

Outline		(je
1. Introduction: nonlinear absorption		
2. Intermezzo (recovery from equation	ons)	
3. Plasmon enhanced NL absorption	in dilute solutions	
\Rightarrow surprise: complex enhancemer	nt	
4. Figure of merit for NL absorption:	role of plasmon induced damping	
5. Optimization of NL absorption by n	nanostructure design	
6. Summary		
Nanophotonics and Near-field Optics Group	http://kik.creol.ucf.edu	slide 6

Outline		(G
1. Introduction: nonlinear absorption		
2. Intermezzo (recovery from equations	s)	
3. Plasmon enhanced NL absorption in	dilute solutions	
\Rightarrow surprise: complex enhancement		
4. Figure of merit for NL absorption: ro	ble of plasmon induced damping	
5. Optimization of NL absorption by nar	nostructure design	
6. Summary		
Nanophotonics and Near-field Optics Group	http://kik.creol.ucf.edu	slide 22

Effective medium response through numerical intregration

Dense arrays: no analytical formulas available

Based on numerically computed field distributions in different unit cells we calculate linear dielectric properties using

$$\varepsilon_{c}(\omega) = \frac{\left\langle \varepsilon(\omega, \vec{r}) \vec{E}(\omega, \vec{r})^{2} \right\rangle_{V}}{\left\langle \vec{E}(\omega, \vec{r}) \right\rangle_{V}^{2}}$$

And nonlinear optical properties using

$$\chi_{c}^{(3)}(\omega) = \frac{\left\langle \chi^{(3)}(\omega, \vec{r}) \left| \vec{E} \right|^{2} \vec{E}^{2} \right\rangle_{V}}{\left| \left\langle \vec{E} \right\rangle_{V} \right|^{2} \left\langle \vec{E} \right\rangle_{V}^{2}}$$

Note: χ values represents χ_{xxxx} , only valid along certain structural symmetry axes

Nanophotonics and Near-field Optics Group http://kik.creol.ucf.edu

slide 24

