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EFFECTS OF PULSE VARIATIONS ON ULTRASHORT PULSE WIDTH MEASUREMENTS

E. W. Van Stryland
North Texas State University, Denton, Texas 76203, USA

An alternate interpretation is presented for the exponential shapes of the
second harmonic autocorrelation functions obtained from repetitively pulsed
picosecond lasers such as the synchronously-pumped mode-locked dye lasers.,
Such pulse width measurements in the past have averaged over a large number
of pulses. If the pulsewidth varies in a time short compared to the time
needed to measure the autocorrelation function the observed autocorrelation
function will be aweighted average of pulses of varying widths. Several pulse
shapes and pulse width distributions are examined all leading to exponential
shaped autocorrelation functions. This interpretation implies that the cur-
rently determined pulsewidths are shorter, possibly many times shorter than
the actual average pulsewidths. A method for determining the pulsewidth
distribution and of selectively descriminating the shortest pulses from the
train to increase the time resolution of current laser systems is presented.

Second order autocorrelation functions are often used to measure the temporal duration of
ultrashort pulses emitted by repetitively pulsed lasers such as synchronously-vumped mode-
locked dye lasers. One basic assumption made in using this method is that all pulses are
identical. If there exist significant pulse to pulse variations in the temporal duration,
the width as determined from a second order autocorrelation method is considerably shorter
than the true average pulsewidth. In addition the apparent pulse shape is altered.

Mode locked dye laser systems are providing the researcher with extremely short pulses
for probes of various ultrafast phenomena [e.g. 1]. While cw argon ion pumped passively
mode locked dye laser systems have provided the shortest pulses to date (less than 0.2 ps)
[2] they are restricted to a narrow bandwidth around 6100 & and a few other selected wave-
lengths., The use of an actively mode locked argon ion laser as a source to synchronously
pump the dye laser offers the researcher the advantage of tunability. Pulses as short as
0.7 ps have been reported with such systems [3,4]. These short pulses are assumed to have
a single sided exponential shape since such a shape fits %9? experlmentally measured inte-
gral of the product of the pulse intensity with itself, G is the second order
autocorrelation function). The pulse width measurements made on such systems average over
many pulses (usually >107). We present here an alternate explanation of the shape of G
terms of a weighted average of the second order autocorrelation functions of many individual
pulses with a distribution of pulse widths, Such an average yields exponential shaped G
primarily sensitive to the width of the distribution of pulsewidths and not to the shape of
the individual pulses. The conclusion is that the currently used method of pulse width de-
termination may yield widths much shorter than the average width of the dye pulses. A sug-
gestion for experimentally determining how important these pulse width fluctuations are for
a given laser system and how to selectively observe only the shortest pulses in the train is
also described.

These ultrashort pulsewidths for both actively and passively mode locked systems have
been determined by the indfrect method of second harmonic generation (SGH) autocorrelation
[3-5]. A continuous train of ultrashort pulses from the dye laser is split into two beams.
One beam passes through a fixed optical delay, the other through a variable delay. These
two beams are recombined in a phase matched SHG crystal, and the amplitude of the second
harmonic detected., Several variations of this technique are in use [6], The second harmon-
ic amplltude g}otted as a function of delay, t, yields the SHG autocorrelation function for

the pulse, where By is the fhwm, Thus,
) = [ |E@|%EE + n|® at (1)
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where E(t) is the electric field amplitude of the dye laser pulse, assumed here to be the

same from one pulse to the next, It is well known that the determination of the actual

pulsewidth from the SHG autocorrelation function is not unique but depends on the assumed

pulse shape. This pulse shape, however, is inferred from the shape of the autocorrelation.

function thus yielding a pulseWLdth For example, a single sided exponential shaped pulse

would yield an exponential Gé )(T) of twice the pulse fwhm (21 }. Gaussian shaped pulses
o
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yield a Gaussian Giz)(t) of width vZ1_, while sech? shaped pulses yield a sech? Giz)(r) of

width ~1.55 75, It®has been assumed %n determining the pulsewidths for synchronou&ly-pumped
dye lasers that all pulses are identical.

The extreme sensitivity of synchronously pumped dye laser systems to the mode-locker
frequency, and cavity length detuning, suggest that the pulses may indeed not be identical
[7]. Fluctuations in the pump or cavity length ma }ead to pulses of varying widths (or
shapes). The observed autocorrelation function, GO% (t), is then a weighted average of the
second order autocorrelation functions of the individual pulses given by:

(2)

gy = f gl
0
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where GTE)(T) is the autocorrelation function of a pulse of width (fwhm) T, and P(7,)dt, is
the prob8bility that a pulse has a width between To + dT,. This probability is normalized
to 1 (i.e. P(T,)dT = 1). Since G (T) depends on the square of the op?%?al intensitv
the shortest pulses are most h gyily eighted in such an average. Thus, Gobs(T) tends to
peak up more near T = o than Gj (1) for an individual pulse. This is con51s?%Tt with ob-
servations of synchronously pumped dye laser outputs. The smoothly varying GobS(T] observed
for some passively mode-locked systems is replaced by a steeply peaked function, the expon-
ential [2-4].

A reasonable assumption for these dye laser pulses is that the total energy per pulse is
constant (eo). That is
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The constant energy assumption is experimentally justified by noting that the laser output
(linear detector) does not fluctuate from pulse to pulse. (Since the detectors integrate
the intensity, this does not imply the pulsewidth is constant),

We can now evaluate Géﬁ;(T) for various pulse shapes and pulse width distribution func-
tions. In order to make comparisons between the various G(gs(TL'S the average pulsewidths
are held constant at T g = :T P(To)dTo. Fig. 1(a) showS Géb)(T) (solid lines) for Gaus-
sian shaped pulses witﬁ a GauSs&an pulse width distribution P (T 7 centered about Tave = 10
having a fwhm of 10 units., The dashed curve is the autocorrelation function for a single
pulse of fwhm Tave ™ 10 units. The distribution, P(To), is cutoff at some lower limit since
the probability oF obtaining pulses shorter than the inverse bandwidth goes to zero. The
upper cutoff is picked to keep T ,. at the center of the distribution. The intearal is re-
latively ingensitive to the upper cutoff because the shorter pulses are more heavily weight-
ed. The d?EFEd line in Fig, 1(a) is a simple exponential of a width closely matching the
width of Gobs(T). It would be exceedingly difficult to experimentally distinguish the two
curves,

Similar results are obtained for Gaussian shaped pulses with a rectangular P(t,)as
shown in Fig. 1(b). Here the pulse width is assumed to vary from 2 to 18 units or gy a fac-
tor of 9. Doubling this pulse width variation (i.e. a factor of 18 variation) still gives
a good fit to an exponential but halving the variation (i.e. a factor of 4 variation) re-
sults in a distribution that is between an exponential and a Gaussian, A pulse width vari-
ation of approximately 6 or greater is needed to obtain a curve that is well fit by an ex-
ponential %Of Gaussian or sech® shaped pulses and a rectangular P(T;). The exponential
shape of G gS(T) is primarily determined by the width of the distribution P(T,). Not even
the initial pulse shape affects the exponential shape of Gé L(T) substantially as can be
seen from Fig. 1(c), Rectangular pulses with trian?ular autocorrelation functions were used
to obtain this figure. Again an exponential fits Gog;(T) well, It should also be noted
that the model presented here does not exclude having a distribution of single sided expon-
ential shaped pulses, Averaging the autocorrelation functions of one-sided exponentials
over adistribution of temporal widths also yields a function barely distinguishable
from an exponential except that for wide distributions a small background is present. Such
a background is normally attributed to optical noise or to slight optical misalignment in
the case of autocorrelation functions with background.

Determining the pulsewidth from Gtzé(r) under the assumption that all pulses are identi-
cal single sided exponentials in shagg results in a value smaller than the actual average
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Fia’ 1. The solid lines in a, b, and c show
G (1) using the appropriate P(t.) shown in
tﬁgsinset for each figqure. Pulse of Gaus-
sian temporal profile were used to determine
a and b while rectangular pulses were used
for c. The dashed lines in a, b, and ¢
represent the SHG autocorrelation function
of %?dividual pulses of fwhm equal to Taye
(Gl (1)) using a Gaussian pulse for a and
b, 'aVe and a rectangular pulse for c. The
dotted line in all figu{%f is a simple ex-
ponential fit to each Gobs(r).
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the measured autocorrelation width of G T)
is approximately 0.5 t1,,,. Not only is is
width shorter than 1,ye, but rather than di-
viding by ¢¥Z as one should do for Gaussian
shaped pulses the autocorrelation width is
divided by 2 under the assumption that the
pulses are exponential in shape., This gives
a calculated pulsewidth of Tave/3r Or a factor
of three too short. Similar results are ob-
tained from figs. lb and lec. There is no un-
ique way to determine Spe average pulsewidth
or pulse shape from 6(2) () if there is an
unknown spread in pulggﬁidths.

pulsewidth, taye. For example, fi i?é)l
(
o

It should also be noted that pulsewidth
fluctuations can also affect lifetime meas-
urements if the lifetime being measured is of
the same order of magnitude as the pulsewidth.
The magnitude of the effect depends on the
particular experimental situation and most
importantly on the nonlineaity of the inter-
action,

In order to experimentally determine the
pulsewidth fluctuation, the ratio of the
square of the fundamental intensity to the
second harmonic intensity can be monitored as
a function of time. This ratio is directly
proportional to the pulsewidth if the spatial
distribution is constant and the temporal
pulse shape doesn't change (e.g. remains
Gaussian) [8]. The variation in the ratio
immediately determines the variation in pulse-
width., Monitoring this ratio from pulse to
pulse also allows one to select the shortest
pulses in the train (i.e. those with the
smallest ratio), This type of pulse selec-
tion has been used successfully in the past
on low repetition rate laser systems [9].
Such pulse descrimination would lower the ef-
fective repetition rate but could substan-
tially increase the time resolution if the
pulsewidth variations are substantial [10].
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