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EFFECTS OF PULSE VARIATIONS ON ULTRASHORT PULSE lHDTH MEASUREMENTS 

E. W. Van Stryland 
Nor t h Texas State University, Denton , Texas 76203 , USA 

An alternate interpretation is presented for the exponential shapes of the 
second harmonic autocorrelation functions obtained from repetitively pulsed 
picosecond lasers such as the synchronous l y- pumped mode-locked dye lasers. 
Such pulse width measurements in the past have averaged over a l arge number 
of pulses. If the pulsewidth varies in a time s hort compar ed to the time 
needed to measure the autocorrelation function the observed autocorrelation 
function will be a weighted average of pulses of varying widths. Several pulse 
shapes and pul se width distributions are examined all leading to exponential 
shaped autocorre l a t ion func t ions . This interpretation implies that the cur
rently determined pulsewidt hs are shorter, possibly many times s horter than 
the actual average pulsewidths . A method for determining the pulsewidth 
distribution and of sel ectively descriminating the shortest pulses from the 
train to increase the time resolution of current laser systems is presented. 
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Second order autocorrelation functions are often u sed to measure the t emporal rluration of 
ultrashort pulses emitted by repetitively pulsed lasers such as synchronously-pumped mode
locked dye lasers. One basic assumption made in using this method i s that a ll pulses are 
identical . If t here exist significant pulse to pulse variations in the temporal duration, 
the width as determined from a second order autocorrelation method is conside rably shorter 
than the t rue aver age pulsewidth. In addition the apparent pulse shape is altered . 

Mode locked dye laser systems are providing the researcher with extremel y short pulses 
for probes of various ultrafast phenomena [e . g . 1]. lihile cw a rgon ion pumped pass ive ly 
mode locked dye laser s ystems have provided the shortest pulses t o date (less than 0.2 ps) 
(2] they are restricted to a narrow bandwidth around 6100 A and a few other selected wave
lengths. The use of an act i vely mode locked argon i on l aser as a source to synchronous ly 
pump the dye laser offer s t he researcher the advantage of tunability . Pulses as s hort as 
0.7 ps have been reported with such systems [ 3,4]. These short pulses are assumed t o have 
a single sided exponential shape since s uch a shape fits t~~ experimentally measured inte
gra l of the product of the pulse intensity with itself , G( l. (G(2) is the second order 
autocorrelation function~ . The pul se width measurement s made on such systems averaRe over 
many pulses (us ually >10 ) . We present here an a l ternate expl anation of the shape o£ G(2J i n 
terms of a weighted average of the second order a utocorrelati on functions of many individual 
pulses wi th a distribution of pulse lvidths. Such an aver age yielrls exponential shaped G(2 l• s 
primarily sens i tive to t he width of the distribution of pulsewidths and not to t he s hape of 
t he individua l pulses . The conclusion is that the currently used method of pul se width de
termination may yield widt hs much shorter than the average width of t he dye pulses . A sug
ge stion for experimentally determini ng how important these pulse width fluctuations are for 
a given laser system and how to selectively observe only the shortest pu l ses in t he train is 
a l so described. 

These ultrashort pul sew-idths for both. actively and passively mode l ocked syste111s have 
been determined by the indirect method of second harmonic generation (SGH) autocorrelation 
[3-5] . A continuous train of ul trashort pul ses from t he dye laser is split into two beams . 
One beam passes through a fixed optical de l ay, the othe r through a variable delay. These 
two beams are recombined in a phase matched SHG crystal, and the ampl itude of t he s econd 
harmonic detected . Several vari ations of this technique are i n use [6] . The second harmon
ic amplitude ~totted as a function of delay , T , yields the SHG autocorrelat i on function for 
the pulse , G( , where T is the fh~ . Thu s , 
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where E(t ) i s the electric fie l d amplitude of the dye laser pulse, assumed here to be t he 
same from one pulse to the next. It is well known t hat the determination· of the actual 
pulsewidth from the SHG autocorrelation function is not un±que but depends on the assumed 
pulse shape. This pulse s hape , however , is inferred from the shape of the autocorrelation. 
function thus yie lding a pulsewidth. For example, a s ingle sided exponential sha9ed pulse 
would yield an exponentia l G(2) (T ) of twice the pul se fwhm (2 ~0 ) . Gaussian shaped pulses 
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yield a Gaussian G~ 2 ) (T) of width IZT , while sech2 shaped pulses yield a sech2 G~2 ) (T) of 
width -1 . 55 T0 • It0 has been assumed ~n determining the pulsewidths for synchronougly-pumped 
dye lasers that all pulses are identical. 

The extreme sensitivity of synchronously pumped dye laser systems to the mode-locker 
frequency, and cavity l ength detuning, suggest that the pulses may indeed not be identical 
[7). Fluctuations in the pump or cavity length may l ead to pulses of varying widths (or 
shapes). The observed autocorrelation function, G15k(T), is then a weighted average of the 
second order autocorrelation functions of the indie1aual pulses given by: , 

G (2 ) ( T) 
obs J G( 2 ) (T)P(T )dT 
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where G~ 2 ) ( T) is the autocorrelation function of a pulse of 1~idth ( fwhm) T and P(T
0

)dT
0 

is 
the probgbility that a pulse has a l'l~dth between -r0 + dT

0
• This probabili~y is normali zed 

to 1 (i.e . f P(T0 )dT
0 

= 1). Since Gt 2 l (T) depends on the square of t he op{~yal intensitv 
the shortest pulses are most h7~jily 0 eighted in such an average . Thus, G b (T) tends to 
peak up more near T = o than Gi (T) for an individual pulse. This is con~1~t~pt with ob
servations of synchronously pum~ed dye laser outputs. The smoothly varying G6bJ (T) observed 
for some passively mode-locked systems is replaced by a steeply peaked function~ the expon
ential [2-4 ) . 

A reasonable assumption for these dye laser pulses is that the total energy per pulse is 
constant (£

0
). That is 
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The constant energy assumption is experimentally justified by noting that the laser output 
(linear detector) does not fluctuate from pulse to pulse . (Since the detectors integrate 
the intensity , this does not imply the pulsewidth is constant). 

We can now evaluate G~~~(T) for various pulse shapes and )ulse width distribution func
tions . In order to make com~arisons between the various GCfi (T~ ' s the average pulsewidths 
are held constant at T ve = j~T P(T0 )dT0 • Fig. l(a) show~ sGJb > (T) (solid lines) for Gaus
sian shaped pulses witR a Gausslan pulse width distribution P(T0 f centered about Tave = 10 
having a fwhm of 10 units . The dashed curve is the autocorre l ation function for a s1ngle 
pulse of fwhm Tav = 10 units . The distribution, P(T

0
), is cutoff at some lower limit since 

the probability of obtaining pulses shorter than the ~nverse bandwidth goes to zero . The 
upper cutoff is picked to keep Tave at the center of the distribution. The inte~ral is re
latively insensitive to the upper cutoff because the shorter pulses a re more heavily weight
e d. The d~~fed line in Fig. l(ai is a simple exponential of a width closely matching the 
width of Gobs (<) . It would be exceedingly difficult to experimentally distinguish the two 
c urves. 

S irtli 'lar results are obtained for Gaussian s haped pulses with a rectangular P(Tg)as 
shown in Fig. l(b). Here the pulse width is assumed to vary from 2 to 18 units or y a fac
tor of 9 . Doubling t his pulse width variation (i.e. a factor of 18 variation) still gives 
a good fit to an exponenti a l but halving the variation (i.e . a factor of 4 variation) re
sults in a distribution that is between an exponential and a Gaussian. A pulse width vari
ation of approximately 6 or gr~ater is needed to obtain a curve that is well fit by an ex
ponential 1~f Gaussian or sech shaped pulses a nd a rectangular P(T0 ). The exponential 
shape of G bs(T) is primarily determined by the width of the distribution P(t 0 ). Not even 
the initia~ pulse shape affects the exponential shape o f GJ~b(T) substantially as can be 
seen from Fig . l(c). Rectangular pulses with trian~ular autocorrelation functions were used 
to obtain this figure . Again an exponential fits G0~k(T) well. It s hould also be noted 
that the model presented here does not exclude having a distribution of single sided expon
ential s haped pulses, Averaging the autocorrelation functions of one-sided exponentials 
over a distribution · of temporal widths a l so yields a function barely distinguishable 
from an exponential except that for wide distributions a small background i s present. Such 
a background is normally attributed to optical noise or to slight optical misalignment in 
the case of autocorrelation functions with background. 

Determining the pulsewidth from G( 2) (T) under the assumption that all pulses are identi
ca l single sided exponentia l s in sha~~sresults in a value small er than the actual average 
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Flq 1 The solid lines in a , b, and c show 
Gtzf (<i using the appropriate P(T

0
) shown in 

tR8sinset for each figure . Pulses of Gaus
sian temporal profile were used to determine 
a and b while rectangular pulses were used 
for c, The dashed lines in a, b , and c 
represent the SHG autocorrelation function 
of ~rdividual pul ses of fwhm equal to Tave 

~~~ave(~~1 ~s~~~t:n~~~!~i~~l;~l~~rf~~ aT~~d 
dotted line in all figut~f is a simple ex
ponentia l fit to each Gobs(<) . 

pulsewidth, <ave • For example, from Fig l a 
the measured autocorrelation width of Gtal (T) 
is approximately 0.5 'ave • Not only · is0~Ris 
width shorter than <ave• but rather than di
viding by IZ as one should do for Gaussian 
s haped pul ses the autocorrelation width is 
divided by 2 under the assumption that the 
pul ses are exponential in shape . This gives 
a calculated pulsewidth of tave/3 , or a factor 
of three too short , Similar results are ob
tained from figs. lb and lc. There is no un
ique way to determine ~he average pulsewidth 
or pulse shape from G(h) (t) if t here is an 
unknown spread in pul~~~idths . 

It should also be noted that pulsewidth 
fluctuations can a lso affect lifetime meas
urements if the lifetime being measured is of 
the same order of magnitude as the pulsewidth. 
The magnitude of the effect depends on the 
particular experimental situation and most 
importantl y on the nonlineaity of the inter
action, 

I n order to experimentally determine the 
pulsewidth fluctuat ion, the ratio of the 
square of the fundamental intensity to the 
second harmonic intensity can be monitored as 
a function of time, ~his ratio is directl y 
proportional t o the pulsewidth if the spatial 
distribution is constant and the temporal 
pul se shape doesn't change (e . g. remai ns 
Gaussian) [8]. The variation in the ratio 
immediately determines the variation inpulse
width , Monitoring this ratio from pulse to 
pul se a lso a llows one to select the shortest 
pulses in the train (i.e , those with t he 
smnl l est ratio) , This type of pulse selec
tion has been used successfully in the past 
on low repetition rate laser systems [9). 
Such pulse descrimination would l ower the ef
fective repetition rate but could substan
tially i ncrease the time resolution if the 
pulsewidth variations are substantial [10]. 
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