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Cross talk due to transverse carrier diffusion between identical bistable elements on an InSb etalon at 80 K is 
studied both theoretically and experimentally. Measurements of cross talk between two such elements show that 
typically, for a practical system, a critical separation of a few diffusion lengths between beam centers is necessary for 
independent operation. When the difference between holding and switching powers approaches zero, the results 
show that the critical distance diverges. Delays as great as 4 p.sec have been observed when one element is switched 
and its neighbor is induced to switch through the cross-talk mechanism. These delays can be partially attributed to 
critical slowing down, and, in principle, they diverge as the interelement distance is increased toward the critical 
separation. A theoretical model based on the diffusion equation for the single-pass nonlinear phase shift shows how 
the critical separation depends on physical parameters and the number of elements forming an array. We found 
that the relevant interaction is essentially limited to nearest neighbors. When the theory is applied to two bistable 
elements, good agreement is obtained with the experiments in both the steady and the dynamic states. 

1. INTRODUCTION 

The advent of logic elements based on optical bistability has 
advanced the possibility of all-optical computing systems. 
The demonstration of a three-element loop circuit1 has es­
tablished the basic format for the serial processing of opti­
cally encoded data. A fundamental limit to the achievable 
serial data rate is the switching speed of the individual bi­
stable elements. However, higher data rates may be devel­
oped by using parallel processing. This processing would 
take the form of an optical array in which all the elements 
would be involved in the simultaneous but independent han­
dling of information. This method raises a question about 
packing densities since the minimum separation of elements 
will in practice be limited by the extent of the transverse 
coupling between them. This coupling, or cross talk, is not 
necessarily confined to adjacent elements, but it can be a 
long-range effect, as in thermal nonlinearities in interfer­
ence filters2•3-with severe consequences on interelement 
separation necessary for channel isolation. 

The object of this paper is to address some of these ques­
tions. We report measurements of, and a theoretical model 
on, transverse-diffusive coupling between two bistable ele­
ments on an InSb etalon. The dependence of critical dis­
tance (dcrit) on the holding power is investigated. (dcrit is 
defined2 as the smallest separation by which an element can 
sustain itself in the OFF state while the other element is in 
the ON state.) In addition, we investigate the temporal 
dependence of the switching process through controlled 
cross talk by choosing the separation. 

The diffusion of photoexcited carriers in InSb has been 
studied4 by the angular dependence of degenerate four-wave 
mixing. The results indicated that the carrier-diffusion 
length ln is ,....,60 ~tm in one recombination time. The theo­
retical model presented here is based on carrier diffusion as 
the sole transverse coupling mechanism. This is a short-
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range effect when compared with thermal diffusion; hence 
spacing of only a few diffusion lengths is necessary for inde­
pendent operation of adjacent elements. Furthermore, the 
theory predicts that for any number of elements forming a 
two-dimensional array only nearest neighbors influence dcrit· 

The critical separation diverges as the holding power ap­
proaches the switch point. 

In this paper we present a systematic study of the dynam­
ics of cross talk between adjacent bistable channels in an 
InSb etalon and develop a theory to analyze the geometric 
aspects and the time dependence.of the effects. The impli­
cations for all-optical data processing are also considered. 

2. EXPERIMENT 

The experimental layout is shown in Fig. 1. Two beams, A 
and B, incident upon the etalon ofinSb (n ~ 1014 cm-3) were 
produced from the same cw CO laser operating at a frequen­
cy of v = 1819 cm-1• Each beam could be independently 
controlled in incident power and position on the 280-~tm­
thick etalon held at 80 Kin a liquid-nitrogen reservoir cryo­
stat. The beams were linearly polarized at 90° with respect 
to each other, which allowed discrimination of the two out­
put beams and minimized any optical interference effects. 

The procedure to establish dcrit involved setting up two 
identical, adjacent bistable channels, A and B, in the etalon. 
This task was achieved by adjusting beam A with lens L3 to 
give optimum beam radius5 and minimum switching power. 
Beam B was then adjusted independently, using lens L2, so 
that with beam A blocked, channel B gave identical switch­
ing characteristics. An area of 100 ~tm X 1500 ~tm was found 
on the etalon, over which the switching power was constant 
to ±2%, and the cross-talk experiment was confined to this 
region. 

The incident plane of the etalon was imaged into a ther­
mal camera by using lens L4, and the channel spacing was 
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Fig. 1. Schematic of experimental setup: L's, lenses; BSt. beam splitter. Both inputs were detected by detector D1; individual outputs were 
detected by detectors D2 and D3• 

measured on a monitor screen. The imaging system was 
calibrated with a precision pinhole of known diameter. In a 
typical experimental run, beams A and B were set at a cho­
sen separation with identical holding beam powers with the 
standoff from switching, D.P, determined by 

DP = (1 - PholiPs)lOO, 

where Phold is the holding power and Ps is the single-element 
switch power. When beam A was switched to the ON state 
and after a certain time delay, beam B would spontaneously 
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switch on if there were sufficient transfer of carriers between 
the channels. Both the channel spacing and the standoff 
from switching could be varied, and, for a particular setting 
of D.P, the channel spacing could be increased until transfer 
of switching ceased. This experimental determination of 
dcrit is summarized in Fig. 2. The time delay involved in the 
transfer of switching is illustrated in Fig. 3(a), and the com­
posite results are summarized in Fig. 3(c), where switch 
delay times are plotted as a function of D.P for three values of 
interelement spacing. For small values of D.P ( <2%), the 
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Fig. 2. (u) Experimental detm•minution of the critical sepurution dcrit us u function of the stund-off power 11P. (b) Comparison between theory 
and experiment for critical distance as a function of Photd/Ps (%). The solid line corresponds to the solution of Eq. (22) for <I>o = 0.45 and a fi­
nesse f = 3.5. Experimental points are those of (a). 



Young et al. Vol. 5, No. 1/January 1988/J. Opt. Soc. Am. B 5 

(a) 5 (c) 

CHANNEL 1 4 1651Jm 

~3 
(/) 

..:!: 
..:1' 

CHANNEL 2 

0 3 6 

LlP
1
(%) 

0 2 3 4 5 
t (f!Sec) 

22 (b) 

4 (d) 
+ 

3 

~ 
·c. 
::> u 
..ci 

Q) 

11 (/) 

4: ..:!: 2 

..:!' 
a: 
w 
3: 
0 
a.. 

0+-----------------~----------------~ 
o oo ~ m 

o 3 t (,usee) 6 9 IT,old/Psl (%) 

Fig. 3. (a) Oscilloscope trace of the time evolution of the transmitted powers showing the delay between the switching of channell (El) and 
channel2 (E2) ford= 165 ,urn and AP' = (1- Phold/Ps')lOO = 5.2%, where Ps' a: Is' (see Section 3). Here dcrit ~ 180 ,urn. (b) Numerical simula­
tion of (a) for the transmitted powers by solving Eq. (14). Note that the sharp overshooting is the result of calculating at beam centers: 
parameters, f = 3.5, <Po= 0. (c) Experimental plot of the time delay versus AP for various separations. (d) Switching times as in (c) but in 
terms of PholdiPs' (%). Note that Ps' changes with separation. Solid line corresponds to theory for <Po= 1.8 and w = 0.5ln. 

time delay is simply the transit time for carriers to diffuse 
from element A to B, but at larger values of f::JJ, where the 
transfer of switching becomes more marginal, the switching 
process· is subject to critical slowing-down effects, and mi­
crosecond delays are observed. The implications of these 
results are discussed in Section 4. 

3. THEORY 

In this section the theory is developed by starting with an 
outline of the general equations from which the derivation6•7 

of the diffusion equation for the single-pass nonlinear phase 
shift <I> is obtained. By using the appropriate Green func­
tion, a system of integral equations for <I> at each beam 
center, in both the time-dependent and steady states, is 
derived. Then critical separations and their dependence on 
detuning, finesse, and spot radius are calculated. 

Consider a nonlinear medium in a Fabry-Perot resonator 
of mirror reflectivities RF (front) and RB (back) where light 
propagates in the z direction. We assume that the local 

refractive index is given by n = no + n2lc, where Ic is the 
internal intensity, and that the cavity round-trip time is Tr 

« T (recombination time). Then, after adiabatic elimina­
tion of the field variables and in the limit of strong diffusion, 
we can write 

aF(r, z, t)/az 

= [-(aL/2) + iN(r, z, 0 + i(~/2)Y'r2]F(r, z, t), (1) 

-aB(r, z, t)/az 

= [-(aL/2) + iN(r, z, t) + i(~/2)\7 r 2]B(r, z, t), (2) 

lr2Y'r2N(r, z, t) + lL2a2N(r, z, t)/az2
- raN(r, z, t)/at 

- N(r, z, t) = -4~ sgn(n2)(IF(r, z, 01 2 + IB(r, z, 01 2
), (3) 

where 
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are the scaled forward and backward electric field envelopes, 
c is the speed of light, Pc = A2/27rn0ln21 is the critical power 
for self-focusing, ':1 = AL/21rn0w2 is the Fresnel number, Lis 
the cavity length, w is the spot radius,\! r = a2/ax 2 + a2/ay2 is 
the transverse Laplacian scaled to w2, N is the excitation 
density, z is scaled toL, lr= lDiw, lL = lDIL, and lv = (Dr)112, 

and D is the diffusivity. 
Equations (1)-(3) can be derived from the Maxwell-Bloch 

equations in the limit of high dispersion8 where the excita­
tion density is a scaled population inversion. Unless lv »A 
we should also include population-grating terms (standing­
wave effects), which double the phase shift imposed on the 
counterpropagating fields by each other (nonlinear nonreci­
procity). In this section an InSb etalon in which N is the 
photogenerated-carrier concentration is considered. 

The boundary conditions of this problem are 

F(r, o, t) = (1 - Rp) 112Fin(r, t) + R/12B(r, o, t)exp( -2i<I>0), 

(4) 

B(r, 1, t) = Rn112F(r, 1), (5) 

N(r, z, t)- 0 as lrl- oo, (6) 

Clr2/r)aN(r, p, t)/az = N(r, p, t)S (p = 0, 1), (7) 

where <1>0 is the linear cavity detuning and Sis the surface­
recombination velocity. In the present experimental condi­
tions we can neglect diffraction in Eqs. (1) and (2) since for L 
= 280 J,Lm and A = 5.5 J.Lm we get an effective diffraction area 
AL = 1540 J.Lm2 smaller than lv2 ("'3600 J,Lm2). Then, defin­
ing the single-pass nonlinear phase shift 

<I>(r, t) = f dzN(r, z, t), (8) 

and after integrating over z, neglecting surface effects (S = 
0), and using expressions (4)-(8) in Eqs. (1)-(3), we get 

lr2'Y' r 2<I>(r, t) - ra<I>(r, t)/at - <I>(r, t) 

= -1in(r, t)A[<I>(r, t)], (9) 

with 

A[<I>(r, t)] = 1/11 + fsin2[<I>(r, t)- <1>0]} (Airy function) 

1in(r, t) = -4':1[1- exp( -a£)][(1 - Rp)(1 + Rn)] 

X IFinl 2/aL(1 - Ra)2
, 

Ra = (RpRn) 112 exp( -aL), 

f = 4Raf(1- RcY· 

Equation (9) is the starting point, and the concentration 
will be or. obtaining a solution at the beam center, where the 
switching is most relevant. To deal with arrays it is conve­
nient to transform Eq. (9) into an integral equation by using 
the corresponding Green function (see Appendix A) given by 

G(r- r', t- t') = exp[-(r- r') 2/4(t- t')] 

X lexp[-(t- t')]}/47r(t- t'), (10) 

in which the space variables are scaled to ln and tis scaled to 
r as it follows naturally from Eq. (9); this scaling is kept 
throughout. The formal solution then reads as 
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<I>(r, t) = <l>(r, -oo) +roo dt' L d2r'G(r- r', t- t') 

X 1in(r', t')A[<I>(r', t')]. 

ForNbeams, 

N 

1in(r, t) =I 1/t)exp[-(r- r) 2/W2
], 

j=l 

(11) 

(12) 

where rj is the position of the center of the jth beam. On 
substitution of Eq. (12) into Eq. (11) we can ignore the 
variation9 of <I>(r, t) over the spatial integration if W < 1 or W 
- oo (plane-wave approximation). If we take W < 1-which 
in fact corresponds to the experimental situation-we can 
replace <I>(r, t) by <I>(rj, t) = <I>j(t) in Eq. (11). Using Eqs. (10) 
and (12) in Eq. (11) and assuming that <I>(r, -oo) = 0, we 
obtain 

<I>i(t) =roo dt' L d2r'G(ri- r', t- t') 

N 

X I 1/t')exp[-(r'- rj) 2/W 2]A/t') 
j=l 

(i = 1, 2, ... N), (13) 

where Aj(t') = A[<I>j(t')]. Integration over space variables 
leads to the following system of integral equations: 

<I>;(t) =f. dt' i A/1')1/1') W 2 

j=l 

X (expl-dl/[W2 + 4(t- t')] - (t- t')}l 

[W 2 + 4(t- t')]) (i = 1, 2, ... , N), (14) 

where dij2 = (ri - rj) 2• 

In the steady state each <I>i is constant in time;, thus from 
Eq. (14) 

N 

<J>. = ~ AIM(d-·) 
L L J J LJ 

i = 1, 2, ... , N, (15) 
j=l 

with M(dij) being the coupling coefficient: 

M(dij) = (W2/4)exp(W2/4) r du exp(-dl!u- u)/u. Jw2/4 

(16) 

If N = 1, then dij = 0, and we can explore the dependence of 
the switching power on the spot size 

<I>= A(<I>)P exp(W2/4)Ei(W2/4), 

where P = 1W2/4 is the scaled power and Ei is the exponen­
tial integral; then the switching power is such that 

(17) 

Because Ei - oo as W- 0, the switching power decreases 
with spot size, as shown in Fig. 4. These results agree with 
those previously found both theoretically7 and experimen­
tally.5 In the opposite limit, namely, W-oo, from expres­
sion (17), Ps ex: W 2 and thus the plane-wave limit is regained. 
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Fig. 4. Plot of switching power as a function of W2 ( = W 2/ln) 
according to expression (17). 

To work out the critical separation between elements we 
take two elements, E1 and E2, both with identical individual 
bistable cP.aracteristics and holding intensities hold· Then 
we assume that both elements are initially in the OFF state. 
Then E1 is suddenly switched on, and therefore the local-

. carrier concentration increases. As a result, diffusion from 
E1 into E2. occurs, which effectively changes the detuning of 
E2 and, with it, the bistable characteristic. Consequently 
the switching intensity Is of E2 changes to a new3 value Is' < 
Is such that if d12 > dcrit, Is' > hold, and E2 stays off; if d12 < 
dcrit it follows that Is' <hold, and E2 switches on. However, 
if d12 = dcrib then Is' = hold, and this defines dcrit from. the 
relation · 

(18) 

as explained below. Equation (18) is widely used to work 
out threshold parameters of bistable loops. 

We can extend the above idea to a two-dimensional array 
by . forming a square lattice for which we try to find the 
smallest lattice constant d such that the most unfavorably 
placed element EM-the one approximately in the middle­
can sustain itself in the OFF state while all the others are on. 
Then, if EM is the mth element, the equivalent condition to 
Eq. (18) is 

which can be worked out by reexpressing Eq. (15) as 

N 

(19) 

q,m = A(q,m>ImM(O) + L A(q,)JjM(djm)(1- ojm), (20) 
j=l 

where Ojm is Kronecker's delta. Similar equations should in 
principle be added on for the remaining N - 1 phases. 
However, one can approximate q,j to a value q,up for every 
j ~ m since the smaller slope of the upper branch prevents 
appreciable changes of the q,/s owing to changes in q,m· 
This fact was confirmed pythe numerical simulations using 
Eq. (15); a similar effect occurs with the temperature in 
interference filters. 2 With this assumption we can apply 
Eq. (19) to Eq. (20) to obtain 

IholdM(O)f sin 2(q,c- q,0)A2(q,c) + 1 = 0, (21) 
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where q,c is the value of q,m at the switch-up point. Once we 
have solved for q,c in Eq. (21), substitution into Eq. (20) 
yields 

N 

q,c = A(q,)IholdM(O) + A(q,up)Jhold I (1- ojm)M(dcrit.Pjm), 
j=l 

(22) 

where Pjm = djm/dcrit; Pjm is a factor that depends on the 
relative position of the elements; for example, for two beams 
p12 = 1. Using Eq. (16) 'in Eq. (22), we can find the critical 
lattice constant dcrit· Figure 2(b) shows very good agree­
ment between the prediction of Eq. (22) for two elements 
and the experiments when the corresponding parameters are 
used. The numerical solution of Eq. (14) agrees with the 
observed time delays, as shown in Fig. 3. 

4. DISCUSSION 

The present study of bistable cross talk differs from earlier 
work1o,n on the transphasor type in which single-valued 
transfer curves with a region of large differential gain were 
used. Large element separations ("'5 ln) were required for 
near-independent operation, as any photogenerated carriers 
induced by, for example, E1, would continually diffuse to 
E2. However, between bistable elements there exists a logic 
cross talk in that the device will either be induced to switch 
or not with effectively no intermediate steady state. More­
over, as explained in Section 3, the diffused carriers from E1 
have to produce a significant detuning in E2 to reduce the 
threshold below the holding power in order for it to switch. 
This result depends on the initial !::..P. We can then expect 
smaller separations than those of transphasor arrays. For 
example, from Fig. 2(a), if !::..P = 7%, then dcrit"' 160 ,urn, 
which would allow a packing density of 4 X 103 cm-2. 

Time delays ts ranging from 1 to 4 ,usee were measured. 
For a fixed !::..P, ts increased as d approached dcrit from below, 
and we can expect ts ._ ~ as d ._ dcrit since for d > dcrit, by 
definition, there is no switching. The divergence of the time 
delay is attributed to critical slowing down, 12 which occurs as 
the threshold power Ps' (corresponding to fs' defined in Sec­
tion 3) approaches Phold from below. In the standard critical 
slowing-down experiments through stepwise excitation, 
Phold- Ps, showing a symmetry with respect to our experi­
ment. This effect was also found in the numerical integra­
tion13 of Eq. (14) for two elements. A comparison between 
theory and experiment is shown in Fig. 3(d). To integrate 
Eq. (14) we assumed that both elements were initially in a 
steady state given by the solution of Eq. (15). Then an 
addressing pulse switches E1, which in turn switches E2 
through cross talk at some time ts later that depends on how 
close d is to dcrit· In Fig. 3(d) the observed time delay is 
plotted for d = 165 ,urn as the fraction hold/Is is changed 
together with the corresponding predictions of the theory. 

The effects of spot size, detuning, and finesse on dcrit for 
two elements were studied numerically. In Fig. 5(a) the 
variation of dcrit against hold/Is for various values of w/ln is 
shown. As expected, dcriJw increases as w is decreased since 
the intensity increases8 (and with it the carrier-concentra­
tion gradient) and therefore relatively more diffusion occurs. 
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Fig. 5. Plot of critical distance as a function of PhotdiPs according to 
Eq. (22): (a) for wllo = 0.25, 0.5, 1, 2, 4, in the upward direction; 
note that as w increases, dcriJw decreases for a given holding intensi­
ty. Here I= 3.5 and <1>0 = 0. (b) The same plot for 0 ::5 <1>0 ::5 1r, I= 
3.5, and w/lo = 0.5. (c) The same plot for 2 ::5 I ::5 128, and w/lo = 
0.5, and <1>0 = 0. In all cases the bistable mode of operation was 
ensured. 
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Figures 5(b) and 5(c) show slight variations with detuning 
and finesse, respectively. 

In Fig. 6(a) a simulation is shown of the effect of surround­
ing EM by two (A), four (nearest neighbors) (B), and eight 
(four nearest neighbors, four next-nearest neighbors) (C) 
elements on a square lattice. In going from two to four 
elements the difference is apparent, but when the next­
nearest neighbors are added on, the critical lattice constant 
dcrit changes negligibly. This observation confirms previous 
findings9 through heuristic arguments that, in systems with 
carrier diffusion as the transverse coupling mechanism, the 
interaction is limited to nearest neighbors. In Fig. 6(b) 
these calculations are extended to up to 25 elements with a 
barely noticeable difference; in sharp contrast to interfer­
ence filters, which have a long-range coupling through ther­
mal diffusion. 

5. CONCLUSIONS 

In this paper bistable cross talk between elements on an 
InSb Fabry-Perot etalon was studied. The minimum sepa­
ration for independent operation increases with the diffu­
sion length, thus limiting the packing density of elements. 
This latter aspect, however, could be improved further by 
combinations of the following. First, the element's size can 
be decreased. However, as the numerical simulations of the 
present work imply, the carrier profile does not decrease 
proportionally. Second, it is not mandatory to use pure 
bulk InS b. If a large number of impurities were introduced 
they would reduce the carrier lifetime and thus the diffusion 
length, but the power requirements would be greater. An­
other possibility would be actual material pixellation by 
etching one surface of the etalon to give a grid structure. 

An important figure of merit in optical computing is the 
data-processing rate, defined as the product between pack­
ing density and switching rate (bits sec-1 cm-2). The 
present switching rate for dispersive optical bistability in 
high-purity InSb is N106 sec-1, which, with a packing density 
of 103 cm-2, would give a data rate of ""'109 bits sec-1 cm-2• 

Pixellation of the sample and reduction of the element's size 
may stretch packing densities to up to 105 cm-2, and, with 
increasing speeds due to impurity doping, data rates of 1013 

bits sec-i cm-2 may be possible. The observed optical de­
lays in the microsecond region are required in some applica­
tions. Conventional methods of producing them, such as 
long path lengths, are bulky and often distort the beam. 
The present experiments suggest a compact technique to 
produce such delays. Finally, by choosing the appropriate 
separations, controllable cross talk could be used to perform 
logic functions in future computer architectures. 

APPENDIX A 

To obtain Green's function for this problem a particular 
solution of 

-V'2G(r- r', t- t') + aG(r- r', t- t')/at 

+ G(r- r', t- t') = o(r- r', t- t') (A1) 

has to be found, where the spatial coordinates lie in the x-y 
plane and G is Green's function with a Fourier transform 
G(k, w) such that 

Vol. 5, No. 1/January 1988/J. Opt. Soc. Am. B 9 

G(r- r', t- t') = J J:"' J d2
kdwG(k, w) 

X exp[ik · (r- r') + iw(t- t')]. (A2) 

Then on substitution of Eq. (A2) into Eq. (Al) and using the 
Fourier transforms of the delta functions, 

G(k, w) = -i/(211')312[w- i(k2 + 1)]. (A3) 

By using Eq. (A3) in Eq. (A2), the integral over w, 

f(k) = J:"' dw exp[iw(t- t')]/[w- i(k2 + 1)], (A4) 

can be solved exactly in the complex plane, yielding 

f(k) = 21l'i exp[-(k2 + l)(t- t')], 

and consequently 

G(r-'- r, t- t') 

= exp[-(t- t') - (r- r)2/4(t- t')](21l')-2 J J:"' dkxdky 

X exp{:....[kx(t- t')1/2 - i(x- x')/2(t- t')112]2} 

X exp{-[ky(t- t')112 - i(y- y')/2(t- t') 112]2}. 

Finally, 

G( _ , t _ t') = exp{-(t- t') - [(r- r') 2/4](t- t')}. 
r r ' 41l'(t - t') 
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