 2 effect on the nonreso-
ant nonlinearities for the values of R investigated!

nother approach rooted in chemistry is to form semiconductor crystallites in
olloidal suspensions via chemical reactions. Recently additional 2PA experi-
ents were reported on small II–VI crystallites made this way, also over a broad

ange of frequencies [150]. The crystallite sizes for CdTe (r0=3.2,6.6 nm) and
dSe (r0=1.9,2.1,2.2,2.4 nm) were smaller than those discussed above in the
oped glasses studied by Banfi et al. [131]. An example of these results is shown in
ig. 59. Two cases were studied, the degenerate 2PA case, i.e., when two photons of

he same frequency were absorbed, and the nondegenerate case, when the input pho-
ons had different frequencies. Note the oscillatory behavior observed in 
2, which
s now evident for these smaller crystallites, versus frequency due to quantum con-
nement. It was found that including band mixing in the theory gave a significant

mprovement to their agreement between theory and experiment, although the
greement was less satisfactory for the smallest crystallites, probably because the ef-
ects of the split-off band were not included in the Kane k-p theory. The experimen-
al results showed that the volume fraction normalized 2PA cross section actu-

Figure 55

bsorptive changes and corresponding dispersive index changes. (a) Experi-
ental results: �
=
�N=1018 cm−3�−
�N=0�. (b) Theoretical results, �


p�I=3 MW/cm2�−�
�I=200 kW/cm2�. (c) Measured dispersive index
hanges, �nsb, using single-beam interferometry [149].
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 129
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lly decreased with decreasing crystallite radius for R=r0 /aB�1. This decrease
s small and agrees with the expectation for the small reduction in density of
vailable states as the dot size decreases. It would be expected that these results
ould be applicable to other hosts and is consistent with the results of Banfi et
l. for glasses [131].

nfortunately, the anticipated enhancements of optical nonlinearities were not

Figure 56

easured Im���3�� versus crystallite radius r0 and for a bulk crystal at wavelengths
f 1.2 µm (�), 1.4 µm (�) and 1.58 µm (�) for CdTe and at 0.79 µm (+) for
dS0.9Se0.1 nanocrystals and bulk CdS [131].

Figure 57

lot of the scaled quantity �� /�0�4Im���3�� for bulk CdS and CdTe crystals as well
s CdTe and CdS0.9Se0.1 nanocrystals with the radii shown in Fig. 56. The solid
urve is a fit to Eq. (4.20) [131].
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ealized for glasses doped with II–VI semiconductors. Furthermore, these doped
lasses were found to be unsuitable for a range of nonlinear integrated optics ap-
lications involving all-optical switching devices because of the semiconductor
roperties of the II–VIs involved. Namely, these bulk materials have a large ef-
ective electron mass, which produces an unfavorable trade-off between index
hange and absorption and the index change saturates at a small value [151,152].

here has been limited work performed on QDs in other materials systems: the
esults are summarized in Table 14 In a study of III–V semiconductors using
ump–probe Z-scan studies of GaAs nanocrystals grown in porous glass, the
onlinear coefficient reported is 1.3	10−11 cm2/W. The bound electronic non-
inear refraction in the quantum confined sample was found to be enhanced by a fac-
or of 30 relative to that of the bulk crystal [132]. This is the only example of large
nhancements reported in GaAs nanocrystals.

he other QD system in Table 14 involves a complicated sample structure. The
n:ZnSe samples consist of a MnSe core, Zn1−xMnxSe diffusion region, and an

uter ZnSe layer.The authors found the nonlinearity to decrease with decreasing QD
iameter.

t would appear that the variation in results from different experiments indicates
hat more careful experiments are needed.

rospects for GaAs QDs: However, based on the enhancement obtained from
he previously discussed MQW work, it is possible that the GaAs system could
ield still better results for QDs. On the other hand, based on the II–VI QDs just
iscussed, predicting enhancements can be a dangerous business. Controlled
rowth of 0D QDs in the GaAs system has only been achieved in the past decade
r so; so there are expectations for new nonlinear optics measurements to test the
nhancement hypothesis in this technologically important material system.

he Stranski–Krastanov (SK) MBE growth mode is the preferred method for

Figure 58

lot of Re���3�� versus �� /Egap for commercial semiconductor doped glasses (�),
dS0.9S0.1 series glasses (�) and CdTe series glasses (	).The solid curve is the best
t to Eq. (4.26) [131].
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 131
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rowing GaAs QDs and capping them with higher bandgap material [154,155].
or this growth mode the deposited material has a slightly larger lattice constant
han the substrate. For example, in this approach a material such as InAs is de-
osited on a substrate like GaAs or AlAs. InAs has a lattice constant that is about
% larger than that of GaAs or AlAs; so the small lattice mismatch introduces
train. During SK growth, the first few layers of InAs, typically 1.6 monolayers,
orms a pseudomorphic 2D layer, called the “wetting layer” [Fig. 60(a)]. After
his critical thickness, however, 2D growth is no longer energetically favorable,
nd the energy reduction in strain more than compensates for the increase in sur-
ace energy as the 2D islands organize or self-assemble [156] into 3D islands
Fig. 60(b)].

nder typical growth conditions the buried QDs are observed to be well aligned
ut significantly nonuniform in size, shape, and position [157–159]. As shown in
ig. 61 the QD structures are composed of different shapes. While there has
een significant progress in improving the homogeneity of both morphology and
ositioning of QDs, achieving control to better than 10% remains a considerable

Figure 59

egenerate and nondegenerate 2PA spectra for two CdTe doped glasses with
rystallite radii of 6.6 nm (CdTe-750) and 3.2 nm (CdTe-600) and for two CdSe
oped glasses with crystallite radii of 2.4 nm (CdSe-590) and 2.1 nm (CdSe-600)
150].

Table 14. Nonlinearities Reported in Various QD Systems

Material n2 
NL

�

(nm)

n:ZnSe [153] 1.4	10−14 cm2/W 8.4 cm/GW 800

aAs in porous vicor glass [132] 1.3	10−11 cm2/W 80 cm/GW 1064
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 132
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hallenge. For the SK growth, typical densities are 1010–1012 cm−2, although
uch smaller densities are possible with care [160]. Meanwhile typical SK QD di-

meters [161] are from 10 to 30 nm. Depending on the growth conditions, as shown
n Fig. 62, QDs can grow randomly spaced or in regular rows. Such regularity raises
he possibility of a cooperative QD response.

Figure 60

Strain driven Stranski–Krastanov formation of a QD.

Figure 61

canning tunneling microscope image of the structure for two different QD
hapes observed.
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 133
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very different approach to producing GaAs QDs is based on colloidal growth
162–165]. Colloidal QDs are synthesized in a beaker from precursor com-
ounds dissolved in solution. The synthesis is based on a three-component sys-
em composed of precursors, organic surfactants, and solvents. When the solu-
ion is heated to a sufficiently high temperature, the precursors chemically
ransform into monomers. Once the concentration of monomers reaches a super-
aturated solution the nanocrystal self-assembled growth begins and is stabi-
ized by a layer of surfactants attached to their surface. The typical size of a col-
oidal QD is smaller than their MBE counterpart and is about 2–8 nm in
iameter.The smaller size therefore results in high densities of about 1014 cm−2.The
pplication of colloidal QDs to the broad field of nonlinear optics may be larger than
he possibilities for MBE nanostructures because of their significantly lower fabri-
ation cost. However, even colloidal QDs suffer from poor uniformity of size with an
nhomogeneity that is typically also of the order of 10%.

.3c. Summary for Quantum Confinement Structures

or both quantum wells and QDs it is clear that the expectation of a dramatically
arge enhancement in the nonlinear optical coefficients has not been clearly and
onsistently demonstrated, and one can ask why? Basically the reason is that es-
imates of the potential enhancement are complicated and that all of the experi-
ental conditions, material preparation factors, and competing physics are dif-
cult to control.

brief summary of the more important issues is given next. For example, we
ight expect the enhancement due to confinement to first increase with decreas-

ng size owing to the increase in the overlap of the wave functions, but at some
oint we might expect a decrease with decreasing size as the overlap weakens as
he lowest energy state moves near the top of the well. Furthermore, the com-
arison between low-dimensional and bulk material is again difficult because of
inewidth and fill factor issues that can significantly lower the effective enhance-
ent. Another issue of importance is that low-dimensional structures have a

Figure 62

a) One layer of QDs that are randomly distributed; (b) several layers of QDs that
re influenced by the vertical stacking to form a vertical and lateral alignment
hat results in a large lateral separation between QDs.
igh density of surface states that are localized at the interface between the semi-
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onductor’s well and barrier. That the optical excitation to these states is stronger
han in the bulk and second-harmonic generation at an interface is one good ex-
mple. Obviously, the nonlinear behavior of low-dimensional structures could
ave significantly larger interface issues. Yet another possibility for an observed
nhanced nonlinear behavior could be the differences in the nonradiative life-
ime. The discrete nature of the energy levels in a low-dimensional structure pre-
ents the potential of a longer nonradiative lifetime, a larger excited state popu-
ation, and a narrower spectral linewidth. On the other hand, surface and
nterface states can have the opposite effect, shortening the nonradiative life-
ime, and must also be considered.

ll of these issues, and most likely some that we did not recognize, play a role in
he nonlinear interaction between light and low-dimensional structures. Many of
he early investigations of the enhancement due to confinement have not yet paid
areful attention to many of these issues. In many ways, the question of nonlin-
ar optical effects in confined structures begs for more comparison between
heory and carefully designed experiments in order to single out different issues
nd develop a clear understanding of the effects of decreasing the dimensions of
onlinear optical materials in order to take advantage and optimize the potential
nhancement and therefore engineer more efficient nonlinear optical materials.

. Nuclear (Vibrational) Contributions to n2

hen light couples via electric dipole interaction to other (than electronic) nor-
al modes in matter, there is an intensity-dependent change in the refractive in-

ex [166]. Coupling to vibrational modes that modulate the molecular polariz-
bility can give rise to significant contributions via n2,nuc (10%–20% in glasses).
he formulation given below is for the cw case, normally valid for pulse widths
reater than 1–10 ps and has as its starting point a single vibrating molecule.

t is well known that an isolated molecule containing N atoms can typically have
N−6 vibrational degrees of freedom. Some are dipole active, i.e., they modu-
ate the permanent dipole moment, and others are Raman active, i.e., they modu-
ate the molecule’s polarizability [167]. Dipole active modes are observed in the
inear absorption spectrum, whereas Raman active modes participate in nonlin-
ar optical interactions such as Raman scattering and stimulated Raman scatter-
ng. In condensed matter these rules can be broken, and weak Raman active
odes can appear in the linear absorption spectrum and vice versa.

ince this effect is rarely found in textbooks, we give a more detailed discussion
han in previous sections. The polarizability for a molecule can be written as
167,168]


̄�m =�
̄�m
L + �

�

q̄n
�� �
̄�mn

�

�q̄n
� �

q̄
n
�=0
	 . �5.1�

he key material parameter is the nonlinear polarizability tensor �
̄�mn
� /�q̄n

�,
hich characterizes the coupling between the light and the Raman active vibra-

ional modes. In Eq. (5.1), the summation over � is taken over all of the Raman
ctive vibrational modes, which have a vibrational amplitude q̄� ���. For a single
w incident field E��r� , t� of frequency �, a nonlinear polarization parallel to the

ncident field [for n2�,nuc�−� ;��] is induced in the molecule of the form
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p̄�
NL = �

�

q̄n
�� �
̄��n

�

�q̄n
� �

q̄
n
�=0

�f �1��2E�, �5.2�

hich includes the local field correction f�1�. The potential energy associated
ith this interaction is given by

V̄int � −� p̄�
NLdE� = −

1

2
�
�

q̄n
�� �
̄��n

�

�q̄n
� �

q̄
n
�=0

�f �1��2E�E�. �5.3�

rom classical mechanics, there is an all-optical force F̄� � that induces the vibra-
ion in the �th mode (approximated as a simple harmonic oscillator) in the molecule
iven by

F̄n
� = −

�

�q̄n
�

Vint =
1

2
� �
̄��n

�q̄n
� �

q̄
n
�=0

�f �1��2E�E� = m̄��q̈̄n
� + �̄�q̇̄n

� + �̄�
2 q̄n

�� ,

�5.4�

here m̄� is the effective mass associated with the vibration and �̄�
−1 is the opti-

al phonon lifetime [168]. Note that the field product contains frequencies at 2�

nd 0, which drive the vibrations at �=0 and �=2�. Here �̄� is the normal
ode (natural) vibration frequency versus �, which is the frequency at which q̄n

�

s driven by the mixing of the optical fields. The response due to 2� clearly de-
ends on the wavelength of the incident light. In the subsequent discussion we
ocus on the dc term, although the harmonic term will progressively contribute
ore to the process as the light frequency is decreased toward the vibrational

requency. Substituting the solution to Eq. (5.4) into (5.2) gives, in the mol-
cule’s frame of reference,

p̄�
NL�r�,t� = �

�

1

8m̄��̄�
2�� �
̄��n

�

�q̄n
� �

q̄
n
�=0
	2

��f �1��4�E�����2E����ei�k�·r�−�t� + c.c.

�5.5�

nserting into the slowly varying phase and amplitude approximation gives

⇒n2�,nuc�− �;�� = �
�

N

4n�
2���m̄��0

2c�̄�
2�� �
̄��n

�

�q̄n
� �

q̄
n
�=0
	2

�f �1��4. �5.6�

imilar considerations give

n2�,nuc�− �;�� = �
�

N

4n����nm����0
2m̄�c�̄�

2�� �
̄�mn
�

�q̄n
� �

q̄
n
�=0
	2

�f �
�1�f m

�1��2.

�5.7�

ost of the interest in n2,nuc has been for glasses that have small Kerr nonlineari-
ies, especially in the case of fused silica. The principal problem in evaluating n2,nuc

as been the lack of information about the molecular Raman polarizability tensor
nd the fact that disorder etc. in the glassy state leads to continuous rather than dis-

rete Raman spectra. There is, however, a wealth of Raman scattering spectra that
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rise from thermally excited vibrations in a medium. For a single molecule, the

-polarized Raman spectrum in the limit kBT���̄� (typically room temperature)
s given by

I���s�

��I��p�
= �

�

�s
4

8c4�4��2�0
2��� �
̄��n

�

�q̄n
� �

q̄
n
�=0
�2� kBT

m̄��̄�
2

	� �̄�/2�

��s − �p + �̄��2 + �̄�
2

+
�̄�/2�

��s − �p − �̄��2 + �̄�
2� , �5.8�

hich contains the same Raman tensor as n2�,nuc [168]. Here �� is the standard
otation for the solid angle subtended at the detector in spontaneous Raman scatter-
ng and is not related to the sound wave frequency.

he glass disorder can be described by a distribution of phonon frequencies

��̄�−�̄�0�. Comparing the single-molecule Raman spectra (and Raman gain)

ata with the Raman spectra of the glasses shows that for the spectral width ��̄�

f f��̄�−�̄�0� with the approximation ��̄�� �̄�, the Lorenzian functions can

e written as ���s−�p±�̄��. Integrating over the distribution f��̄�−�̄�0� and
liminating the Raman polarizability gives

n2�,nuc�− �;�� �
c3�4��2

n2����4kBT

�
0

�

I���s�d�� − �s�

��I���
. �5.9�

n this equation �0
�I���s�d��p−�s� is the absolute value of the integrated spon-

aneous Raman spectrum for the Stokes side over the solid angle ��, a relatively
asy measurement.

he OKE technique referred to in Table 15 consists of the excitation of a total
ndex change with an intense femtosecond pulse and then use of a second fem-
osecond pulse to probe the index change [169,171]. A typical result is shown in
ig. 63(a). The ringing corresponds to the vibrational response when the ul-

rashort pulse of duration �t excites the vibration as a �-function impulse, i.e.,
t���1. Detailed modeling shows that after about �10 ps the measured n2,eff

n2,/Kerr+n2,nuc; see Fig. 63(b) [83].

ata also exist for n2,nuc in media other than glasses. The noninstantaneous re-
ponse of liquid CS2 has been measured by a number of authors (for example
83,172]). Careful analysis of experimental data led to the following results mea-

Table 15. Fractional Contribution Measured of n2,nuc to the total n2 for a Few
Glasses

Glass Wavelength (nm) Nuclear Fraction (%) Method

used silica �SiO2� [166] Visible �15–18 Raman

7%GeS2-13%Ga2S3 [169] 825 13±5 35 fs OKE

4%PbO-14%Bi2O3-7%B2O3-15%SiO2 [169] 825 12±5 35 fs OKE

%−50%GeO2 in GeO2-SiO2 [170] 800 13–18 18 fs SRTBCa

0%Nb2O5-80%TeO2 [171] 800 20 100 fs OKE

a
SRTBC-spectrally resolved two beam coupling.
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ured with 100 fs pulses [83]: contributions of electronic n2, 19%, sub-pulse-width
esponse; vibrational 64%, decay time �170 fs; and rotational 17%, decay time
80 fs. We discuss the rotational contribution, n2,rot, in Section 6.

. Molecules with Anisotropic Polarizabilities

hanges in the orientation of molecules due to applied fields provide an impor-
ant contribution to the intensity-dependent refractive index in states of matter in
hich reorientation of anisotropic molecules can occur. The required anisotropy

s in the linear molecular polarizability, and the states of matter composed of
uch molecules are liquids and liquid crystals [173].

here are two principal mechanisms. An incident field induces anisotropic di-
oles in molecules, and the interaction between these individual dipoles and the
pplied field leads to a torque by which the molecules tend to reorient parallel to
he incident field direction. Some net molecular realignment of the molecule’s
argest polarizability axis results in a net increase in the bulk refractive index
arallel to the applied field and a decrease in the direction orthogonal to it. In
iquid crystals, this reorientation is a collective phenomenon. Finite temperature,
hich tends to homogenize the alignment because of thermal fluctuations in the
rientation, limits the net alignment. The characteristic response times are the
eorientation times allowed by the viscosity.

he second mechanism is limited to liquid crystals. There are strong intermo-
ecular forces that lead to net molecular alignment over microscopic, mesos-
opic, and/or macroscopic volumes. These aligned regions can be realigned by
pplied fields, as described above, but usually very slowly relative to the single-
olecule case. More important is the absorption of the incident light, which re-

Figure 63

a) Time-resolved (function of probe delay) closed aperture Z scan at fixed z with
35 fs pulses of a Ge–Ga–S glass.The relative change in transmittance �T /T of the

robe beam was recorded. Filled circles, experimental data; solid curve, nuclear
ontribution calculated from the Raman spectra; dotted curve, electronic contribu-
ion. The total experimental signal is shown in the inset [169]. (b) Calculated contri-
ution of n2,nuc in fused silica versus pulse width [83].
ults in increasing liquid crystal temperature and a weakening of the intermo-
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ecular forces relative to thermal fluctuations. Decreasing alignment leads to
rogressively more spatially uniform refractive index and large index changes
ith temperature.

.1. Single-Molecule Reorientation of Anisotropic Molecules

nalysis of molecules with 3D molecular anisotropy involves Euler angles and
traightforward but cumbersome mathematics. Instead of discussing the most
eneral case, we illustrate this with the simpler case of a linear molecule such as
S2 with symmetry in the polarizability orthogonal to the linear axis [2]. The ge-
metry of interest is illustrated in Fig. 64(a). The incident field in the laboratory
rame of reference is assumed to lie along the x axis,

E� �r�,t� = êxE0���cos�k� · r� − �t� ,

nd the polarizability tensor in the molecule’s frame of reference is given by

ith 
� �
�. The local field at the molecule is given by

E� loc = �êx̄ cos �a − êȳ sin �a cos �a + êz̄ sin �a sin �a�f �1�E0���cos��t� ,

f�1� =
�r��� + 2

3
, �6.1�

nd the dipole moment induced in the ath molecule is given by

Figure 64

a) Orientation coordinates of a liquid CS2 molecule when an optical field is
long the x axis in the laboratory frame of reference �x ,y ,z�. The molecular
rame of reference is defined by �x̄ , ȳ , z̄�. (b) Solid-angle element with circular
ymmetry.
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p̄�a�r�,t� = 
̄�� · E� loc = �êx̄
̄� cos �a − êȳ
̄� sin �a cos �a + êz̄
̄� sin �a sin �a�

	�f �1��2E0���cos��t� . �6.2�

he polarization Px induced along the laboratory frame’s x axis is given by

Px = N�êx · p̄�a� = N�
̄� + �
̄� − 
̄���cos2 �a���f �1��2E0��� , �6.3�

n which � � denotes the average over all possible molecular orientations, i.e.,
ver �a. Because of the molecular symmetry, the average is taken over rings with
ffective area elements sin �a d�a (i.e., −d cos �a), see Fig. 64(b). The probability
r��a� of finding a molecular axis �
�� in a cone at angle �a to the x axis (field di-
ection), with a cone width −d cos �a, is

Pr��a� � d cos �a 	 exp − �Ordering potential energy

Disordering energy
	 ,

ormalized to �1
0 Pr��a�=1. The ordering is due to the potential energy of the in-

uced electric dipole in the applied field,

Vint = −
1

2
p̄�a · E� loc = −

1

2
�
̄� cos2 �a + 
̄� sin2 �a��f or

�1��2E0
2���cos2��t� ,

�6.4�

here cos2��t� is the time average of cos2��t�, i.e., 1
2 .The disorder is due to thermal

uctuations of energy kBT. Thus

Pr��a� =

exp��−

̄

�
E0

2
���

4kBT
+

�
̄� − 
̄
�

�cos
2

�aE0

2
���

4kBT
��f

�1�
�

2�d cos �a

�
1

0

exp��−

̄

�
E0

2
���

4kBT
+

�
̄� − 
̄
�

�cos
2

�aE0

2
���

4kBT
��f

�1�
�

2�d cos �a

,

�6.5�

nd therefore

�cos2 �a� =

�
1

0

cos2 �a exp� �
̄� − 
̄��cos2 �a

4kBT
�f �1��2E0

2����d cos �a

�
1

0

exp� �
̄� − 
̄��cos2 �a

4kBT
�f �1��2E0

2����d cos �a

.

�6.6�

ssuming that the net reorientation is small and therefore that quantities of the
orm ex can be expanded as 1+x, after some algebra

Px = N�
� f�1� +
�
̄� − 
̄��2E0

2���

45kBT
�f �1��2�f �1��2�E0��� , �6.7�

n which 
� is the isotropic polarizability due to completely randomly oriented

olecules before a strong optical field is turned on. The nonlinear contribution
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an now be written as an effective intensity-dependent refractive index coeffi-
ient n2,or as

n2�,or�− �;�� =
N

nx
2�0

2c

�
̄� − 
̄��2

45kBT
��f �1��2�1��4. �6.8�

t is easy to calculate the effect of the strong field on the index with polarization
long y and z axes,

n2�,or�− �;�� = −
N

nx
2�0

2c

�
̄� − 
̄��2

90kBT
��f �1��2�1��4. �6.9�

ote that in principle all of the molecules can be aligned by a sufficiently strong
ptical field; see Fig. 65. In practice, other phenomena such as damage and ion-
zation limit the effect to small net angle changes. For the 3D case where 
̄xx


̄yy� 
̄zz,

n2�,or�− �;�� =
N

nx
2�0

2c

��f �1��2�1��4

45kBT

�
̄xx

2 + 
̄yy
2 + 
̄zz

2 � − �
̄xx
̄zz + 
̄xx
̄yy + 
̄yy
̄zz�� .

�6.10�

he turn-on and turn-off times of this effective nonlinearity depend strongly on
he local viscosity and the temperature. The simplest equation that describes the
ime dynamics is

��̇ +
��


̄D

= torque = −
�

��
Vint = −

1

4
�
̄� − 
̄���sin�2�a���Eloc��,t��2

ith 
̄D=C� /kBTand viscosity �; the numerical factor C depends on the details
f the molecular shape. The classic example is liquid carbon disulfide, the case
ust discussed theoretically. Here there are many contributions [83,172]. Decay
imes ranging from 900 fs to a few picoseconds have been reported (for example,
83,172,174]). The magnitude was n2,Kerr�n2,or�1–5	10−14 cm2/W for this
ase. Typically, the larger the molecule, the longer the decay time; for example,
30 ps was measured for nitrobenzene [174].

.2. Liquid Crystals

he nonlinear optics of liquid crystals is in some ways closely related to the pre-
ious case. Strong intermolecular forces between liquid molecules in the liquid

Figure 65

ariation with input light intensity of the refractive index parallel �n�� and per-
endicular �n�� to the applied field.
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tate can lead to a unique form of matter in which molecular clusters exist,
ligned along a direction in space (the “director”). It is this alignment that leads
o the name liquid “crystal.” There are many families of liquid crystals; see Fig.
6 [173]. Most of the molecules can be considered to have ellipsoidal shapes as
hown in Fig. 67(a). The structure of one of the most commonly used and exten-
ively studied molecules, 5CB, is shown in Fig. 67(b). Examples of R and R� are

nH2n+1, CnH2n+1O, and nitro and cyano (e.g., 5CB) groups. A single molecular
tructure can take on different liquid crystal ordering as temperature or the side
roups are changed. For example, nCB is not a liquid crystal for n�4, and it is
ematic for n=5–7 and then smectic for larger n. Although some molecules may
xhibit a permanent dipole moment, the net alignment in the liquid state aver-
ges the dipole moment to zero over optical wavelengths. Note that the align-
ent is not perfect and is described by a scalar order parameter S
0.5��3 cos2 �−1��, where � is the angle between the molecular long axis (typically
long 
�), and the average over all molecules of the direction of 
�, n̂, is called the
director.”

e focus on nematic liquid crystals in which the preponderance of experiments
n nonlinear optics have been performed and in which there are multiple mecha-

Figure 66

xamples of molecules and their alignment in nematic, cholosteric, and smectic
iquid crystals [173].

Figure 67

a) Schematic of a typical liquid crystal molecule. (b) The chemical structure of
5CB liquid crystal molecule [173].
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n
h
o
t
o
s
b
c
a
r
l
d
g

A
c
p
u
w
i
d
p
s

6
C

I
s
t
c
p

T
p

A

isms that give rise to n2 [173]. In bulk form these materials, when oriented, ex-
ibit a uniaxial refractive index distribution if the molecules have approximate
r exact cylindrical symmetry. At properly prepared single boundaries, or be-
ween two plates with prepared surfaces, it is possible to anchor the orientation
f the molecules for some distance away from the boundary. There are two pos-
ible directions for n̂, parallel to (planar) or orthogonal to (homeotropic) to the
oundary, shown in Fig. 68. For all intents and purposes, these aligned nematic
ells behave as uniaxial crystals characterized by refractive indices n� = ����1/2

nd n�= ����1/2, i.e., with a birefringence �n=n� −n�. As the temperature is
aised, a second-order phase transition to an isotropic liquid occurs, and order is
ost. In the transition region, the correlation distance over which orientational or-
er exists decreases, resulting in a decreasing order parameter, and the birefrin-
ence approaches vanishing value.

s in all other molecular systems, a laser will induce in nematic liquid crystals
hanges in the populations of the electronic energy states, resulting in nonlinear
olarizations of various orders. These so-called electronic nonlinearities of liq-
id crystals are typical of organic molecules. Except for some effects associated
ith the ordered arrangement of the molecules, the magnitudes of the refractive

ndex coefficients n2 are the same order of magnitude as other organic molecules
iscussed above. On the other hand, laser-induced density, temperature, order
arameter, and director axis orientation in nematic liquid crystals are respon-
ible for some of the largest optical nonlinearities discovered to date.

.2a. Orientational Optical Nonlinearities of Nematic Liquid
rystals

sotropic phase: Just above the nematic-isotropic transition temperature TNI,
hort-range molecular correlation still persists, and laser-induced orientation of
hese highly polarizable molecules exhibits critical pretransitional behavior. These
ritical phenomena are described by the Landau–deGennes theory of second-order
hase transition [175]. The free energy per unit volume is of the form

F = F0 +
1

2
AQijQji −

1

4
�ijEi

*Ej, �6.11a�

Figure 68

wo nematic liquid crystal molecular alignments obtained between two glass
lates with different surface treatments [173].
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A = a�T − T*� , �6.11b�

here Qij is a general-order parameter tensor a and T* (�TNI, nematic-isotropic
hase transition temperature) are constants, and E denotes the applied optical field.
or an x-polarized laser, for example, the total optically induced polarization Px

onsists of a linear and a nonlinear term:

Px = ��0�̄ + �0

2

3
��Q�Ex = Px

L + Px
NL. �6.12�

x
L=�0�̄E is the linear polarization, �̄ is the linear susceptibility, and the nonlin-
ar polarization is given by

Px
NL =

2

3
�0��QE. �6.13�

rom Eqs. (6.11), the dynamical equation for Qij becomes

�
�Qij

�t
+ AQij = fij, �6.14�

fij =
1

6
���Ei

*Ej −
1

3
�E�2�ij�. �6.15�

ere � is the viscosity coefficient in the isotropic phase.

he solution for Qij is

Qij�t� = �
−�

t � fij�t��

�
e−�t−t��/
	dt�, �6.16a�


 =
�

A
=

�

a�T − T*�
. �6.16b�

ere 
 is the relaxation time constant associated with the viscosity.

or a linearly polarized �i= j� square pulse of duration 
p, fij= fii=1/9��E2, we
ave

Qii = 
��E2�1 − e−
/
p�/9�. �6.17�

rom Eqs. (6.16a) and (6.16b), note that as the temperature approaches
*��Tc�, both the response time and the optical nonlinearity (which is propor-

ional to Qjj) diverge as �T−T*�−1, as reported in previous studies of the optically
nduced Kerr effect and optical wavefront conjugation [176,177]. Typical mag-
itudes of ��3� for orientational optical nonlinearities in the isotropic phase are of
he order of 10−12 esu at temperatures far from TNI, and �10−10 esu within a few
egrees of TNI.

ematic phase—purely optically induced director axis reorientation nonlineari-
ies: In the nematic phase, the free energies associated with splay, twist, and

end deformations in a nematic liquid crystal (shown in Fig. 69) are of the forms
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splay, f1 =
1

2
K1�� · n̂�2; �6.18a�

twist, f2 =
1

2
K2�n̂ · � 	 n̂�2; �6.18b�

bend, f3 =
1

2
K3�n̂ 	 � 	 n̂�2. �6.18c�

he optical dipole-field interaction is given by

Fop = −
1

4�
� D · dE = −

��

8�
E2 −

����n̂ · E�2�

8�
. �6.19�

he angle brackets denote a time average. Field-induced reorientation of the di-
ector axis arises as a result of the total system’s tendency to assume a new con-
guration with a new minimum in the free energy. For such processes, the first

erm on the RHS of Eq. (6.19) is not involved, whereas the second term shows
hat the director axis will align with the optical field polarization as, in general,
he optical dielectric anisotropy �� for nematic liquid crystals is greater than
ero.

onsider the interaction geometry depicted in Fig. 70. A linearly polarized laser
n the form of a plane wave is obliquely incident on a homeotropically aligned
ematic liquid crystal with the propagation wave vector K making an angle ��
�� with the director axis. If the reorientation angle � is small, then only one
lastic constant K1 (for splay distortion) is involved. A minimization of the total
ree energy of the system yields a torque balance equation:

K1

d2�

dz2
+

���Eop
2 �

8�
sin 2�� + �� = 0. �6.20�

n the small � approximation, this becomes

2�2
d2�

dz2
+ �2 cos 2��� + sin 2� = 0, �6.21�

here �2=4�K1 / ����E2
op��.

Figure 69

(a) Splay, (b) twist, and (c) bend distortions that occur in liquid crystals [173].
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sing the so-called hard-boundary condition, i.e., (�=0 at z=0 and at z=d), the
olution of Eq. (6.21) is

� =
1

4�2
sin 2��dz − z2�. �6.22�

s a result of this reorientation, the incident laser (an extraordinary wave) expe-
iences a z-dependent refractive index change given by

�n�z� = ne�� + �� − ne��� , �6.23�

here ne��+�� is the extraordinary ray index given by

ne�� + �� =
n�n�

�n�
2 cos2�� + �� + n�

2 sin2�� + ���1/2
. �6.24�

or small �, the change in the local refractive index �n�z� is of the from �n�z�
n2,lc�z�I where I= 1

2�0ncEop
2 and 
2�z� (defined here as the local nonlinearity, not

he 2PA coefficient) is given by


2�z� =
����2 sin2�2��

4Kc
�dz − z2�. �6.25�

or the oblique incidence geometry, the interaction length is d / cos �, and thus
he equivalent refractive index coefficient n2,lc obtained by integrating and averaging
he local value 
2�z� over the interaction length is given by

n2,lc =
��� sin�2��d�2

24K1c cos2���
. �6.26�

sing typical values of d=100 µm, ���0.6, K1=10−6 dyne, �=45°, and noting
hat in cgs units a factor of 4	107 needs to be accounted for in converting

2 2

Figure 70

eometry for the interaction of a linearly polarized (extraordinary ray) laser
eam with a homeotropically aligned nematic liquid crystal film. n̂0 and n̂ are the
irectors before and after the application of the optical field [173].
rgs/ �s cm � and W/cm to the unit for the intensity I, we have
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n2,lc � 8 	 10−3 cm2/W. �6.27�

or more general cases in which splay, twist, and bend distortions are all in-
luded, the laser-induced director axis reorientation is described by an equation
f the form

�K1 sin2 �� + K3 cos2 ���
d2�

dz2
− �K3 − K1�sin �� cos ���d�

dz
�2

+
��

16�
�sin 2����Ex�2 − �Ey�2� + cos 2���ExEz

* + Ex
*Ez�� = 0. �6.28�

n the case of an input laser beam of finite beam size, mutual torques exerted by
olecules situated within and outside the laser beam will also be involved, giv-

ng rise to extra terms that depend on radial derivatives of �, d� /dr; the resulting
eorientation profile is a nonlocal function with respect to the applied field
178,179]. Such nonlocal nonlinearities are particularly important in nonlinear opti-
al processes involving the focused laser beam’s transverse intensity dependence,
uch as self-focusing, defocusing and soliton formation [180–183].

he dynamics of molecular reorientation by an optical field is described by bal-
ncing the optical molecular and the viscous torques. For the interaction geom-
try given in Fig. 70, the resulting equation is of the form

�
��

�t
= K

�2�

�z2
+

���Eop
2 �

8�
sin�2� + 2��. �6.29�

f Eop
2 is a plane wave, and for the usual case of ��1, we may write ��t ,z�

��t�sin��z /d�, and Eq. (6.29) yields

�̇ = −
K�2

�d2
� +

���Eop
2 �

8��
sin 2� + �

���Eop
2 �

4��
cos 2� , �6.30a�

r

�̇ = −
1


r

� + a + b� . �6.30b�

ere a=���Eop
2 �sin�2�� /8��, b=���Eop

2 �sin�2�� /4��, and 
r is the relaxation
ime constant for reorientation of the director axis:


r = �d2/K1�
2. �6.30c�

gain, for a typical cell with cell thickness d�10 µm, �=0.1 P, and K1

10−6 dyne, 
r
10 ms. It is important to note here that the relaxation time constant
n a highly correlated molecular system such as a nematic liquid crystal is strongly
ependent on the interaction geometry as well as the intensity distribution of the in-
ident light. In a two-wave mixing geometry involving a sinusoidal optical intensity
rating, for example, the mutual torques exerted by molecules situated in the optical
ntensity maxima and minima will give rise to a dependence on the grating constant

s well as the cell thickness. The corresponding relaxation time constant becomes
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r =
�

K 
1

�2

d2
+ q2! , �6.31�

here  =2� /q is the grating constant.

sing a thinner cell with less viscous liquid crystals, the response time can be
educed further to �1 ms; i.e., the upper limit to the useful optical modulation rate
s �1 KHz. In recent years, with the development of nematic liquid crystals with
ow viscosity and high birefringence, tens of kilohertz modulation rates can be
chieved, making nematic liquid crystals candidate materials for image processing
nd display applications.

lthough the relaxation dynamics is in the millisecond regime, the switching
nset dynamics can be much faster, since the laser-induced reorientation process
s governed mainly by the intensity, in the limit where the optical torque exerted
y an intense laser on the director axis is much larger than the elastic torque, i.e.,

���Eop
2 �

8�
�sin�2� + 2�� � �K1

�2�

�z2�. �6.32�

quations (6.30) then become

�̇ = a + b� → ��t� =
a

b
�ebt − 1�. �6.33�

ote that if the laser intensity is sufficiently large such that a
p���Eop
2 
p /�, it is

ossible to induce a significant reorientation ��
p� in a time as short as nanoseconds.
uch an ultrafast response of the director axis deformation in nematic as well as
mectic liquid crystals has been demonstrated in early studies by Khoo and co-
orkers, using nanosecond laser pulses, and by Eichler and others, using picosecond

asers [184–186].

.2b. Giant Orientational Optical Nonlinearities in Doped Nematic
iquid Crystals

y introducing photosensitive dye or molecular dopants to mediate, facilitate,
nd enhance the reorientation process, studies have demonstrated that the optical
onlinearities n2,lc can be made even orders of magnitude larger, ranging from 10−3

o 103 cm2/W [187–193].

ne of the mechanisms is mediated by the photoexcited dye molecular dopants.
he excited dye molecules exert intermolecular torques 
mol�A
op on the liquid
rystal molecules that could be stronger than the optical torque 
op, i.e., A can be as
arge as 100 or more, and it can be positive or negative. In Methyl-Red-doped nem-
tic liquid crystals, n2,lc can be much larger than 1 cm2/W [187,188]. Studies of
ethyl-Red-doped nematic liquid crystals also show that the nonlinearities can be
odulated by an applied ac electric field by changing the frequency; a low-

requency (e.g., 300 Hz) ac field will enhance the reorientation nonlinearity,
hereas a high-frequency �30 kHz� ac field will quench the reorientation and turn
ff the optical nonlinearity, pointing to the possibility of dual-frequency switching–

odulation applications [194,195].
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n some nematic liquid crystals doped with azo compounds, for example
zobenzenes, studies have shown that the trans-cis configuration changes in the
xcited azo-dopant are also an effective mechanism for creating large optical
onlinearities [196–198]. In these materials, the ground state azo dye molecules
re in the trans configuration that is oblong in shape, and they conform to the
lignment of the director axis. When photoexcited to the bent cis configuration,
hey disturb the nematic axis alignment and cause disorder, i.e., induce a nega-
ive change in the order parameter �−�S�, resulting in a change in the birefrin-
ence; cf. Fig. 71. Such trans-cis isomerization can happen quite rapidly (in
anoseconds), and so the resulting index birefringence changes can be effected
ery rapidly.

.2c. Field-Assisted Photorefractivity in Nematic Liquid Crystals

nother mechanism that gives rise to extraordinarily large optical nonlinearities
n nematic liquid crystal is photorefractivity [199–201]. Under the combined ac-
ion of an optical and a dc bias field, the process of photocharge production and
reation of space-charge fields that result in a refractive index change is analo-
ous to the photorefractive (PR) effect occurring in electro-optically active poly-
ers and inorganic crystals as discussed in Section 7, but with an important dif-

erence. In inorganic photorefractive crystals, such as BaTiO3, the induced index
hange �n is linearly related to the total electric field E—the so-called Pockels
ell effect. On the other hand, nematic liquid crystals possess centrosymmetry
+n̂ is equivalent to −n̂), and the field-induced refractive-index change is qua-
ratic in the total electric field, i.e., �n=n2E

2—the Kerr effect. As we will see
resently, such a quadratic dependence actually allows the mixing of the applied
c field with the space-charge field for enhanced director-axis reorientation ef-
ects [199–202,194,203].

or a typical wave mixing interaction (see Fig. 72) a spatially periodic (sinu-
oidal) incident optical intensity distribution Iop= I0 sin�q�� acting on the
hotocharge-producing impurities or dopants such as dyes, C60, and carbon nano-
ubes in the nematic liquid crystals generates a PR-like space-charge field Eph of the
orm [199]

Figure 71

chematic depiction of the trans-cis configuration changes experienced by an
zo molecule when photoexcited, and their effect in lowering the order param-
ter of an aligned nematic liquid crystal [196–198].
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Eph = Eph
�0� cos�q�� = �mkBT

2e
qv

� − �d

�
	cos�q�� , �6.34�

here m is the optical depth of modulation factor, kB is again Boltzmann’s con-
tant, and � is the conductivity under illumination. Furthermore, �d is dark state
onductivity, and �= �D+−D−� / �D++D−�, where D+ and D− are the diffusion
onstants for positive and negative ions, respectively, and q=2� / is again the
rating wave vector, with  the grating period.

n nematic liquid crystals, the action of the applied dc field on the director axis
eorientation generates two other forms of space-charge fields in conjunction
ith the conductivity and dielectric anisotropies. For an interaction geometry as
epicted in Fig. 72, these space-charge fields are of the form [200,201,204]

E�� = −
���� − ���sin � cos ��

�� sin2 � + �� cos2 �
Edc, E�� = −

���� − ���sin � cos ��

�� sin2 � + �� cos2 �
Edc

�6.35�

r, for small �,

E�� 
 −
��

��

�Edc; E�� 
 −
��

��

�Edc. �6.36�

he total electric field in coordinate form then becomes

Figure 72

ypical experimental setup involving two linearly polarized coherent beams that
re overlapped at an oblique incident angle on an aligned liquid crystal cell.
ransparent conducting electrode coated windows allow application of a small
c voltage [199].
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total = �− ���

��

+
��

��

�Edc� cos � − Eph cos �, 0,

�Edc − ���

��

+
��

��

�Edc� sin � − Eph sin �	
=�− �E� · � + Eph�cos �, 0, Edc − �E� · � + Eph�sin �� ,

�6.37�

here E�= ��� /��+�� /���Edc.

ccordingly, the total free energy of the system becomes

F =
k

2

��� · n�r���2 + ��� 	 n�r���2� −

��

8�
�E� · n�r���2 −

��op

8�
�E� op · n�r���2.

�6.38�

ere �� is the dc field anisotropy and ��op is the optical dielectric anisotropy.
riting n̂= �sin � ,0 ,cos ��, and minimizing the free energy with respect to the re-

rientation angle � yields the Euler–Lagrange equation for �:

k
d2�

dz2
+ k

d2�

d�2
+

��

4�
�E�Ez cos��� · � + EzEph cos����

+
�� · Eop

2

8�
�sin�2�� + 2 cos�2�� · �� = 0. �6.39�

ssuming that a hard boundary condition exists, a solution for � is of the form

� = �0 sin��z

d
�cos�q��. �6.40�

quation (6.39) then yields the familiar solution for the reorientation: �0 is non-
anishing only when the applied dc field is above a threshold:

�0 =

1

2

��op

��
Eop

2 · sin�2�� + Eph
�0�Edc cos���

�E�Edc cos��� +
��op

��
Eop

2 cos�2��	 − EF
2�1 + �qd

�
�2	 , �6.41a�

Edc ! EF�
�1 + �qd/��2� − ���op/����Eop/EF�2 cos�2��

���

��

+
��

��

� · cos � �
1/2

. �6.41b�

or 5CB, for example, K�10−11 N, the ac field difference in the dielectric constant
��11 (�� �16, ���5) and �� /���0.5. For a typical wave mixing geometri-

al and optical parameters (qd�2�, and the internal angle �=22.5�), Efd=VF
1 V, 
�1.5, and Vth=
VF�1.5 V.
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xperimental measurements have shown that in typical doped nematic liquid
rystals, Eph is estimated to be just a few volts per centimeter, but in conjunction
ith a Edc of a few volts per micrometer, the second term in the numerator EphEdc is

ver 10000 �V/cm�2 and is generally much larger than the optical contribution re-
ponsible for the first term in the numerator of (6.41a) for the milliwatt-power lasers
ypically used in these studies [201]. In other words, the occurrence of PR optical
onlinearities in nematic liquid crystals is due mainly to the applied dc field acting in
oncert with the optically induced space-charge field, and its �n2� magnitude de-
ends critically on the dc bias field strength. Figure 73 reproduces the typical ob-
erved self-diffraction as a function of the applied dc voltage, clearly showing the
hreshold effect as well as the enhanced response from photocharge-producing dop-
nts such as carbon nanotubes. In this particular study, the nonlinear index coeffi-
ients n2 obtained were 1.3	10−3 cm2/W for the undoped sample and 0.8 cm2/W
or the single-wall carbon nanotube doped nematic liquid crystal. Other studies us-
ng a variety of other photocharge-producing dopants have also obtained large n2 in
his range.

ote that the EdcEph term ��cos�q��� is � /2 phase shifted from the induced opti-
al intensity grating Iopt

2 �sin2�q��, similar to that found in inorganic PR crystals dis-
ussed below.The � /2 phase shift gives rise to strong two-beam coupling effects; cf.
ig. 74.

.2d. Optical Nonlinearities Associated with Order Parameter
hanges, and Thermal and Density Effects

n addition to director axis reorientation, there are several other mechanisms that
ead to changes in the refractive indices of the liquid crystal under the action of
n optical field. These include laser-induced molecular internal temperature
hange dT, electrostrictive density changes d"T and d"e, and order parameter
hanges dS, for a fixed initial director axis arrangement. The total index change
n can therefore be written as

Figure 73

ependency of first-order diffraction efficiencies on the applied dc voltage in
ndoped (squares) and single-wall carbon-nanotube -doped (circles) nematic
iquid crystals. Sample thickness d=25 µm; grating constant  =23 µm; wave-
ixing angle 2°; �=22.5°. The incident optical intensities are 200 and 2 mW/cm2

or the undoped and doped samples, respectively [201].
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�n = � �n

�T
�

"

dT + � �n

�"
�

T

d"T + � �n

�"
�

T

d"e + � �n

�S
�

T,"

dS. �6.42�

he first term on the RHS of Eq. (6.42), ��n /�T�"dT, can be caused by a very
hort-pulse laser that modifies the spectral dependence of the molecular absorp-
ion and emission process [205,206]. This term is usually quite small and is not
ffected significantly by the ordering or molecular correlations present in the liq-
id crystalline phase. The second term on the RHS comes from a laser-induced
verall rise in temperature and the resulting changes in the density. The third
erm on the RHS is due to the electrostrictive effect in nonabsorbing materials,
.e., the tendency of a material to move toward a region of high field strength.
he contribution unique to nematic liquid crystalline systems is the last term,
hich is influenced by order parameter changes. This mechanism is the domi-
ant one as a result of the critical dependence of the nematic’s extraordinary and
rdinary refractive indices n� = ����1/2 and n�= ����1/2 on the order parameter S
see Fig. 75), i.e.,

n� = n��",S�, n� = n��",S� . �6.43�

Figure 74

wo-beam coupling exponential gain coefficients as a function of (a) the direc-
ion and (b) magnitude of the applied dc bias field obtained with the carbon-
anotube-doped nematic liquid crystals. Sample thickness d=25 µm; grating
onstant  =23 µm; wave-mixing angle 2°; �= ±22.5°. The incident optical inten-
ity used is 2 mW/cm2. Note that the direction of beam coupling is dependent on
he applied bias field direction as well as the orientation ��� of the director axis
201].
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everal mechanisms can be employed to change the order parameter. In Subsec-
ion 6.2b, we briefly discussed trans-cis isomerism of optically excited azo dop-
nts as an effective means of causing order parameter changes. Owing to the or-
er parameter’s critical dependence on the temperature (see Fig. 75), a more
requently investigated mechanism is laser-induced temperature and order pa-
ameter modification. The corresponding induced temperature index gradients
re of the form [207,173]

dn�

dT
=

1

n�

�C1

d"

dT
+

2

3
C2S

d"

dT
+

2

3
C2"

dS

dT
� , �6.44a�

dn�

dT
=

1

n�

�C1

d"

dT
−

1

3
C2S

d"

dT
−

1

3
C2"

dS

dT
� , �6.44b�

here C1 and C2 are nematic liquid crystal parameters [207].

stimating the nonlinear index coefficients associated with these thermal-
ensity-order parameter effects can be a very complex exercise, since the inter-
ction geometries are in general multidimensional and the laser-induced tem-
erature and density changes are strongly coupled by the hydrodynamical
quations [205,206]

−
�2

�t2
��"� + v2�2��"� + v2�T"0�

2��T� +
�

"0

�

�t
�2��"� =

�e

8�
�2�E2� ,

�6.45a�

"0Cv

�

�t
��T� − �T�2��T� −

�Cp − Cv�

�T

�

�t
��"� =

u



=


nc

4�
E2. �6.45b�

ere "0 is the unperturbed density of the liquid crystal, Cp and Cv the specific
eats, �T the thermal conductivity, v the speed of sound, �e the electrostrictive

Figure 75

emperature dependence of the extraordinary and ordinary refractive indices of
ligned nematic liquid crystals for three visible wavelengths. The nematic liquid
ransition region is defined by the pale blue shaded region [173].
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oefficient ��e="0�"� /�"�T�, �T the coefficient of volume expansion, and � a
iscosity coefficient. Equation (6.45a) describes the effects of thermal expan-
ion and electrostriction on the density change, whereas (6.45b) describes the
hotoabsorption and the resulting temperature rise and heat diffusion process.

hese coupled equations for the laser-induced temperature and density distribu-
ions �T�z� and �"�z� will then have to be incorporated into the equation de-
cribing the order parameter S of the system. Following the Landau–deGennes
heory, the free energy density of the system with a temperature distribution T�z�
nd order parameter S�z� is given by [208]

f = a�T�z� − T*�S�z�2 + bS�z�3 + cS�z�4 + L�dS�z�

dz
�2

− g1S1 − g2S2.

�6.46�

n this expression, a, T*, b, c, and L are thermodynamic parameters, g1 and g2 are
he surface potentials per unit volume, and S1 and S2 are the surface order pa-
ameters. For a typical nematic liquid crystal such as 5CB, b=−5.3	105 J /m3,
=9.8	105 J /m3, T*=307.14 K, and L=4.5	10−12 J m–1 [208].At equilibrium,
�z� is determined by minimization of the free energy equation:

�f

�S
−

d

dz
� �f

���S/�z�� = 0 �6.47�

ith the boundary conditions

− � �f

���S/�z��1

+
�fS1

�S1

= 0, � �f

���S/�z��2

+
�fS2

�S2

= 0. �6.48�

hermal and density effects induced by short intense laser pulses: To render the
roblem tractable, most experimental and theoretical studies have adopted inter-
ction geometries that reduce the dimensions and complexities of the problem
209–211]. One example is wave mixing involving a spatially periodic, plane-
ave, optical field, i.e., a 1D optical grating intensity distribution of the form
2=2E0

2 cos qy, where q=k1−k2 is the grating wave vector. Correspondingly, �"
nd �T are of the form �"="�t�cos�q� ·y�� and �T=T�t�cos�q� ·y��, where "�t� and
�t� are the density and temperature grating amplitudes.

onsider the transient case involving intense laser pulses. For simplicity in illus-
ration, we assume a flat-top square pulse of duration 
p. For 0� t�
p, Eqs.
6.45) can be solved to yield the following temperature and density grating am-
litudes [209,210]:

T�t� = � 
cnE0
2

4�"0Cv�R
	�1 − exp�− �Rt�� , �6.49�

"�t� = ��eE0
2

4�v2 	�1 − exp�− �Bt�cos �t� − ��T
cnE0
2

4�Cv�R
	�1 − exp�− �Rt��.

�6.50�

he density change "�t�="e�t�+"T�t� as given in Eq. (6.50) has two distinct

omponents:
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"e�t� =
�eE0

2

4��2
�1 − exp�− �Bt�cos �t� , �6.51a�

"T�t� =
− �T
cnE0

2

4�Cv�R

�1 − exp�− �Rt��. �6.51b�

he propagating component of "e�t� arises from the electrostrictive effect and is
roportional to �e; it is characterized by the Brillouin relaxation constant (acous-
ic decay time) 
B=�B

−1=2"0 /�q2 and frequency �=�q2�2−�B
2. The "e com-

onent gives rise to a spectrum of propagating acoustic waves. The other compo-
ent, "T�t�, is the thermoelastic contribution (proportional to �T) caused by thermal
eating and is characterized by the thermal time constant 
R=�R

−1="0Cv /�Tq2; it is
diffusive effect. In liquid crystals n�1.5, �=7	10−2 kg m−1 s−1, v

1540 m s−1, "0=103 kg m−3, and �T /"0Cv=0.79	10−7 m2/s [173]. For a grat-
ng period of 20 µm, 
R
100 µs and 
B
200 ns [207].

n the steady state when 
p�
B, 
R, the density contributions are generally van-
shingly small, while the temperature contribution builds up to a maximum value
nd produces an index change �nT given by

�nT =

cnE0

2

4�"0Cv�R

�n

�T
= n2

SS�T�Iop. �6.52�

his allows us to define a steady-state nonlinear index coefficient

n2
SS�T� =




"0Cv�R
� �n

�T
�. �6.53�

ecalling that �R=Dq2, Eq. (6.53) becomes

n2
SS�T� =




"0CvDq2� �n

�T
�. �6.54�

sing typical liquid crystalline parameters, "�1 g/cm3, Cp
Cv
2 J /g /K,

2	10−3 cm2/s, 
�100 cm−1, dn /dT
10−3 K−1 and a grating period  
2� /q=20 µm, we get

n2
SS�T� 


100

4�
	

�20 	 10−4�2

1 	 2 	 2 	 10−3
	 10−3 
 2.5 	 10−6 cm2/W.

�6.55�

ear the nematic-isotropic transition temperature, the magnitude of dn /dT [es-
ecially dn� /dT], can be as high as 10−2 K−1 (cf. Fig. 75), and the nonlinear index
oefficients n2,lc can be as large as 10−4 cm2/W. These rough estimates are actually
n good order-of-magnitude agreement with experimental observations.

. Photorefractive Nonlinearities

he PR effect is known to occur in electro-optic photoconductive materials. It
ssentially arises from the space-charge field set up by the diffusion and or trans-

ort of photogenerated charge carriers that in turn modifies the index of refrac-
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ion through the Pockels effect [212–223]. In this respect, the refractive index of
medium can change through photorefraction as a result of optical beam illumi-
ation. This process was first observed by Ashkin and colleagues in 1966, and its
ery origin remained for several years a subject of discussion [224]. Today it is
idely accepted that the kinetic model first suggested by the Kiev group

225,226] can adequately describe the physics of photorefraction. Irrespective of
he details behind the actual mechanisms involved, all types of PR effects share
ommon characteristics. In all cases the induced refractive index (which can be
ignificant) can vary anywhere from nonlocal to local and is typically character-
zed by a finite or relatively slow response time. In addition these effects can be
bserved at low optical intensities and can persist in the dark over long periods,
nless erased with uniform illumination. This effect can be observed in many
ypes of materials and over a broad wavelength range—from the visible to long
avelengths etc. [212–217].

PR material involves both acceptor and donor impurities with energy levels
ying between the conduction and the valence band. These levels and physical

echanisms behind the PR effect are schematically depicted in Fig. 76. In this
rrangement, an optical beam photoexcites carriers from donor centers, which in
urn diffuse or move through the conduction band. Charge recombination also
akes place via acceptors. The space-charge field established during this process
an then electro-optically alter the refractive index [225].

n the presence of a static electric field E� , the refractive index changes in these
aterials are determined by how the electro-optic effect modifies the imperme-

bility tensor [215], e.g.,

��ij = �� 1

n2�
ij

= rijkEk + sijkmEkEm. �7.1�

n Eq. (7.1) rijk and sijkm represent linear and quadratic electro-optic coefficients,
espectively. Typically, PR index changes are driven by linear Pockels effects. In
his case, the 27 elements of the rank 3 tensor rijk can be contracted, i.e.,

Figure 76

ample of a typical PR material showing donor and acceptor impurity states in
he gap between the valence and conduction bands, the raising of an electron via
ight absorption from a donor state into the conduction band, electron transport
ue to drift and diffusion effects, and the subsequent trapping of the electron in
n acceptor state.
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�� 1

n2�
l

= rlmEm. �7.2�

he dynamics of electron photogeneration and recombination together with
hose of diffusion and transport are governed by the Kukhtarev–Vinetskii model
225,226]. As indicated in Fig. 76, the PR material contains donor impurities
ith density ND, out of which ND

+ are ionized. The density of acceptor atoms is
lso taken to be NA. Under dark conditions charge neutrality requires that �ND

+ �
NA [219]. Of course the nonionized portion of the donor impurities are candi-
ates for electron photogeneration. From these arguments it follows that the rate
quation for the donor density is given by

�ND
+

�t
= ŝ�I + Id��ND − ND

+ � − �RNeND
+ . �7.3�

n Eq. (7.3), Ne is the electron density in the conduction band and �R is the car-
ier recombination rate; ŝ is the photoexcitation cross section and is related to the
bsorption cross section 
1 via ŝ=
1 /h�. I is the externally imposed optical in-
ensity, and Id is the so-called dark intensity that phenomenologically accounts
through the product ŝId) for the rate of thermally generated electrons. The con-
inuity equation also demands that

�

�t
�ND

+ − Ne� +
1

e
� · J� = 0, �7.4�

here e= �e� represents the electron charge. In the absence of any photovoltaic
ontributions (to be considered in Subsection 7.3), the current density can in
eneral include both a diffusion and a drift component, that is,

J� = eNeµE� + kBTµ � Ne. �7.5�

n Eq. (7.5) µ is the electron mobility and is related to the carrier diffusion con-
tant D=kBTµ /e. The first term in Eq. (7.5) describes drift transport resulting

rom the presence of an electric field component E� , while the second (associated
ith the thermal energy kBT) accounts for diffusion effects. The total electric

eld E� is the sum of the external bias field and that established from the gener-
ted space charge. Finally, Gauss’s law dictates that

�� · ��E� � = e�ND
+ − Ne − NA� �7.6�

here �=�0�r is the static permittivity of the material. The set of Eqs.
7.3)–(7.6) completely describes the PR effect. Once the total space-charge field
� is known, then Eq. (7.2) can be used to analyze any index changes resulting
rom an optical illumination I. Of importance is also the relative order of the
ensities involved, e.g., ND�NA�Ne [212–219]. Models accounting for bipo-
ar transport (holes and electrons) can also be developed along similar lines
227,228].

.1. Diffusion Nonlinearity

n the absence of any external bias �E0=0�, the PR effect is dominated by the

iffusion process [225]. The way the diffusion mechanism affects optical wave
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ropagation is primarily nonlocal, and as a result it leads to an energy exchange
etween plane wave components [214,215]. The manifestation of diffusion ef-
ects can vary considerably depending on the nature of optical illumination. For
xample two-wave mixing is possible if the illumination is periodic (if it is the
utcome of two interfering plane waves), while for finite optical beams beam
anning and self-bending can take place [212–214]. For these reasons these two
ases will be dealt with separately.

.1a. Diffusion-Induced Two-Wave Mixing

et us consider two monochromatic plane waves (of the same color) interfering
n a PR crystal. The total electric field associated with these two waves is written

n the form E� T=E1ê1 exp�i��t−k�1 ·r���+E2ê2 exp�i��t−k�2 ·r���, and hence the re-

ulting total optical intensity or illumination is given by IT= I0+ �I1 exp�−iK� ·r��
c.c.�. In the last expression I0= �E1�2+ �E2�2 represents the constant intensity back-
round of the total intensity, while I1= ê1 · ê2E1E2

* is the amplitude of the periodic

omponent of this interference pattern. The grating wave vector is defined as K�

k�1−k�2 and is related to the spatial period  of the interference via K=2� / . In
rinciple this problem cannot be treated analytically. Yet approximate solutions can
e obtained under steady-state conditions �� /�t=0� by using perturbation methods,
rovided that the periodic component is small, i.e., I1� I0. In this regard, to first or-
er, all the unknown quantities in Eqs. (7.3)–(7.6) are written as x=x0

�x1 exp�−iK� ·r��+c.c.� [215,219]. After some algebra, direct substitution into Eqs.
7.3)–(7.6) leads to the following result concerning the space-charge field:

E1sc = − i

K
kBT

e

1 +
K2

kD
2

I1

I0

. �7.7�

n Eq. (7.7), kD=e�NA / ��kBT� represents the Debye wave number, which in turn
etermines the Debye screening radius LD=2� /kD [215]. Some of the features of
q. (7.7) merit further discussion. To begin with, the imaginary factor i appearing in

he numerator of Eq. (7.7) clearly suggests that the space-charge field E1sc (and
ence the resulting index grating) is � /2 out of phase with respect to the light peri-
dic pattern inducing it. Thus PR diffusion effects are nonlocal. This field is propor-
ional to the depth of modulation I1 / I0 and to the thermal potential kBT /e. Finally,
he amplitude of E1sc reaches a maximum when K=kD. Analysis also indicates that
he time required for this space-charge field to form is directly related to the dielec-
ric relaxation time 
d=� /�=� /eµNeo [214].

o better appreciate two-wave mixing effects we consider the coherent interac-
ion of two plane waves propagating at angles ±� with respect to the z axis. For
emonstration purposes we assume that the periodic pattern forms along the x

xis, e.g., K� =k�1−k�2=Kx̂. In this case the grating vector is related to the wave
ectors via K=2k0n0 sin �, where n0 is the effective refractive index of the crystal.
he index perturbation induced by the periodic part of the illumination pattern can
e obtained from Eq. (7.2). For typical arrangements this index change can be writ-

3
en in the form �n=−n0reffEsc /2 [215,219], where reff is an effective electro-optic
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oefficient that depends on the electro-optic tensor and the orientation of the space-
harge field with respect to the crystal’s axes. Thus the refractive index in the PR
rystal is given by

n = n0 +
1

2
�n1 exp�− i��

I1

I0

exp�− iKx� + c.c.	 , �7.8�

here

n1 exp�− i�� = n0
3reff

iK
kBT

e

1 +
K2

kD
2

. �7.9�

rom Eq. (7.9) it is again obvious that the index grating is indeed � /2 out of
hase with respect to the periodic intensity pattern resulting from the interfer-
nce of these two plane waves, in agreement with the previous discussion. By
ubstituting this latter expression into the Helmholtz equation and by retaining
ynchronous terms [217–219], one obtains the following coupled evolution
quations for the slowly varying field amplitudes E1�z� ,E2�z�:

i
dE1

dz
= −

�n1

� cos �
exp�− i��ê1 · ê2

�E2�2

�E1�2 + �E2�2
E1,

i
dE2

dz
= −

�n1

� cos �
exp�i��ê1 · ê2

�E1�2

�E1�2 + �E2�2
E2, �7.10�

here in deriving Eqs. (7.10) we have omitted any loss effects. These latter equa-
ions describe the two-wave mixing process and together with Eq. (7.9) can be
ritten in a simpler version:

dE1

dz
= −

g

2

�E2�2

�E1�2 + �E2�2
E1

dE2

dz
=

g

2

�E1�2

�E1�2 + �E2�2
E2, �7.11�

here the gain g is given by

g =
2�

� cos �
ê1 · ê2n0

3reff

K�kBT/e�

1 + �K2/kD
2 �

. �7.12�

s expected, in the absence of any losses the overall power in the system is con-
erved, e.g., �E1�2+ �E2�2=const [215]. Moreover, from Eqs. (7.11) it is evident that
he signal field E2 gains energy at the expense of the pump field E1. In the limit
here the signal is weak compared with the pump ��E2�� �E1��, one readily finds

hat the signal intensity will experience amplification according to I2= I20 exp�gz�. It
s also apparent from Eq. (7.12) that the two-wave mixing gain attains a maximum at
specific angle of interaction �max, i.e., when K=kD=2k0n0 sin �max, in which case

max= ��n0
3reffkBTkDê1 · ê2� / �e� cos ��. To appreciate these effects, let us consider
he following values corresponding to typical PR materials under standard tempera-
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ure conditions: n0=2.3, reff=250 pm/V, �r=800, NA=2	1022 m−3, �=0.5 µm.
or this case we find that �max
4° and gmax
20 cm−1. Other arrangements, such
s contra-directional two-wave mixing as well as four-wave mixing configurations,
an be similarly analyzed [215,220,221].

.1b. Diffusion Effects on Beam Propagation

he nonlocal character of the diffusion PR process also affects in a crucial man-
er the propagation of optical beams. One such effect is beam fanning
212–221]. Fanning is a direct outcome of the diffusion nonlinearity, and as its
ame implies it leads to asymmetric fanning and self-bending of a single beam
229]. It typically arises from scattered light from the beam itself when it en-
ounters inhomogeneities and impurities in the PR crystal. The scattered light
omponents are then amplified by all the plane-waves composing the beam via
wo-wave mixing. The end result is the amplification of spatial scattering noise
nd the subsequent deterioration of the optical beam. This energy transfer has
een investigated in several works using multiple-wave mixing approaches
229,230].

nother possibility is a two-wave mixing energy exchange between all the spec-
ral components composing an optical beam. This is a deterministic effect and
an be observed only if beam-fanning is carefully eliminated in the experimental
rrangement. To examine this latter mechanism, one has to first obtain the
iffusion-induced space-charge field [231]. Given that under no external bias the
urrent density is zero, the diffusion-induced space-charge field can be deter-

ined from Eq. (7.5), e.g., E� sc=−�kBT /e���Ne /Ne�. In addition, since Ne� I+ Id,
e find that

E� sc = −
kBT

e

�I

I + Id

. �7.13�

o see how the diffusion nonlinearity will affect a beam, let us consider a Gauss-
an beam propagating along z. The space charge in Eq. (7.13) is assumed to vary
nly in the x coordinate. In this case, the electric optical field amplitude E of this
avefront will evolve according to

i
�E

�z
+

1

2k

�2E

�x2
+

k0

2
n0

3reff

kBT

e
� ���E�2�/�x

1 + �E�2 �E = 0, �7.14�

here in Eq. (7.14) the electric field has been normalized with respect to the
ark intensity level. This problem can be solved in closed form under high-
llumination conditions ��E�2�1� provided that beam is initially Gaussian, i.e.,
�z=0,x�=A exp�−x2 / �2w0

2��. In this case analysis shows that the Gaussian beam
egularly diffracts, while its center self-bends during propagation [232] by an
mount xd that is given by

xd =
k0

2w0
2n0

4reffkBT

2e
�2� tan−1 � − ln�1 + �2�� , �7.15�

here �=z /kw0
2. For the same parameters used in Subsection 7.1a, one finds that

Gaussian beam with an initial spot size of w0=4 µm is expected to self-deflect
y a distance of xd=5.7 µm after a distance of 10 diffraction lengths ��=10�. This

ffect is schematically depicted in Fig. 77. Intuitively the beam deflection can be ex-
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lained by considering the spatial profile of the space-charge field and consequently
f the index distribution. If the optical beam is Gaussian-like then resulting space-
harge field Esc is almost linearly varying across the beam, and as a result the in-
uced index prism leads to self-bending.

.2. Screening Photorefractive Nonlinearity

hen a PR material is strongly biased another type of nonlinearity manifests it-
elf: the screening nonlinearity [233–235]. As we will see, this nonlinearity is
rimarily local in nature, and in the same PR system it can lead to both self-
ocusing and defocusing conditions depending on the polarity of the external
ias. The strength of the screening mechanism can be substantial, and it can re-
pond at very low optical power levels. This type of nonlinearity has been exten-
ively investigated in conjunction with optical soliton effects, self-focusing, and
nstability phenomena, and most recently in the exploration of nonlinear opti-
ally induced lattices to mention a few topics [236].

.2a. Physical Origins of the Screening Photorefractive
onlinearity

o understand the origin of the screening nonlinearity, we consider Eqs.
7.3)–(7.6) under steady-state conditions, assuming for simplicity that the
pace-charge field is established in only one direction (in this case x). By keep-
ng in mind the inequalities ND�NA�Ne associated with the densities, from
qs. (7.3) and (7.6) one can show that [233,234]

ND
+ = NA�1 +

�

eNA

�Esc

�x
� , �7.16�

Ne =
ŝ�ND − NA�

�RNA

�I + Id��1 +
�

eNA

�Esc

�x
�−1

. �7.17�

t this point, let us also assume that the power density I�x ,z� of the optical beam
ttains asymptotically a constant value I� at x→ ±�. This constant I� can be fi-
ite or zero depending on the experimental arrangement used. In these regions

Figure 77

ight spreading on propagation due to diffraction and self-bending in a PR me-
ium due to the nonlocality of the optical response.
f constant illumination, the space-charge field is also independent of x, i.e.,
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sc�x→ ±� ,z�=E0. If the spatial extent of the optical wave is much less than the x
idth W of the PR crystal, then under a constant voltage bias V, E0 is approximately

0=V /W. On the other hand, if W is comparable with the wave’s width, then this ap-
roximation breaks down. In this case the intensity profile of the optical beam has to
e taken into account in order to estimate the appropriate correction factors [234].
rom Eq. (7.17) the free-electron density Ne0 in these regions is given by

Ne0 =
ŝ�ND − NA�

�RNA

�I� + Id� . �7.18�

nder steady-state conditions, Eq. (7.4) implies that � ·J� =0. Hence in 1D con-
gurations the current density should, as expected, be constant everywhere, i.e.,
=constant. Therefore Ne0E0=NeEsc+ �kBT /e��Ne /�x or

Esc =
Ne0E0

Ne

−
kBT

e

1

Ne

�Ne

�x
. �7.19�

ubstitution of Eq. (7.17) into Eq. (7.19) gives the final expression for the space-
harge field:

Esc = E0

�I� + Id�

�I + Id�
�1 +

�

eNA

�Esc

�x
� −

kBT

e

��I/�x�

�I + Id�

+
kBT

e

�

eNA
�1 +

�

eNA

�Esc

�x
�−1�2Esc

�x2
. �7.20�

nder strong bias conditions the drift component dominates the transport pro-
ess, and thus any diffusion effects can be neglected [terms associated with

BT /e in Eq. (7.20)]. In addition, for relatively broad beams in typical PR media
he term �� /eNA��ESc /�x�1, and as result Eq. (7.20) can be expressed in a sim-
ler form, i.e., [233,234],

Esc = E0

�I� + Id�

�I + Id�
. �7.21�

t is interesting to note that one could have arrived at this same relation by con-
idering an intensity-dependent conductivity ��I� and only drift transport pro-
ided that J=constant. In other words, Eq. (7.21) results if we assume that the con-
uctivity varies with intensity according to �=�d�I+ Id� / Id, where �d is the dark
onductivity of the PR material [235]. Under constant voltage bias V we also expect
hat

V = − �
−W/2

W/2

Escdx . �7.22�

he index changes in the PR medium can now be estimated from Eq. (7.2). In
ypical arrangements this is given by [233–235]

�n = −
n0

3

2
reffEsc = −

n0
3

2
reffE0� I� + Id

I + Id
� . �7.23�

t is important to emphasize that in many experiments the so-called dark-
ntensity level Id is artificially elevated by externally illuminating the crystal, ei-

her from the top or along the other input polarization. Such an elevation not only
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peeds up the PR time response but also allows better controllability in experi-
ental setups.

o get an appreciation of the index changes expected in this regime, let us as-
ume a Gaussian-like beam traversing a biased PR material �I�=0�. If we let

0=2.3, reff=250 pm/V, and if the external bias strength is E0=2 kV/cm, then for
Gaussian having a peak intensity 10 times higher than Id, we find that the index

hange between the center and the far tails of the beam is approximately �n
3
10−4. This level of index change is more than enough to enable a host of nonlinear

elf-action effects. The index change corresponding to this case is plotted in Fig.
8(a). As the figure indicates, for E0�0 the refractive index is higher at the beam
enter (in essence the PR effect lowers the index at the tails), and as a result this PR
ystem behaves in a self-focusing fashion. On the other hand, if E0=−2 kV/cm,
.g., if the polarity of the external bias is reversed, the index profile is inverted. In this
atter case, the index at the center of the beam attains a minimum, and thus in this
egime the PR medium is defocusing [Fig. 78(b)]. What is interesting is that the
ame crystal can be either self-focusing or defocusing depending on the polarity of
he external bias. In other words the sign of the screening nonlinearity can be tuned
t will. Equation (7.23) also indicates that the screening nonlinearity has a saturable
err-like nonlinear response. This issue is of importance to the stability of 2D self-

rapped beams.

n two transverse dimensions the problem becomes more complicated because
f the space-charge field boundary conditions. In many occasions these effects
an be understood by only considering the drift component and by assuming

gain that �=�d�I+ Id� / Id. Given that E� sc=−�V and � · ��E� sc�=0, the following
quation for the potential is derived [214]:

�2V +
�I

I + Id

· �V = 0. �7.24�

n general this latter equation must solved numerically during propagation sub-
ect to appropriate mixed boundary conditions for the potential function V. An
nalytic solution can be obtained when the optical beam is cylindrical, e.g., I
I0 circ�r /a� for r�a and zero elsewhere (diffraction effects are neglected here). In

his case the conductivity of the PR medium is �b=�d�I0+ Id� / Id for r�a and �b

�d for r�a.The space-charge electric field associated with this latter arrangement

Figure 78

efractive index change produced by a 1D optical beam with intensity 10Id in a
R crystal for (a) a self-focusing and (b) self-defocusing nonlinearity.
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an be obtained by using standard methods from electrostatics. To do so we assume
hat the electric field away from the high-conductivity rod �r�a� is E0. More spe-
ifically, in polar coordinates �r ,#�, Esc is given by [237]

E� sc = �
2E0x̂

2 + �I0/Id�
r � a

E0x̂ + a2E0� I0

I0 + 2Id
	� cos�2#�

r2
x̂ +

sin�2#�

r2
ŷ	 r � a� ,

�7.25�

he index profile corresponding to this cylindrical optical beam can be deter-
ined from Eq. (7.2). This index distribution is shown in Fig. 79. In general the

ndex change is azimuthally asymmetric, and this is a characteristic of the
creening nonlinearity. Similar results can be obtained for other classes of opti-
al beams, e.g., Gaussian.

ypical values associated with screening nonlinearities as obtained in typical PR
rystals are listed in Table 16.

.2b. Self-Trapped Beams—Screening Photorefractive Solitons

he possibility of optical PR solitons was first suggested in 1992 [238]. Nonlin-
ar optical wave propagation under the action of screening PR effects can be
onsidered by starting from the Helmholtz equation. By writing the optical elec-
ric field in the form E=$�x ,z�exp�ikz� and by assuming a slowly varying enve-
ope $�x ,z�, we find that [233,234]

i
�$

�z
+

1

2k

�2$

�x2
− k0

n0
3

2
reffE0� I� + Id

I + Id
�$ = 0. �7.26�

his equation can be more conveniently studied in normalized units and coordi-
ates, i.e., if �=z /kx0

2, s=x /x0, $= �2�0Id /n0�1/2U, in which case one obtains

i
�U

��
+

1

2

�2U

�s2
− �� 1 + "

1 + �U�2�U = 0. �7.27�

n Eq. (7.27), "= I� / Id is an intensity ratio and �= �k0x0�2�n0
4reff /2�E0 is the

trength of the screening PR nonlinearity. For singular bright beams that tend to zero
t x→ ±�, "=0 in Eq. (7.27).The bright self-trapped states or solitons of Eq. (7.27)

Figure 79

Index change induced in a PR medium by a 2D cylindrical beam.
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an be obtained by assuming that their field profile is given by U
r1/2y�s�exp�i���, where r is the ratio of the soliton’s peak intensity to the dark in-

ensity Id. In this case we find that [233,234],

d2y

ds2
− 2�y − 2�

y

1 + ry2
= 0. �7.28�

his last differential equation can be integrated further provided that �=
�� /r�ln�1+r�, e.g.,

�dy

ds
�2

= �2�/r��ln�1 + ry2� − y2 ln�1 + r�� , �7.29�

rom which the soliton field profile y�s� can be uniquely determined. These so-
utions are possible only for ��0 or E0�0, that is, under self-focusing condi-
ions [236]. The intensity distribution corresponding to a soliton in SBN:60 with

0=2.3, reff=225 pm/V, at a bias of E0=2 kV/cm, at �=0.5 µm is shown in Fig.
0. Similarly, dark as well as gray soliton solutions can be identified under defocus-
ng nonlinear conditions [234,235].

.3. Photovoltaic Nonlinearity

hotovoltaic, or photogalvanic. effects are known to occur in noncentrosymmet-
ic crystals such as, for example, LiNbO3, BaTiO3, and KNbO3 [212–220]. This

Table 16. PR Materials Used for Screening Nonlinearities and Their Relevant
Material Properties

Material Dopant
�

�µm� n3reff �pm/V� 
diel �s�a �nmax

Edc

(KV/cm)

r0.75Ba0.25Nb2O6 Ce 0.4–0.6 17390 0.1–1.0 0.005 3

r0.6Ba0.4Nb2O6 Ce 0.4–0.6 3000 0.1–1.0 0.0014 3

aTiO3 Fe 0.4–0.9 21,500 0.1–1.0 0.005 2.5

nP Fe 0.9–1.3 52 10−6–10−4 5	10−5 b 8

aAt an intensity of 1 W/cm2.
bWith enhancement can go to 5	10−4.

Figure 80

Intensity distribution corresponding to a bright spatial soliton in SBN:60.
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echanism results from the asymmetric excitation of carriers and essentially gives
ise to a current density [214]. This is because carriers are photoexcited from impu-
ity centers with a momentum preferentially oriented along the c axis. From these
onsiderations, the current density associated with the photovoltaic effect is pro-
ortional to the number of available donors, the optical intensity I, and the pho-
oexcitation cross section ŝ, i.e.,

JPV = eŝ�ND − ND
+ �LPVI . �7.30�

n Eq. (7.30) LPV is a characteristic length associated with this photogalvanic trans-
ort anisotropy—for example, in LiNbO3, LPV is approximately 5 Å. More for-
ally, the photovoltaic part in the current density can be expressed as

J�PV = �ijkEjEk, �7.31�

here �ijk represents a third-rank tensor. By adding the photovoltaic component
f Eq. (7.30) to the total current density passing through a PR material, one ob-
ains

J� = enµE� + kBTµ � Ne + %effŝ�ND − ND
+ �Iĉ , �7.32�

here %eff is the photovoltaic constant and ĉ is a unit vector along the c axis of the

rystal. For example, under open circuit conditions �J� =0� and provided that dif-
usion effects can be neglected in Eq. (7.32) we find that Esc=−%effŝ�ND

ND
+ �I / �eNeµ�. Given that normally ND

+ 
NA and that Ne= ŝ�ND−NA��I
Id� /�RNA, from Eq. (7.17) we find the photovoltaic space-charge field in a PR me-
ium [239,240]:

Esc = − EP

I

I + Id

. �7.33�

n Eq. (7.33) EP=%eff�RNA / �eµ� represents the photovoltaic field constant, which is
ypically of the order of 104–107 V/m. Index changes resulting from the photogal-
anic space-charge field can then be obtained from �n=−n0

3reffEsc /2, e.g., [239]

�n =
n0

3reffEP

2

I

I + Id

. �7.34�

s in the case of the screening process, the photovoltaic nonlinearity is also satu-
able. In addition, in most photovoltaic PR media, the coefficient reffEP is nega-
ive, and thus this saturable nonlinearity is of the defocusing type. For this reason
ark photovoltaic solitons have been regularly observed in Fe-doped LiNbO3 crys-
als [240] (see Table 17). On the other hand, by tuning the background illumination,
transition from defocusing to self-focusing can occur in LiNbO3 by exploiting the
nisotropy of the photovoltaic tensor. Self-focusing photogalvanic self-action effects
ere also observed in KNSBN [�KxNa1−x�2A−2�SryBa1−y�2−ANb2O6][236]. For ex-
mple, in LiNbO3, a crystal characterized by a large photovoltaic constant, if we as-

Table 17. Typical Parameters Associated with Fe-Doped LiNbO3

r33 �pm/V� �nmax At Intensity 
response

30 0.001 �W/cm2 ~minutes
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 167
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ume that n0=2.2, reff=30 pm/V, and EP
106 V/m, then for I� Id we find that
n�1.6	10−4. The photovoltaic nonlinearity can be obtained under open and

losed circuit conditions and in conjunction and or competition with the screening
onlinearity [236].

.4. Photorefractive Nonlinearities Due to dc Kerr Effects

onlinear self-action PR effects are also possible in centrosymmetric media as a
esult of the dc Kerr effect [214,215]. In this case, the index change is obtained
rom the quadratic electro-optic tensor sijkm [in Eq. (7.1)] as discussed in the in-
roduction to Section 7. Such crystals include, for example, potassium tantalate
iobate (KTN) and potassium lithium tantalate niobate (KLTN) [241,242]. For
xample, KLTN has a perovskite structure, and in its highest symmetry phase it
s cubic. In this cubic phase the material’s PR properties are described by the
uadratic electro-optic effect. The index change in this system because of the dc
err effect is given by [242]

�n = −
n0

3

2
geffP

2, �7.35�

here the induced dc low-frequency polarization P is assumed to vary linearly
ith the electric field E, that is,

P = �0��r − 1�E . �7.36�

n the above equations, geff is the effective quadratic electro-optic coefficient of the
R material and �r stands for the static relative permittivity. From the latter relations,

he expected index change is [243,244]

�n = −
n0

3geff�0
2��r − 1�2

2
Esc

2 . �7.37�

f, for example, such a PR material is externally biased, then the maximum index
hange is expected to be approximately �nmax
n0

3�geff /2��0
2��r−1�2E0

2, where
gain as in the screening case E0=V /W. For example, for a KLTN crystal, where

r
8000, n0=2.2, and geff=0.12 m4 C−2, and for an applied external bias field of

0=2 kV/cm, we find that �nmax
1.3	10−4.

. Electrostrictive Effect

Electrostriction is a property of all electrical nonconductors, or dielectrics, that
anifests itself as a relatively slight change of shape, or mechanical deforma-

ion, under the application of an electric field. Reversal of the electric field does
ot reverse the direction of the deformation.” [245] Like the Kerr nonlinearity,
lectrostriction is a universal mechanism that occurs in all materials. This is also
rue for an optical field, with the difference that in this case the compression is
roportional to the time average of the square of the optical field. This field-
nduced stress leads to an increase in the material density. Since the number den-
ity of atoms or molecules also increases, there is an increase in the electromag-

etic energy density and an increase in the refractive index. Thus n2,el�0.

dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 168
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or an optical field polarized along the x direction, the material displacement u�
ue to the compression creates an elastic strain in the direction of the applied
trong field, Sxx=�ux /�x. For a detailed discussion of stresses and strains, see the
ook by B. A. Auld [246]. This leads via the elasto-optic effect to a nonlinear
olarization of the form

Pi
NL�r�,t� = − �0ni

2nj
2pijxxSxxEj�r�,t� , �8.1�

n which the pijk� is the elasto-optic tensor (also known as the acousto-optic ten-
or) [167]. For n2�,el�−� ;��, i= j=x is appropriate (coefficient p11 in Voigt nota-
ion) and for n2�,el�−� ;��, i= j=y (p21 in Voigt notation) for the case of an addi-
ional, weak (“probe”) y-polarized beam.

or an unclamped medium, the work done in compressing the medium ��U� is
qual to the increase in electromagnetic energy density ��W�. The work done is

�W = pst

�V

V
= − pst

�"

"
, �8.2�

here pst is the effective pressure exerted by the electromagnetic field on the me-
ium and the change in electromagnetic energy is

�U = ��1

2
�0�r,x�E0cos�kz − �t��2� = �0

E0
2

4

��r,x

�"
�". �8.3�

etting �U=�W, noting that �"= ��" /�pst�pst, and defining K= ��1/"�
��" /�pst��−1 as the bulk modulus for pure compressive forces (i.e., only S11�0,
hich corresponds to a plane wave field polarized along the x axis), gives

S11 =
�"

"
=

�0"

4K
E0

2
��r,x

�"
= −

�0nx
4p11E0

2

4K
. �8.4�

or an isotropic material, K= �c11+2c12� /3, whereas for anisotropic materials K
epends on the crystal symmetry, propagation direction, etc. Substituting this
quation for S11 into Px

NL�r� , t� finally gives n2�,el in terms of the electrostrictive con-
tant �el (defined below) as

n2�,el�− �;�� =
nx

6p11
2

4Kc
=

�el

4Kc
. �8.5�

t is straightforward to show that

n2�,el�− �;�� =
nx

3ny
3p11p12

4Kc
. �8.6�

alues for n2�,el are given inTable 18 for a number of materials. In general, the softer
he material, the larger is the nonlinearity. Elasto-optic data can be found in
247,248].

urn-on and turn-off times are a complex issue. Turning an optical beam on or
ff involves inducing compressive forces in the medium. They lead to the gen-
ration of a spectrum of acoustic waves. The acoustic decay time 
s��s���s

−2,
nd the details of beam shape, sample boundaries, etc., influence the acoustic

pectrum generated, which includes both compressional and shear waves for a
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nite-sized beam. In Fig. 81 is shown the sequence of events that occurs. Figure
1(a) shows the sample before the optical beam enters it. As the beam enters the
ample, material compression occurs accompanied by the generation of sound
aves in all directions; see Fig. 81(b). Beam turn-off is again accompanied by

coustic phonon generation; see Fig. 81(d). In an infinite medium, the shortest
urn-on and turn-off times are given by the acoustic transit time across the opti-
al beam (beam diameter) /vS, with vS�1 �m/s, giving microsecond–
anosecond times. Therefore, the shorter the optical pulse, the smaller the value of

2�,el, since it takes an acoustic transit time to establish this nonlinearity.

he electrostrictive contribution to n2 has typically amounted to a tens of percent
ontribution to the Kerr effect in various solids and a somewhat larger contribu-
ion in liquids because of their low velocity of sound. The spurious effects that it
auses have led to important features including spurious optical signals in fused
ilica glass fibers, since they have such a small native n2,Kerr [249–251]. Another
xample is the effect of electrostriction in relatively tight focusing geometries for
icrosecond–nanosecond pulses in liquid CS2 found experimentally and numeri-

ally in optical limiting studies [252,253]. Contributions as large as 30% have been
een. In materials where there is also some absorption, these effects can be com-
ined with or masked by thermally driven acoustic waves, which have behaviors
imilar to those discussed in the next section.

Figure 81

equence of events that occur when an intense light beam enters and exits a di-
lectric medium. (a) Light at entrance facet to medium. (b) Sound waves are
enerated by the material contraction induced by the entering beam. (c) Steady-
tate compression exists in the medium as long as the light is present. (d) The tail
nd of the beam exits the medium, releasing the compression and generating
ound waves. (e) The medium has relaxed to its initial state.

Table 18. Values of n2�,el

Material Polarization � ��m� Elasto-optic Coefficeint K �1010 m2/N� n n2�,el �cm2/W�

used silica (0.63) p11=0.12 3.69 1.46 0.4	10−16

aAs [110] (1.15) p= �0.14 �7.6 3.37 1.6	10−15

gO [100] (0.59) p11=0.08 �15.3 1.74 1.0	10−17

l2O3 [001] (0.63) p33=0.20 �27.0 1.76 3.7	10−17

olystyrene (0.63) p11=0.31 0.54 1.59 2.4	10−15

cetone p11=0.35 0.080 1.36 8.5	10−15

ethanol p11=0.32 0.083 1.33 5.7	10−15
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 170
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. Thermo-optic Effect

lthough conceptually simple, the index change produced by light absorption is
very complex problem in general [252–254]. Absorption leads to a tempera-

ure change �T, which in turn also leads to a change in local density. A change in
ensity leads to the generation of sound waves, which effectively relieve the
tresses induced by the density changes. Both �T and �" lead to changes in re-
ractive index as discussed in Section 6, i.e.,

�n = � �n

�"
�

T

�" + � �n

�T
�

"

�T . �9.1�

he resulting temperature change is given by the thermal diffusion equation

"Cp

���T�

�t
− %�2��T� = Q = 
1I , �9.2�

here Q is the absorbed power per unit volume per unit time. To a first approxi-
ation, the temperature change is the dominant contribution to the thermal non-

inearity.

hat makes this problem difficult is the calculation of the steady-state tempera-
ure and hence index distribution. On short times scales of single femtosecond,
icosecond, and nanosecond pulses, the initial thermally induced index distribu-
ion mirrors that of the incident optical beam. However, for mode-locked lasers
s well as for cw excitation, the effects are cumulative over microsecond time
cales. At this point the size, shape, and thermal boundary conditions of the
ample become important in establishing the steady-state index change—and
hese vary from sample to sample, by geometry, etc.

ptical experiments involve spatially finite beams. Transients due to sound
aves occur over the time it takes an acoustic wave to traverse the optical beam,

imilar to electrostriction. The velocity of sound is 1–4 µm/ns. Hence for the
sual cases of 0.1–1 mm beams, acoustic transient effects can be ignored for optical
ulses 1 µs long, and shorter. Furthermore, since the effect on index of density
hanges is usually much smaller than temperature changes, density changes in the
rst approximation are neglected.

t is useful to find some simple approach to estimating how large n2,th is for the
hermo-optic effect. We start by rewriting Eq. (9.2) as

"Cp

��T

�t
− %�2T = Q = 
1I, "Cp� ��T

�t
−

%�2

"Cp

�T	 = 
1I �9.3�

nd note that the term %�2 /"Cp has the units of time. The �2�T term indicates
hat any characteristic time will depend on the beam shape, an unwelcome com-
lication. It is useful to assume a Gaussian intensity distribution given by

I�r�,t� = I0�z�exp�− r2/w0
2 − t2/
opt

2 � , �9.4�

here I0 �z� is the on-axis distribution (along the z axis), which decays exponen-
ially with distance z due to absorption. Assuming further that the pulse width

opt is much shorter than the thermal diffusion time 
th, the maximum temperature

istribution is given by the pulse energy absorbed with the spatial temperature dis-
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ribution given by the Gaussian beam distribution. The maximum temperature
hange across the beam �Tmax�r�� is given by

�Tmax�r�� =

1

"Cp

I�r��
−�

�

e−t2/
opt
2

dt = ��
opt


1

"Cp

I�r��. �9.5�

ote that in

�2��Tmax�r�� = �1

r

�

�r
+

�2

�r2	�Tmax�r� = −
4

w0
2�1 −

r2

w0
2��Tmax�r� �9.6�

he largest �T occurs between r=0 and r=w0. This equation can be simplified by
eglecting the r2 /w0

2 term, which means that the any solution will be at best ap-
roximate. However, this makes it possible to estimate the time evolution of �T
nd the turn-off time subsequent to removing the optical field from

��Tmax�r�,t�

�t
= −

4%

w0
2"Cp

Tmax�r�,t� ⇒ �Tmax�r�,t� = �Tmax�0,t�e−t/
th, �9.7�

here 
th=w0
2"Cp /4%. Note that 
th is not just a material constant! It depends on

ample and beam geometry, heat sinking, beam size, etc. A sampling of 
th for a va-
iety of materials �w0=0.1 mm� is listed in Table 19. Note that

1. There is a strong dependence on the beam size, i.e., w0
2.

2. Excluding metals, the 
th varies by about 2 orders of magnitude for a wide
ange of materials.

3. Because they contain the same atoms, mostly carbon and hydrogen, 
th in
he organic solvents varies by less than an order of magnitude.

n effective nonlinearity n2,th can be estimated as follows:

�nmax�r�� = � �n

�T
	�Tmax�r�� = ��� �n

�T
	
opt


1

"Cp

I�r�� ⇒ n2,th � ��� �n

�T
	
opt


1

"Cp

.

or a pulse with a Gaussian shape with 
th�
opt it is the pulse energy �Epulse

ather than the intensity that is important and

�nmax =
23/2

�w0
2� �n

�T
	 
1

"Cp

�Epulse. �9.8�

s an example, consider GaAs:

Table 19. 
th for a Variety of Materials

Material GaAs Al2O3 NaCl ZnO Acetone C6H6 Methanol

(W/cm °C) 0.55 0.024 0.065 0.30 0.0019 0.0016 0.0020

p (joules/g/°C) 0.33 0.75 0.85 0.83 2.2 1.7 2.4

�g/cm3� 5.32 3.98 2.2 5.5 0.79 0.90 0.80

th (ms) 0.080 3.1 0.72 0.39 45 24 20

n /dT	10−4 (/°C) 1.6–2.7 0.13 0.25 0.1 −5.6 −6.2 −4.0
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 172
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 = 1 cm−1 and �t = 1 µs ⇒ n2,th = 3

	 10−10 cm2/W �much bigger than Kerr effect� ,


 = 1 cm−1 and �t = 1 ns ⇒ n2,th = 3

	 10−13 cm2/W �comparable with Kerr effect�


 = 1 cm−1 and �t = 1 ps ⇒ n2,th = 3

	 10−16 cm2/W �negligible�.

or high repetition rates (mode-locked lasers), the key question is the energy ac-
umulation over all the pulses within the time window 
th. For example, a mode-
ocked laser operating with 1 ps pulses at a repetition rate of 100 MHz accumulates
nergy from 103 pulses over 
th, giving a cumulative n2,th=−1.2	10−12 cm2/W,
arger than the Kerr nonlinearity!

0. Cascading Nonlinearity

here are two ways in which a second-order nonlinearity can contribute to an ef-
ective n2,cas. In the first, called “local cascading,” a third-order susceptibility is
btained as the product of the molecular second-order susceptibilities
�2��−2� ;� ,����2��−� ;2� ,−�� and ��2��−0;� ,−����2��−� ;� ,0�. The light–
atter interaction occurs at the molecular level, and there is no propagation of a 2�

ignal. The second is also proportional to the product between second-order nonlin-
arities ���2��−2� ;� ,����2��−� ;2� ,−��� but does involve the generation of a
econd-harmonic beam that exchanges energy with the fundamental on propaga-
ion. This can be called “nonlocal cascading.”

0.1. Local Cascading

ocal cascading refers to a pair of two-step processes, each involving the prod-
ct of two optical fields at a noncentrosymmetric molecule. A nonlinear, local
olarization is generated at the sum or difference frequency via the molecular
econd-order susceptibility �ijk

�2��−��1±�2� ;�1 , ±�2�. The local field generated
t �1±�2 then mixes with the fields at �1 and �2 via �ijk

�2��−�1 ;�1±�2 , &�2�
nd �ijk

�2��&�2 ;�1±�2 ,−�1�, respectively, to give new polarization fields at �1

nd ±�2, respectively. The particular case of interest here, i.e., the contribution
o n2�,cascl�−� ;��, i.e., a single input field, involves the two-step processes �+�

2� (second-harmonic generation) and 2�−�→� (difference frequency genera-
ion), and the two-step process �−�→0 (dc rectification) and 0+�→� (sum fre-
uency generation).

straightforward approach to such a cascading process is to assume that an op-
ically excited electron in an anharmonic potential leads to material polariza-
ions at the frequencies �, 0, 2�, etc. The total displacement of the electron from
quilibrium q̄� obeys a nonlinear driven simple harmonic oscillator equation of

he form
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q̈̄i + �̄iq̇̄i + �̄i
2q̄i = −

e

m̄
Ei −

k̄ijk

m̄
q̄jq̄k −

k̄ijk�

m̄
q̄jq̄kq̄�, �10.1�

here k̄ijk and k̄ijk� are nonlinear force constants that can be related directly to
easured second- and third-order susceptibilities �ijk

�2��−��p+�q� ;�p ,�q�
N�ijk

�2��−��p+�q� ;�p ,�q� and �ijkl
�3� �−��p+�q+�r� ;�p ,�q ,�r��N�ijkl

�3� �−��p

�q+�r� ;�p ,�q ,�r�, respectively. The parameter �̄i is a resonance frequency
ssociated with a transition from the ground state to an excited state, and ulti-

ately a summation over all of the excited states will be required. �̄i is a phe-
omenological damping term related to the lifetime of the excited state. For cas-

ading, the discussion is limited solely to k̄ijk. The inclusion of k̄ijk� would lead
irectly to the third-order Kerr nonlinearity in this model.

or a single incident field of frequency �, q̄� is the total electron displacement,
hich has components at multiples of � due to the nonlinearity, i.e.,

q̄i = q̄i�0� + q̄i��� + q̄i���� + q̄i�2�� + q̄i�3�� + . . . . �10.2�

ote that the displacement at � has been separated into the displacement asso-
iated with the linear polarization, q̄i���, and q̄i���� due to the nonlinear interac-
ions, which also produce a nonlinear polarization at �. Since local nonlinear op-
ical interactions at the molecule level are normally very small,

q̄i��� � q̄i�2��, q̄i����, q̄i�0�, q̄i�3��, etc. �10.3�

ence the linear optics solution for q̄i��� can be substituted to produce the non-
inear term q̄i���q̄i��� driving the linear equations for q̄i�0� and q̄i�2��. In turn,
roducts of those solutions with q̄i���, i.e., q̄i�2��q̄j��� and q̄i�0�q̄j���, are used
o generate nonlinear terms for obtaining solutions for q̄i���� (via 2�−� and 0
�) and q̄i�3�� (which is not of interest here). This procedure results in

q̄i���� = −
1

2� e3

2m̄5
k̄ijmk̄mk�� Ej

*���Ek���E����

Di���Dj
*���Dm�2��Dk���D����

+
Ej���Ek

*���E����

Di���Dj���Dm�0�Dk
*���D����	�ei�kz−�t� + c.c., �10.4�

here Di���= �̄i
2−�2− i�i�. Clearly the first term is the result from the second-

armonic pathway and the second from dc rectification. Defining in the usual
ay the nonlinear polarization as Pi

NL���=−eNq̄i����, straightforward algebra re-
ults in

n2,casl =
1

4ni
2�0c

�
R,casl,ijk�
�3� �− �;�,− �,�� =

1

4ni
2c

m̄

2ē2N
�Dm�2���mk�

�2�

	�− 2�;�,���ijm
�2� �− �;− �,2�� + Dm�0��mjk

�2� �0;�,− ���i�m
�2� �− �;�,0��

�10.5�

t is useful to estimate the order of magnitude of n2,casl for LiNbO3 at nonresonant
28 3 3 �3�
avelengths with N=1.89	10 mol/m , "=4.64 g/cm , �zzz=56 pm/V:
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n2,casl �
m̄D�0�

4n2ce2N
��zzz

�2��2 � 5 	 10−16 cm2/W,

hich is negligible in this case. Consider also another example, the nonlinear or-
anic DSTMS (4-N,N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-
rimethylbenzenesulfonate), which has the following properties: ��2�

424 pm/V, N=1.8	1027 molecules/m3, n=2.45, D�0���	1015 rad/s,
hich yield n2,casl�5	10−14 cm2/W, certainly not negligible [255].

ince this is a local effect, occurring at the molecular level, the turn-on and turn-
ff times are essentially instantaneous.

0.2. Nonlocal Cascading

his process in second-order nonlinear materials was identified in the early days
f nonlinear optics by Ostrovskii but was overlooked until future experiments
rought it back to light [256,257]. This process does not lead to a change in the
efractive index of a material, but does result in a nonlinear phase-shift between
nteracting beams coupled via a second-order nonlinear process. This nonlinear
hase shift depends in a complicated way on the intensities of the interacting
eams, and it accumulates with distance so that it does mimic the effects of an
ntensity-dependent refractive index coefficient [258–262].

he interest here is in a single incident beam [Ei���, �, ki���] that experiences
n effective nonlinearity n2,casnl. In a noncentrosymmetric medium, this fundamen-
al beam can generate a second-harmonic either by birefringence phase matching
Ej�2��, 2�, kj�2��; �k=2ki���−kj�2��=0] or quasi-phase-matching (QPM)

i�2��, 2�, ki�2��; �k=2ki���−ki�2��+%=0 where %=2� / and  is the QPM
eriod]. Away from the phase match, i.e., �k�0, the fundamental and harmonic
aves travel at different phase velocities.That is, if �k�0, the harmonic beam trav-

ls faster than the fundamental and vice versa for �k�0; so the relative phase be-

Figure 82

chematic representation of the second-harmonic process that leads off-phase
atch to a nonlinear phase shift in the fundamental. When some harmonic is

enerated by upconversion, it travels at a different phase velocity than the fun-
amental. The harmonic is downconverted back to the fundamental frequency
ith a phase shift proportional to the product of the phase velocity mismatch and

he coherence length. Thus the reconstituted fundamental experiences a net
hase shift [258].
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 175
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ween the two beams changes with propagation distance.As the energy oscillates be-
ween the fundamental and the harmonic, relative phase information is transferred
lso, and this is the basis of the nonlinear phase shift.

onsider the fundamental beam incident on a second-order crystal. As indicated
n Fig. 82, the second harmonic is generated via ��2��−2� ;� ,��, and it propa-
ates some distance (typically the coherence length) before it converts back to
he fundamental via ��2��−� ;2� ,−��. It recombines partially out of phase with
he incident fundamental because of the difference in phase velocities. The in-
remental phase shift at a given point depends on the interactions that occur ear-
ier in the sample and hence is nonlocal. Furthermore, the higher the fundamen-
al input intensity, the larger the conversion to the harmonic, and hence the larger
he relative phase shift imparted by the recombining fundamental. This makes
he process nonlinear.

he equations satisfied by the fundamental and harmonic are the standard ones
ssociated with second-harmonic generation [field notation in Eq. (2.1)], for ex-
mple, for type 1 phase matching:

� + � → 2�,
d

dz
E�z,2�� = i

2�

n�2��c
�eff

�2��− 2�;�,��E2���ei�kz;

2� − � → �,
d

dz
E�z,�� = i

2�

n���c
�eff

�2��− �;2�,− ��E�2��E*���e−i�kz;

'1 =
2kvac���

n���
�eff

�2��− �;2�,− ��; '2 =
2kvac���

n�2��
�eff

�2��− 2�;�,��; �10.6�

n which �eff
�2�= ê

i
*�2���ijj

�2��−2� ;� ,��êj���êj���, where êj��� denotes the field
nit vectors. Numerical solutions for the fundamental’s nonlinear phase shift, funda-
ental intensity versus distance, and nonlinear phase shift with input intensity are

hown in Figs. 83 and 84 [262]. The increase in the nonlinear phase shift in the fun-

Figure 83

a) Calculated cw nonlinear phase shift ��NL experienced by the fundamental
ith distance for different values of phase mismatch �kL. (b) Corresponding frac-

ion of light in the fundamental beam, also as a function of propagation distance
258].
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amental, ��NL���, occurs in steps with the step size increasing with increasing

coh=� / ��k� with a maximum step size of � /2, Fig. 83(a). Also, as shown in Figs.
3(a) and 85, there is a maximum nonlinear phase shift with distance that occurs at
�kL��1.6�. Note that for large phase mismatch, the conversion to the harmonic is
mall, ��NL��� grows quasi-linearly with distance, and a definition for n2,casnl

ould be useful. Finally, note that the steps in phase shift occur as the harmonic con-
erts back to the fundamental, in keeping with the simple model in Fig. 82. Note,
owever, that there is a local phase shift of � /2 for fundamental-to-harmonic and
nother � /2 for harmonic-to-fundamental conversion; so the nonlinear phase shift
ue to backconversion of the harmonic to the fundamental exists on the background
f a � phase shift. The growth of ��NL��� with input intensity is initially linear in

Figure 85

ariation with phase mismatch �kL of (a) the nonlinear phase shift ��NL and the
econd-harmonic intensity for various values of the normalized nonlinearity. Here
=�deff

�2��E0� /c�n�n2� [258].

Figure 84

ariation with the incident fundamental intensity of the nonlinear phase shift
�NL for various phase mismatches �kL [258].
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ntensity but does saturate at very high intensities as shown in Figs. 84 and 85, since
he second harmonic departs from sinc2��kL /2� under those conditions [263]. Fi-
ally, from Fig. 83(b), it is clear that the sample length has to be chosen so that the
undamental is fully recovered to its input value in order to maintain high net funda-
ental throughput. As always when looking at nonlinear phase shifts there is the as-

ociated nonlinear loss, which here is the loss of the fundamental. For low conver-
ion this loss mimics 2PA; i.e., two photons go the second harmonic as opposed to
eat in the real 2PA case.

s suggested in Fig. 84, for large �kL, i.e., small harmonic conversion, or small
nput irradiance, i.e., again small depletion, it is possible to obtain a simple for-

ula for n2,casnl. First, the harmonic generation equation is solved for negligible
epletion of the fundamental, and the solution is inserted into the equation for fun-
amental regeneration. This gives

d

dz
E�z,��= i

'1'2

�k
�1 − ei�kz��E����2E���

⇒
d

dz
E�z,��=

'1'2

�k

sin��kz� + i�1 − cos��kz����E����2E���.�

�10.7�

o find a simple definition for the effective n2,nlcas coefficient in the negligible fun-
amental depletion regime, one can simply compare the imaginary part of Eq. (10.7)
t some point z with the Kerr formulas dE�z ,�� /dz= ikvacn2,KerrI���E�z ,��. This
rocedure yields

n2,nlcas =
4��deff

�2��2

c2�0n
2���n�2���k

sin2��kz

2
� , �10.8�

n which L is the sample length. Of course, this definition gives a comparison of
local ��3� nonlinearity to the nonlocal cascading. A different comparison can be
ade by integrating both third-order and cascaded second-order equations over

he sample length prior to defining an effective n2 (or effective 
2), which in-
ludes the effects of copropagating fundamental and second-harmonic beams
264]. Note that in the final version we use dijj

�2��−2� ;� ,��=2�ijj
�2��−2� ;� ,��,

ince it is the material constant diJ
�2� that is commonly tabulated for second-order

nteractions. For fundamental input intensities consistent with negligible funda-
ental depletion, the accumulated nonlinear phase shift ��NL at the end of a

ample of length L is given by

��NL = �
0

L

kvacn2,nlcasdzI��� =
2�2�deff

�2��2

c2�0n
2���n�2���k

L
1 − sinc��kL��I���.

�10.9�

here are a number of interesting properties exhibited by the cascading nonlin-
arity. For example, for �kL→�, ��NL is proportional to L, similar to the Kerr
ase. Furthermore, the sign of the effective nonlinearity n2,nlcas depends on the wave-
ector mismatch: it is positive for �k�0 and changes sign when the wave vector
ismatch condition is tuned through �k=0; i.e., the nonlinearity can be changed

rom self-focusing to self-defocusing.
�2� interactions are parametric processes, i.e., they conserve energy. This fol-
ows immediately from the real part of Eq. (10.7), which describes the periodic
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xchange of energy between the fundamental and the harmonic and can be writ-
en in the negligible fundamental depletion limit as

d

dz
I��� = −

4�deff
�2��2kvac

2 ���

n�2��n2����0c�k
sin��kz�I2�z,�� . �10.10�

he small loss of the fundamental at z=L due to the generation of the second
armonic is obtained from

�
0

L dI�z,��

I2�z,��
= −

4�deff
�2��2kvac

2 ���

n�2��n2����0c�k
�

0

L

sin���kz��dz; �10.11�

o the normalized fundamental transmission coefficient for the sample is given
y

T = 1 −
I�0,�� − I�L,��

I�0,��
� 1 −

2�deff
�2��2kvac

2 ���

n�2��n2����0c
L2I�0,��sinc2��kL

2
�.

�10.12�

his formula is reminiscent of the 2PA process that accompanies the Kerr non-
inearity near a two-photon resonance, but of course there is no absorptive loss in
his process and only a “loss” of the fundamental to the harmonic.

xperiments have confirmed the theoretical predictions for this cascading pro-
ess. A Z-scan experiment measures the nonlinear phase shift experienced by a
eam passing through a sample and hence works for the cascading nonlinearity
s well. Results are shown in Fig. 86 for the phase shift experienced when
econd-harmonic generation is tuned through the phase-match condition in a
TP �KTiOPO4� sample [265]. The small differences between experiment and nu-
erical solutions to the theory are probably because the calculations were done for

w plane waves, whereas only approximate corrections were applied to the results of
he experiments, which involved pulses and finite beams. However, it is perhaps sur-
rising that results of experiments performed in a limit of strong second-harmonic
onversion bear a strong resemblance to Eqs. (10.9) and (10.12), which were derived
n the negligible fundamental depletion limit. Nonlocal cascading also leads to the
pectral broadening normally associated with self-phase-modulation [266]. Further-
ore, all-optical switching based on cascading has also been obtained for a number

f device configurations and found to be in excellent agreement with theory [258].

learly this nonlinearity will exist in all second-order materials. We illustrate
his with the example at �=1 µm of QPM LiNbO3, which is phase matchable, and
he organic crystal DSTMS, which is not phase matchable and has a coherence
ength of only 3.6 µm but a very large nonlinearity d11=214 pm/V [255]. For L
1 cm, n2,casnl is calculated to be 2	10−12 cm2/W and 3.6	10−13 cm2/W for
PM LiNbO3 (assuming ��kL��1.6�) and DSTMS at �vac=1 µm [255].The con-

lusion is obvious, namely, that the material must either be phase matchable or the
econd-order nonlinearity huge, or preferably both, for this mechanism to be impor-
ant! Furthermore, this effect saturates, and hence these analytical results are valid
nly for small intensities.

he turn-on and turn-off times are given by the transit time for light to cross the

ample.
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1. Conclusions

he phenomena discussed here lead to a large spectrum of possibilities for the
agnitude and speed of an intensity-dependent change in the refractive index

nd absorption. The salient question is, what material (or material system) is the
ptimum? A panel was convened in 1986 to discuss just this question, and its re-
ort was published as a paper [267]. There it was concluded that to within a
ouple of orders of magnitude, the product (n2	 response time) is a constant.
wenty years later, this conclusion is still valid for nonlinearities ranging over 16 or-
ers of magnitude!

lso pointed out in that series of papers is that the details of an application dic-
ate which material system is most appropriate. For example, for all-optical
witching that requires picosecond response times, it is usually necessary to ac-
umulate a nonlinear phase shift of about � in a nonlinear medium to get suffi-
ient interference between two beams to perform a switching operation. This
eems to imply that one simply needs to make the nonlinear medium long
nough (L) or the intensity (I) high enough to get �, since ��NL=n2IL. However,
inear and nonlinear loss or even fabrication technology will limit the practical
ample length, especially since high throughput is also an important criterion. Fur-
hermore, the Kerr relation �n=n2I is only a low-intensity approximation, and there
s an upper limit to �n due to either saturation or material damage. These consider-
tions have led to the definition of two figures of merit W=2�nmax�I� /�vac
1�1

Figure 86

heory and experiment for the nonlocal cascading nonlinearity in KTP near its
hase-matching condition for second-harmonic generation as measured by Z
can. (a) Theory and (b) experiment for effective two-photon loss from the har-
onic to the fundamental. (c) Theory and (d) experiment for the nonlinear phase

hift [265].
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nd T=�vac
2�I� /n2�I��1, where 
2 is the 2PA coefficient, that need to be satisfied
268]. The material that best satisfies these conditions and allows nonlinear phase
hifts of �100� is fused silica at 1550 nm in fiber form because of its very low loss
nd beam confinement, which arrests beam spreading on propagation and maintains
igh intensities for kilometer distances. The lesson here is that materials should be
perated in their nonresonant regime, because there the ultrafast Kerr nonlinearity is
constant and the loss, linear and nonlinear, is very small. Note however, that even in
bers, if the operating wavelength is extended into the region in which absorption
ccurs due to vibrations, the figures of merit can be violated; so in general specific
aterials are useful only over specific wavelength ranges. This is a strong argument

or continuing intensive research into the spectral dependence of nonlinear coeffi-
ients over broad wavelength ranges.

hile most of this paper has looked at nonlinear refraction, it is impossible to
ully describe these phenomena without also mentioning the nonlinear absorp-
ion processes that lead to these effects. Just as linear absorption leads to refrac-
ion via causality and Kramers–Kronig relations, similar connections can be
ade with nonlinear processes, as the example of the bound electronic n2 result-

ng from a combination of Raman, ac Stark, and 2PA effects. Every change in
ndex can be attributed to an absorption process occurring at some frequency
ven if widely separated.

or applications that do not require fast response times (longer than microsec-
nds), PR and liquid crystal media are ideal. They can have nonlinearities
1 cm2/W and are ideal as media for exploring new phenomena. In fact, in most of

hese cases it is the integrated energy rather than the intensity that is the key param-
ter. Furthermore, the changes in refractive index may not be reversible. For ex-
mple, turning off the index change may require illuminating the medium with ra-
iation of a different wavelength.This is the case for the huge nonlinearities that rely
n trans-cis isomerization of organic molecules.

hermally related nonlinearities are also very large and easily accessible with
ow-power cw lasers. But bear in mind that a temperature change generated lo-
ally diffuses with time, and the final steady state is determined by a sample’s
eometry, thermal conductivity, and thermal boundary conditions. Hence the re-
ults of an experiment may not be reproducible from sample to sample.

he nuclear contribution due to vibrational modes and electrostriction are nor-
ally relatively small effects. We note, however, that they do lead to large stimu-

ated effects such as stimulated Raman and Brillouin scattering under appropri-
te conditions [1,2].

ne of the most common consequences of an intensity-dependent refractive in-
ex on all time scales is the self-focusing or self-defocusing of high-intensity
ptical beams with finite cross section. The beam itself creates an effective lens
n the medium as a direct consequence of �n�I�. On propagation this can lead to
ascinating effects in high-intensity nonlinear optics and ultimately damage (see
269] for recent reviews). When the nonlinear effect approximately cancels out
ispersion or diffraction, this can result in beams with fascinating properties,
hich do not spread in time or space, as solitons or solitary waves or both, better
nown as optical bullets [270].

n addition, we note that the intensity-dependent refractive index can have an ef-
ect on second-order nonlinear interactions such as second-harmonic generation
nd optical parameteric oscillators, whose efficiency is based on phase matching
dvances in Optics and Photonics 2, 60–200 (2010) doi:10.1364/AOP.2.000060 181
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hat requires finding conditions to make some index difference vanish. For ex-
mple, in birefringent crystal media, both the intensity-dependent refractive in-
ex coefficients and dn /dT depend on the optical polarization. Hence changing the
ncident intensity can detune the phase-matching condition in frequency conversion
evices.

dditional ramifications of an intensity-dependent refractive index and nonlin-
ar absorption can be found in standard textbooks [1,2].
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