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Oblique Airy wave packets in bidispersive optical media
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Using hyperbolic rotations, we show that a new class of skewed, nonspreading, accelerating Airy wave packets is

possible in optical bidispersive systems. Their obliquity factor is found to have a profound effect on their spatio-
temporal acceleration dynamics. Pertinent examples are provided. © 2010 Optical Society of America
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Diffraction and dispersion occur ubiquitously in nature.
As is well known in optics, these processes lead to wave
packet broadening in space and time, respectively [1]. In
fact, over the years, strategies have been developed to
contain and manage these effects that, from a practical
perspective, are typically considered undesirable [2—-10].
One such promising avenue involves the use of non-
spreading spatiotemporal solutions like O-waves [7] and
X-waves [3,7,8], to mention a few. Also of great interest is
the recently demonstrated class of Airy wave packets
[11,12]. Apart from the fact that they are the only nondis-
persing, localized solutions in one dimension, Airy waves
can also exhibit several intriguing characteristics [12—
17]. Perhaps the most prominent of them is their very
ability to freely accelerate in both space and time. While
spatial diffraction effects in standard media act the same
way in both directions, dispersion on the other hand may
affect wave dynamics in different ways, depending on
whether it is normal or anomalous. Under normal disper-
sive conditions, the space-time operators exhibit oppo-
site signs and, hence, the system acts in a bidispersive
fashion [8]. Bidispersion is an intriguing process that oc-
curs frequently in many common physical systems, and it
leaves its mark in both the linear and nonlinear domain.

In this Letter, we show that a new class of nonspread-
ing Airy wave packets is possible under bidispersive
conditions. What distinguishes these waves from other
families considered in previous studies is the fact that
they owe their existence to hyperbolic rotations (a spe-
cial class of Lorentz transformations) allowed only in the
presence of bidispersion. The effect of the obliquity fac-
tor on their acceleration dynamics is studied in detail.
Pertinent examples are provided in standard material
systems to illustrate these effects.

Bidispersive systems can be realized in space-time
configurations. For example, the propagation of wave
packets in bulk dispersive media can be described by
the (3 + 1)D paraxial wave equation iy, + (1/ 2k)Viyx -
(k" /2)w,, = 0[8]. Here, the process of diffraction is being
described by the transverse Laplacian operator, disper-
sive effects are associated with the term involving the
moving time coordinate 7 =t - (2/v,), k = 2zan/A repre-
sents the wavenumber, and k" = 0%k/0w? is the disper-
sion coefficient at the carrier frequency w, [4]. The
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system will be bidispersive if the material exhibits normal
dispersion, i.e., k¥’ > 0.

To demonstrate this new class of oblique Airy solu-
tions, let us first consider a (2 + 1)D bidispersive optical
paraxial system. This situation can arise in normally
dispersive planar waveguides where diffraction is one di-
mensional. By equalizing dispersion and diffraction
effects (73/|k"| = kw?), the spatiotemporal evolution of
the wave packet will be described by [8]
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where the normalized coordinates are related to the

actual ones via Z = z/(2kw3), X = x/w,, and T = /7y,

respectively. A direct calculation reveals that Eq. (1)

allows the following exact Airy wave solution:
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In Eq. (2), Ai(-) represents the Airy function while the new
oblique axes &, & are defined through the Lorentz transfor-
mation H(¢): £X,T) =X cosh¢ + Tsinh¢, (X, T) =
X sinh ¢ 4+ T cosh ¢, where ¢ denotes an obliquity factor.
It is well known that the choice of orientation of a coor-
dinate system in media not exhibiting bidispersion is
rather arbitrary, while this is not true for bidispersive sys-
tems. In these media, one deals with two distinct axes,
which lead to a preferential orientation of the frame of
reference and, hence, do not allow arbitrary coordinate
rotations. One can show that, for every existing solu-
tion w(X,T,Z), the hyperbolically rotated version
H(¢p)wy(X,T,Z) is a also solution to Eq. (1). Note that
the new coordinates (£,9) are no longer mutually ortho-
gonal, but instead they intersect at an angle 6, which is
related to the obliquity factor ¢ through the relation
¢ = —(1/2)tanh™!(cos@). The solution presented in
Eqg. (2) and the associated transformation from (X, T)
to (£€,9) lead to a new family of nonspreading oblique Airy
wave packets whose propagation dynamics depend
critically on the angle 6. Intensity profiles of such skewed,
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Fig. 1. (Color online) Airy beam intensity profiles for (a)
6 =90° (b) 0 =45° and (c) 6 = 135°.

nondiffracting Airy waves are shown in Fig. 1 for various
obliquity factors or angles 6. Equation (2) indicates that
these solutions accelerate along the 45° axis in the (X, T')
frame (or the angle-bisector of the oblique (&, 3) system)
and that the acceleration of the main lobe is described by
X, =T, = (e?\/2/4)Z%. This latter result suggests that
the acceleration of this wave can be directly controlled
by using the obliquity factor ¢ as a free parameter. In other
words, for ¢ < 0 (0 being an acute angle), the wave will
experience enhanced self bending, whereas for ¢ > 0
(@ being obtuse) the acceleration will strongly decrease.
When the obliquity factor ¢ is equal to zero, i.e., when the &
and 9 axes are perpendicular to each other (6 = 90°), the
beam profile becomes identical to that of [11,12].

So far, we have only considered infinite-energy oblique
Airy wave packets in bidispersive systems. As previously
discussed in [12], experimental realization of such beams
would demand amplitude truncation. Perhaps the most
convenient way to do so is the use of an exponential field
containment at Z = 0, viz.,

X exp {(al +ipy) 5()\(/’5 T>]

X exp {(az + i) 8%’;)
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Here, a; 5 > 0 are typically small positive constants that
confine the field envelope and lead to finite-energy
power spectra, while $,, are real parameters related
to the initial angle tilt of the optical wavefronts and
can lead to a wide range of ballistic trajectories. The
propagation dynamics of these finite-energy waves are
analytically given by
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Fig. 2. (Color online) Propagation dynamics of a finite-energy
Airy beam when 6 = 45° at (a) Z =0 and (b) Z = 3.

600
E 400 b
~ 200
0.0 1.0
0.5
y [mm]
600+ (b)
5400 :
~ 2001
0.0 1.0
0.5 hye 0.5
: 0.0
% [mm] y [mm]
Fig. 3. (Color online) Isointensity plots of an ultrafast oblique

spatiotemporal Airy wave packet in silica glass at (a) 2 = 0 cm
and (b) 2 = 17 cm. For this example a;5 = 0.08, a3 = 0.1, and
A =800 nm.

where ¢; = a; +if;, y1 =¢&, and y, =9, respectively;
also, {; =Z and ¢y, = -Z. As is illustrated in Figs. 2(a)
and 2(b) (for @ = 45°, a; 5 = 0.1), an oblique finite-energy
Airy beam can propagate quasi-dispersion-free over a re-
lative long distance, while for the same distance the
transverse deflection is still approximately equal to that
of the ideal wave packets of Eq. (2). Their experimental
realization can be achieved by using Fourier synthesis
techniques [12,18]. For this purpose, it can be shown that
the Fourier transform of the oblique wavefront of Eq. (3)
is given by

FTy(X.T,Z = 0)] = 2exp [% <\/§k§ + z‘clﬂ
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Here, k; = kx cosh(¢) - Qrsinh(¢) and Qg = —kx sinh(¢)+
Qrcosh(g).

These results can be extended to three-dimensional
configurations. In this case, the evolution equation takes
the form [8]

Wz +wxx +wyy —wrr = 0. (6)
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Fig. 4. (Color online) Isointensity plot of an oblique spatiotem-
poral Bessel-Airy wave packet.

In fact, in (3 + 1)D, a more general class of solutions can
be obtained using polar rotations R(w): X' =
Xcosw-Ysinw, Y =Xsinw + Y cosw, and by subse-
quently applying a hyperbolic transformation H(¢)
involving the T coordinate. For example, the intensity
profile depicted in Fig. 3 was obtained via a similarity
transformation R(-w)H (¢)R(w), starting from a product
of three Airy solutions. The results depicted in Fig. 3 were
obtained for silica glass, where at A = 800 nm the refrac-
tive index is n = 1.46 and k¥” = 3.611 x 10726 s> m~! [19].
For these parameters, the first lobe in this example has a
spatial FWHM of 100 pgm, and its pulse width is 70 fs. The
structure of these wave packets could be advantageous
in filamentation studies where spatially separated targets
can now be illuminated by one pulse in one position and
by a series of subpulses in another [20,21].

We would like to emphasize that these same transfor-
mations are not limited to Airy wave packets but can be
extended to all solutions of Eq. (6), such as Bessel-X-
waves [8] as well as the recently observed Airy—Bessel
bullets [18]. This latter case (Fig. 4) is of special interest
because it could be readily realized experimentally [18].

In conclusion, we have shown that a new class of
oblique, nonspreading Airy wave packets is possible in
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spatiotemporal optical bidispersive systems. Their obli-
quity factor is found to have a profound effect on their
acceleration dynamics. Versatile optical bullets in nor-
mally dispersive media have also been discussed.
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