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\Vc discuss the characterization of nonlinear optical processes that give rise to changes in 

the absorption coefficient and reiractive index. We primarily concentrate on methods for 

determining the dominant nonlin.'arities present in condensed matter and the responsible 

rhysical mechani.<ms. In extensi\'C·, studies of a wide variety of material, we have found 

tiHll there is seldom a single nonlin. :1r process occurring. Oflcn several processes occur 

simultaneously, sometimes in uni.mn, sometimes competing. It is necessary to 

experimental!~· distinguish and separat'~ these processes in order to understand and model 

the interactic•n. There are a variety c,f methods and techniques for determining the 

nonlinear optical response, each with its own weaknesses and advantages. In general, it is 

advisable to use as many complementary techniques as possible over a broad spectral 

range in order to umpnbiguously determin~ the active nonlinearities. Here we concentrate 

on the use of nonlinear transmittance, Z~scan and degenerate four-wave mixing 

experiments as applied to polycrystalline and single crystal semiconductors and dielectric 

materials. 

I. Introduction 

Numerous techniques are known for measurements of nonlinear refraction (NLR) and nonlinear 

absorption (NLA) in condensed matter. As the names imply, NLR describes optically induced 

changes in the refractive index of a material, while optically induced changes in absorption are 

categorized as NLA. Nonlinear interferometry [1,2], degenerate four-wave mixing (DFWM) (3}, 

nearly-degenerate three-wave mixing [4], ellipse rotation [5], beam distortion,[6, 7] beam deflection 

[8], and third-harmonic generation [9], are among the techniques frequently reported for direct or 

indirect determination of NLR. Z-scan is a single beam technique for measuring the sign and 

magnitude of NLR indices and NLA coefficients [IO, II], which offers simplicity as well as high 
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sensitivity. Other techniques for measuring NLA include transmittance [12], calorimetry [13], 

photoacoustic [14], and excite-probe [15] methods. 

Despite the wide range of available methods, it is rare that any single experiment will completely 

determine the physical processes behind the nonlinear response of a given material. The most 

important point to be made in this paper is that a single measurement of the nonlinear response of a 

materi(ll, at a single wavelength, and a single pulsewidth may give very little information on the 

materiaL In general such a measurement should not be used to judge the device performance of a 

material" or to compare one material to another. We will elaborate on this point by using data for 

semiconductors (eg. ZnSe) and dielectric materials (eg. DaF1 ). The importance of the pulsewidth and 

wavelength dependence of the nonlinear response will be demonstrated through these examples. We 

begin with a background description of the consequences of NLA and NLR in section II. Section l1l 

is divided into three subsections covering the experimental techniques of transmittance, Z-scan and 

DFWM. Each subsection gives a description of the experimental technique and experimental results 

along with the physical interpretation for the example materials. Section IV describes the importance 

of determining and understanding the frequency dependence of the nonlinearities and section V 

contains brief conclusions. 

II. Background 

Nonlinear absorption direclly affects the amplitude of the propagating electric field while NLR 

directly affects the phase. However, during propagation, phase changes propagate to give spatial (and 

temporal) amplitude changes. This can be seen as the coupling of phase and amplitude in the 

differential equation describing this propagation (i.e. the wave equation). A great simplification 

results by making the "thin sample approximation". In this approximation we can separate the wave 

equation into an equation for the phase ¢, and all equation for the irradiance, I, as a function of the 

depth z within the sample. We write the electric field as E = A-lf]R Re[ei.f> ei(kt-wt)J where k is the 

wave number and A is a material independent constant of proportionality. The thin sample 

approximation allows us to separate phase and amplitude propagation within the nonlinear material by 

assuming that the sample is thin compared to any changes in the laser beam irradiance distribution 

due to linear and nonlinear propagation effects. That is, the sample is thin compared to the depth of 

focus of the beam (i.e. the diffraction length), and ;j:ompared to distances in which a nonlinearly 

induced phase distortion can propagate to give· amplitude distortion.[l6] By choosing the sample 

thickness and focusing geometry correctly this approximation can be satisfied. If this as.•mmption is 

not valid the full wave equation must be solved numerically including both spatial and temporal beam 

characteristics. This often requires a supercomputer. Throughout this paper, we assume the thin 

sample approximation to be valid. Experimentally the requirement is that the sample thickness L is 

less than the diffraction length, Z
0
=lrW5/>. where w

0 
is the half-width at the e-: of maximum 

(HWl/e2M) of the irradiance distribution and >. is the wavelength in air. In addition, irradiances 

must be used that give integrated phase shifts less than approximately 21r. This situation is also 

known as "external self-action".[l6, 17] 
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Nonlinear absorption and refraction always coexist (although with different spectral properties) as 

they result from the same physical mechanisms. They are connected via dispersion relations similar to 

the usual Kramers-Kronig relations that connect linear absorption to the linear index (or, 

equivalently, relate the real and imaginary parts of the linear susceptibiltity).[l8-2l] The physical 

processes that give rise to NLA and the accompanying NLR include "ultrafast" bound electronic 

processes and "excited state" processes, where the response times are dictated by the characteristic 

formation and decay times of the optically induced excited states. Ultrafast processes include 

multiphoton absorption [12, 19], stimulated Raman scattering [22] and AC-Stark effects [19,20]. 

Excited-state nonlinearities can be caused by a yariety of physical processes including absorption 

saturation [22], excited-state absorption in atoms and molecules {23] or free-carrier absorption in 

solids [24, 25], photochemical changes [26], as well as defect and color center formation [27]. The 

above processes can lead to increased transmittance with increasing irradiance (eg. saturation, Stark 

effect) or decreased transmittance (eg. multiphoton absorption, excited-state absorption). The key to 

distinguishing these processes is to pay particular attention to the temporal response. One way of 

achieving this is the use of pulsewidths much shorter than the decay times of the excited states. As 

we shall show, in this regime, the excited-state nonlinearities are fluence (ie. energy per unit area) 

dependent, while the ultrafast effects remain irradiance dependent. 

It is important to note early in this paper the importance of accurately measuring the laser mode and 

pulse parameters. For example, two-photon absorption (2PA) is irradiance dependent. Thus, given 

the pulse energy, we need to know both the beam area (i.e. spatial beam profile) and the temporal 

pulse width (i.e. temporal shape) in order to determine the irradiance. Any errors in the measurement 

of irradiance translate to errors in the determination of the 2PA coefficient, {J. Similar comments 

apply to other nonlinearities. Figure I shows a plot of .B(cm/GW), on a semilogarithmic scale, as a 

function of year published in the literature for GaAs. It has been established that these large 

differences are not due to differences in the materials, but are due to experimental problems and 

interpretation errors. Clearly, there are a great number of pitfalls for experimenters in NLO. 

II. I Nonlinear absorption: 

We will primarily limit our discussion to the increasing loss from two-photon absorption (2PA) and 

photogenerated excited-state absorption (ESA). The losses from 2PA occur in solids when the photon 

energy, hw, is larger than one-half the band-gap energy, E,. The equation describing 2PA (a third

order response) of a beam of irradiance I as a function of depth z in a material is; 

dl 
dz = -(o0+PI)I, (!) 

where fJ is the 2PA coefficient, and the equatiOn includes residual linear absorption of coefficient a0• 

This linear absorption in solids for liw<Eg can come from defects, impurities or band tailing and can 

often be ignored in good quality materials. 
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Figure 1. The two· photon absorption coefficient pas a function of year published for GaAs: a [41]; 
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Once absorption has taken place, electrons are excited across the energy gap and are available to 

subsequently absorb linearly. In semiconductors this linear absorption process is known as free

carrier absorption (FCA) and also includes intraband absorption of holes between light and heavy hole 

bands. In atoms or molecules this process is referred to as ESA. For pulses longer than a few 

picoseconds (determined by electron-phonon scattering rates) how the carriers were originally excited 

is irrelevant to the subsequent FCA. However, the equations governing the transmitted irradiance, 

and the order of the nonlinear response, are intimately tied to the carrier generation process. If linear 

absorption (a0) creates the carriers (as, for example, in a thin indirect-gap material [24], doped 

semiconductor, or organic [231) the equation governing I (ignoring 2PA) becomes, 

df =-(a +uN)I (2) 
dz 0 ' 

where u is the FCA cross section, and N denotes the density of excited carriers produced by linear 

absorption. The rate of carrier production is given by 

(3) 

Here fzw is the incident photon energy used to produce an electron-hole pair. We have ignored all 

deCay and diffusion processes that can reduce the carrier density in writing Eq. 3. In general these 

processes must be included which can greatly complicate the determination of nonlinear parameters, 

however, if pulses are short compared to the recombination and diffusion times (eg. picosecond 

pulses), this assumption is valid. An analogous pair of equations is valid for excited-state absorption 

in atomic or molecular systems where N is then the density of excited states. By integrating Eq. 3 up 
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to some time t' in the pulse, substituting for N in Eq. 2 and then integrating over all times t' (i.e. -oo 

to oo) we find the fluence F varies with z as 

(4) 

Notice that this equation is exactly analogous to Eq. I describing 2PA loss with the fluence replacing 

the irradiance and Q 0aj21iw replacing {3. Therefore, since in most experiments the pulse energy is 

detected, FCA initiated by linear absorption and 4:PA, will give nearly identical results for loss as a 

function of input energy (microscopically ESA can be considered as the limit of 2PA with a resonant 

intermediate state). The difference between Eqs. I and 4 when determining the transmitted energy is 

in the temporal integral over the pulse for 2PA. For FCA, this integral has already been performed. 

In other words, in order to determine which of these nonlinearities is present, the temporal 

dependence must be measured in some way. 

If the carriers are produced via a 2PA process ({3 in Eq. I) rather than by linear absorption (a
0 

in Eq. 

1), the resulting equations are considerably different, and cannot be solved analytically. Including 

2PA, Eq. 2 becomes, 

(5) 

which must now be combined with the 2PA carrier generation rate, 

(6) 

The factor of 2 indicates that the energy of two photons is needed to create the carrier pairs. Again 

we make the simplifying assumption that carriers do not diffuse or decay during the pulse. In 

semiconductors, this assumption is normally valid with picosecond pulses. In Eq. 5, a0 is again 

included only as a residual linear absorption from defects or impurities, and it is assumed that free 

carriers are not produced in the process. 

It is interesting to look at the order of the nonlinear response for the three cases given above. The 

first two, 2PA and linearly generated FCA, both appear as third-order responses. However, in one 

case, 2PA, the nonlinearity is proportional to Im{x{3)}, while for the linear absorption generated FCA 

the nonlinearity is due to the cascaded process Im(x{l)}:lm{x(1l} (i.e. two linear absorption processes), 

where the first x(l) is associated with the ground state absorption and the second with FCA. Here 

xOl refers to the jth order electric susceptibility. Without knowledge of the temporal dependence of 

the process, FCA and 2PA are indistinguishable. 

For the third case, 2PA generated FCA, the nonlinear response appears fifth order, a cascaded 

lm(xC3l}:Im(xPl] (i.e. 2PA followed by FCA). However, the overall nonlinear transmission as given 

by Eq. 5 has both the third-order response of 2PA (second term) and the fifth-order cascaded 
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response (third term). This can give quite complicated transmission curves as a function of input 

energy or irradiance. We find similar ambiguities in the interpretation of nonlinear refraction 

experiments as seen in section 11.2 (also see Results for ZnSe in section III.2). If pulses having the 

same peak irradiance but different temporal widths are incident on a material obeying Eqs. 5 and 6, 

the longer pulses, having more energy, will create more carriers. Thus, the longer pulse will induce 

more FCA, assuming slow carrier decay times, and suffer more loss. This is a useful method to 

determine if such processes are present. 

The FCA resulting from 2PA generated carriers can be shown [12,28] to be small compared to the 

direct 2PA process for irradiances below a critical irradiance, Icr !:::! 2.fihwjUT, where r is the laser 

pulscwidth. This is one of several reasons why short pulses are valuable for measuring {J without the 

influence of other nonlinear phenomena. In addition the NLR from these carriers is also reduced for 

shorter pulses. 

The solution to Eq. l for 2PA at the exit surface of the sample is 

I(L,r,t) = 
I(O,r,t)e-D.oL 

l+q(r,t) 
(7) 

where q(r,t)=,BI(O,r,t)Leff• and Lerr = (l-e-D.0L)/a:
0

• Here, we have explicitly shown the possible time 

(t) and transverse spatial (r) dependences of the irradiance. Assuming continuous, spatially 

homogeneous beams, Eq. 7 can be written in terms of the transmittance, here given by the ratio of 

irradiances, T=l(L)/1(0), as 

I a L ( ) T=e 0 I +.81(0Lerr), (8) 

where Fresnel reflections are ignored. This simple expression has led to the historical method of 

measuring the transmittance as a function of input irradiance 1(0), and plotting T-1 versus 1(0).[12,28] 

The result is a straight line, the slope of which determines /3, and the intercept gives %· There is 

only a small deviation form this straight line dependence when integrals over the spatial and temporal 

profiles are included (see Fig. 2). 

Analogous to the case of 2PA, the solution of Eq._4 for linear absorption generated FCA is 

F( ) 
-a0L 

F(L r) = O,r e 
' I + p(r) 

(9) 

where p(r)=(a
0
aj2hw)F(O,r)Lerr· Equation 9 for FCA gives a result similar to Eq. 8 for 2PA but is a 

function of the input fluence, F(O). That is, assuming a spatially uniform beam, 

[ 
a 0a ) 

I + 2hw F(O)Lerr ' (10) 
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Figure 2. Inverse transmittance for ZnSc as a function nf the external incident irradiancc using input 

pulscwidlhs of 40 pscc and 120 pscc (FWIJM). 

where now T is defined as the ratio of output to input fluence. Again, including an integra] over the 

spatial distribution only gives a small deviation from the straight line prediction of Eq. 10 whose 

slope, in conjunction with the intercept, now determines u. In experiments to determine T, it is 

usually the pulse transmitted energy, E, that is monitored, meaning that the spatial and temporal 

integrals for 2PA, or the spatial integral for linearly generated FCA, must be performed. Thus, for a 

single experiment of T == E(L)/E{O) versus the input energy, these very different nonlinear processes 

are indistiguishable. Only if the temporal dependence of the transmttance were directly monitored 

could these two processes be distinguished. 

This is a very important distinction between a direct x(3) response and a sequential, cascaded x( 1l:x(1) 

response. In general, many processes can have a third-order response but may not be strictly 

described by a x(3l susceptibility. Thermal nonlinearities, excited-state nonlinearities, electrostrictive 

nonlinearities, etc. are examples, and this statement is valid for absorptive (Im x(8)) and refractive 

{Re x(s)) responses. For example, a thermal nonlinearity is normally described by a x(ll:x(1) 

response. The sample first linearly absorbs the light which changes its temperature (lm xf1) ). This 

temperature change, in turn, changes the linear absorption (1m x<1l) or changes the linear refractive 

index (Re x(l) ). This latter effect is referred to as thermal lensing or thermal blooming as it is often 

a defocusing effect. The turn-on time for thermal effects depends upon the mechanism for the 

induced changes in x(l). For example, lattice heating induces a change in bandgap that, in time, 
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alters the spectrum of Re(x(l)) and lm{x(1) }. The turn-on time for this is dictated by the rate at 

which heat is given to the lattice, a combination of electron phonon inelastic scattering rates and 

nonradiative recombination rates. If the index is changed by thermal expansion of the medium, 

which is usually the dominant process in liquids, the turn-on time is given by the transit time of an 

acoustic wave across the beam. In both cases the decay time is dictated by thermal diffusion. The 

determination of the underlying physics describing the nonlinear response is the major point to be 

made in this paper. 

Section IIl demonstrates how the dominant loss mechanism is experimentally determined by observing 

the pulsewidth dependence of the nonlinear absorption. Such experiments are also useful for 

determining NLR mechanisms as discussed below. 

11.2 Nonlinear Refraction: 

As discussed in section II, NLR always accompanies NLA and results from the same physical 

mechanisms. Just as 2PA is a physical process that can be described in terms of Im{x(3)}. there is a 

corresponding Re{x(3)} that describes ultrafast nonlinear refraction. The same is true for cascaded 

processes. 

The induced phase distortion imposed on a laser beam by NLR is related to the index change, 6.n, by 

d¢ 
dz = 

~11211' 

>. 
(II) 

The refractive index can be changed from the same large variety of mechanisms that can change the 

absorption. We, for example, discussed thermal effects in the previous section. Here we discuss the 

bound-electronic nonlinear refraction characterized by n, and excited-state or free-carrier refraction 

(ESR_ or FCR). We restrict the use of n, here to only the ultrafast electronic response. FCR has its 

analogue in atomic and molecular systems where the NLR comes from the redistribution of 

population among levels. For example, in a two-level system, the absorption saturates which by 

causality [20] changes the refractive index. In solids this redistribution generates free carriers which 

block further transitions (Drude band blocking) and the refractive index is changed (i.e. FCR).[25, 29] 

Defining .ar21r/A as the change in index of refraction per unit of photoexcitation density, N, ~n in 

Eq. 11 is written as; 

{12) 

Here ar is the FCR cross section (often the 21r/A is dropped in the definition of the index change), 

and n1 is in units of mZ/W. The nonlinear index, n1, due to bound electrons can also be expressed in 

Gaussian units as ~n=nziEJ 1/2, where n1 is in units of (cm/statvolt)1 , or esu. n1(MKS) is related to 

n
1
(esu) through nz(esu)=(cn

0
/401r) nz(MKS), with c the speed of light in m(sec. 
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For the case where free carriers are generated from single photon absorption processes (see Eq. 3), 

au J' An(t) = n,I(t) + ~w' J((}df . 
-oo 

(13) 

The bound electronic response follows the temporal dependence of the pulse input while the FCR 

builds up in time through the pulse. For the case where the carriers are created solely by 2PA (see 

Eq. 6) Eq. 12 becomes, 

( 14) 

Usually, especially when using picosecond or shorter pulses, the phase distortion is not time resolved 

and only the temporally averaged value is measured. Assuming the nonlinear refraction accumul~tes 

throughout the pulse without decay, it can be shown that the temporally averaged index change is 

simply one half .6.nFc(i=oo) or it equals flnFc(t=O) for a symmetric pulse in time.[ll] Here, flnFc 

refers to the second term in Eq. 13 or 14. The contribution from the bound electronic n1 (first term 

in Eq. 14) gives an index change .6.nn , averaged over a Gaussian temporal pulse, of 1/v'2 times the 
' peak value. Thus, the temporally averaged index change is, 

( 15) 

Integrating Eq. II over the sample length to obtain the total phase distortion .6.¢{r, t), we define (t:J.tjJ) 

as the temporally averaged phase distortion as determined from Eq. 15. We then define A~ as At/J 

evaluated at the beam center (r=O), with similar definitions for the temporally averaged quantities, eg. 

(A~) is the on-axis temporally averaged phase distortion. 

A~ can also be a periodic function of the spatial coordinates x (or y) due to the interference of two or 

more coherent beams as in, for example, DFWM (discussed in section III.2). Beam propagation and 

diffraction are discussed in the next section along with experimental techniques. 

III. Experimental Techniques 

In a single article it would be impractical to satisfactorily describe the many experimental techniques 

to measure NLA and NLR, so we choose to give just three examples. We describe direct transmission 

measurements, Z-scan and temporally-resolved DFWM. We discuss the complementary infomation 

that these methods give. This choice only reflects the fact that the authors are most familiar with 

these techniques. In addition this article does not discuss methods that measure nonlinearties in fibers 

or waveguides; however, these three methods can measure nonlinearities of the constituent materials 

in bulk or thin film form. In general it is best to use as many complementary experimental 

techniques as possible to determine the nonlinear optical response of a given material. 
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Ill. I Nonlinear Transmittance 

Perhaps the simplest method to measure NLA is to monitor the energy transmitted by a sample as a 

function of the input energy, We choose energy since normally the irradiance needed to give 

significant absorption is ~107 Wjcm! or higher and short pulses (difficult to time resolve) are 

extremely valuable to reduce competing nonlinearities. 

Figure 2 shows experimental results for the inverse transmittance of a 2. 7 mm thick chemical-vapor 

deposition grown (polycrystalline) sample of ZnSe (linear index n=2.7) plotted as a function of the 

external input irradiance using two different picosecond pulsewidths at 532 nm. ZnSe has an energy 

gap of Eg~2.6 eV and, therefore, displays 2PA at 532 nm.[25] Since the horiwntal axis is irradiance 

and not energy the fact that the different pulsewidths give the same change in transmittance shows 

that Eq. I for 2PA is consistent with the measurement. 

Many of the discrepancies between values for {3 shown in Fig. 1 come from the use of nanosecond 

rather than picosecond pulses. Longer pulses can make competing nonlinear absorption processes such 

as 2PA induced FCA dominant (see Eq. 5), leading to larger losses than from 2PA alone. Not 

accounting for such effects results in overestimation of {3, sometimes by orders of magnitude. An 

additional problem in transmission experiments is the seemingly simple task of collecting all the 

transmitted beam. Due to the NLR that accompanies 2PA the beam can rapidly spread after 
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Figure 3. Spatial beam profile ( T's) through the center of an originally Gaussian profile beam after 

transmission through a 2.7 mm thick CVD grown ZnSe sample and !::!55 em free space propagation to 

a vidicon detector. The input irradiance is 2.7 GW/cm 1 . The solid line is a theoretical calculation 

using values for the nonlinear coefficients as determined by Z-scan measurements as discussed in the 

texl. 
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traversing the sample. Figure 3 shows a transverse scan through the center of an initially Gaussian 

spatial profile beam (30 ps FWHM pulse at 532 nm, Z
0
= I 78 em) after transmission through the ZnSe 

and then propagating 55 em to the vidicon (near field). The beam breakup into two peaks is 

characteristic of a self-defocusing (negative induced lens) nonlinearity in the near field. This effect 

can become very strong at high irradiance and is enhanced for longer pulsewidths (having more 

energy) by free-carrier refraction. While a detector placed after the sample collects all the beam at 

low inputs, the detector can miss some of the light at high inputs. Again these effects result in an 

overestimation of p (see Fig. 1 ). 

While FCA can be negligible for picosecond pulses (see discussion in section 11.1), the refraction 

arising from these free carriers, FCR is not.[l2) As shown in Fig. 3, ZnSe displays strong self 

defocusing even for picosecond pulses. As discussed in section III.2, this defocusing is a combination 

of bound-electronic and free-carrier refraction as described by Eq. 14 (and 15). The soHd line in 

Fig. 3 shows results of a computer calculation using parameters obtained from Z-scans (see section 

111.2). The field at the exit surface of the sample is determined by Eocv'ieLf>, and as described in Ref. 

[25], this field is propagated to the vidicon detector to give the results of Fig. 3. We discuss this 

further in the next section. 

III.2 Z-SCAN 

Z-scan mc:1surcs both the nonlincnr loss and phase distortion imposed on a Gaussian beam.[IO,II] 

For measuring NLR this technique exploits the spatial narrowing and. broadening of Gaussian beams 

in the far field which are due to self-focusing or self-defocusing caused by the nonlinear interaction 

of the beam with the material. A schematic of the experimental setup is given in Fig. 4. A Gaussian 

beam is focused onto the sample and then collected through an aperture in the far field by the 

transmission detector (02). Keeping the input energy constant, the sample is translated along the 

beam propagation direction through the focal plane, and the transmittance (D3/D1) is measured as a 

function of this sample position Z with respect to the focal plane (Z should not be confused with z, 

the depth within the sample). In the case of a material with a negative nonlinear refractive index, the 

self-defocusing will cause beam narrowing in the far field when the sample is before focus (negative 

Z) and beam broadening when the sample is after focus (positive Z). An increase in transmittance 

followed by a decrease in transmittance (peak-valley) for increasing Z denotes negative nonlinear 

refraction, while a valley-peak configuration implies positive nonlinearity. In Ref. [II] we give a 

detailed description and analysis of the Z-scan technique. Within the thin sample approximation 

[16, 17], it is found that the change in the index of refraction (tln) is given by a linear relation 

between the on-axis temporally averaged phase distortion at focus {.6.4)0 ) (where the subscript on 4) 

refers to the sample positioned at the beam waist. i.e. at focus) and the difference between the 

maximum and minimum values of the normalized aperture transmittance, .6.Tpv· This relation for an 

aperture size that gives 40% linear transmittance is given by:[llJ 

(M>,) ~ 2.8AT"". (16) 

Examining Fig. 4 for a purely refractive case, if the aperture is removed i.e. if all the transmitted 
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APERTURE 

02 

Figure 4. The z~ scan experimental setup. D
2
/D1 is measured as a function of the sample position z. 

light from the sample is collected by 0 2, there will be no change in the transmittance at different 

sample positions. However, if the sample exhibits nonlinear absorption, the measurement will detect 

the nonlinear loss which is maximized at b:O, This type of measurement, to which we refer as an 

"open aperture" Z-scan, yields the nonlinear absorption parameters of the material. When the 

aperture is in place, the measurement (closed aperture Z-scan) is sensitive to both nonlinear 

ab~orption and nonlinear refraction. Dividing the closed aperture data by the open aperture data 

yields a Z-scan curve due only to nonlinear refracdon which can be determined using Eq. 16 as long 

as the nonlinear absorption is not too strong. Figure 5 shows an example of this procedure for ZnSe 

where picosecond 532 nm pulses were used. Figure 5(a) and 5(b) show open aperture and closed 

aperture results respectively, while Fig. 5(c) shows the results of the division of 5(b) by 5(c). The 

solid lines are fits as discussed later under "results for ZnSe". The limitations of this simple approach 

and when a more exact analysis is needed are described in detail in Ref. [II). 

The open aperture Z-scan, or measuring the change in transmittance as a function of irradiance, I, is 

a relatively straightforward experiment as long as care is taken to collect all the light transmitted by 

the sample and the detectors used have uniform response (i.e. if the light is spread over a larger or 

smaller surface area the detector response is unchanged). 

As a final comment, we note that the Z-scan curve can serve as a calibration on the input fluence. 

The distance in Z between the peak and va1ley for a Gaussian beam and a third-order nonlinearity is 

given by .6.Zpv~1.7 Z0• Thus, a Z-scan gives the the beam size. This is a very convenient method to 

use if the nonlinear response is understood. On the other hand, once the system is calibrated, the Z

scan shape also contains information concerning the order of the nonlinearity. For example, a fifth

order response has a narrower Z-scan curve witfi .6.Zpv~1.2 Z0.[ll] 

The following experiments on the semiconductor ZnSe illustrate the complexity of the nonlinear 

interactions even for picosecond pulses, and the difficulties in unraveling the different nonlinear 

processes. 

Results for ZnSe 

With 27 picosecond (FWHM) pulses at 532 nm from a frequency doubled Nd:YAG laser we 



Figure 5. Normalized Z-scan transmittance of ZnSe measured using picosecond pulses at ,\=532 nm 

with J
0

={l.21 GW/cm 2• (a) Open aperture data and fit {solid line) (b) 40% aperture data and fit {solid 

line) and (c) The result of the division of the Z-scans of (a) and (b). 
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performed Z-scans at different input energies on the 2.7 mm thick polycrystalline ZnSe sample. The 

beam was focused to give w0~25 pm, First, an open aperture Z-scan was performed. In Fig. 5(a) we 

plot the experimental data. In addition we show a numerically calculated Z-scan using /1=5.8 cm/GW 

and !l0=0.3 cm-t in Eq. 7 including spatial and temporal integrals. The Z (as opposed to the depth z) 

dependence is introduced in the irradiance I in Eq. 7 by the standard Gaussian beam propagation 

equation, 

I(Z) • ~!;';:(DC;-) '" 
l+(Z/Z0 ) 2 

giving a Lorentzian shaped curve for loss versus z. 

( 17) 

With a 40% linearly transmitting aperture a closed aperture Z-scan was performed at the same 

irradiance (Fig. 5b). In this case the measurement is sensitive to both NLR and NLA. Experiments 

on ZnSe were conducted at peak irradiance levels from 10=0.21 GW/cm" to 2.4 GWjcm2• The 

experimental irradiances are within the sample (i.e. Fresnel reflections taken into account). 

In all, ten Z-scans were performed (5 "open" aperture and 5 "closed"). Closed aperture Z-scans at a 

peak input irradinnce of 0.57 GW/cm2 and 2.4 GW/cm! are shown in Fig. 6a and 6b respectively. 

Open aperture Z-scans show a third-order response and a strictly irradiance dependent loss as 

confirmed by using different pulsewidths (see Fig. 2). This confirms that 2PA is the dominant 

nonlinear loss mechanism and a value of ,8~5.8cm/GW is obtained as shown by the fit to the data of 

Fig. Sa. 

Using the 40% aperture Z-scan and dividing out the nonlinear absorption, we calculate An from the 

phase shift data (i.e. using Eqs. 11 and 16).[25] Plotted in Fig. 7 is An/10 versus the peak input 

irradiance 10• If this graph showed a horizontal straight line we could interpret this as a third-order 

response, and since we are using picosecond pulses in a spectral range where there is little linear 

absorption, we could conclude that it is most likely due to the third-order anharmonic motion of the 

bound electrons (i.e. n2).[11,25] Performing Z-scans at different pulsewidths, with pulses shorter 

than carrier decay rates, could confirm this conclusion by showing a strict irradiance dependence 

rather than a fluence dependence as would be indicative of linearly generated FCR. The negative 

slope of the line in Fig. 7 indicates a higher order self-defocusing. Since the graph shows a linear 

dependence we conclude a fifth order response consistent with 2PA generated FCR. The intercept of 

this line gives a fitted value of nz~-6.4 X I0-14 cm"fW (-4.1 X 10-11 esu) and the slope gives 

o-r21rf.h-l.l x w-n cm3, The details of how this simple method is used to estimate these numbers is 

given in Ref. [25]. 

With /3~5.8 cmjGW we also performed a complete numerical fit to the Z-scans. Using an iterative 

approach to best fit all the data, we found a better fit with nz~-6.2xlo-u cm"fW (-4.0 x w-u esu), 

and ar..\/21r~-0.8x1Q-21 cm:J (ar~-9xiO-l7 em"-). The solid lines shown in Fig. 5 are the fits to the 

data. These numbers were also used to give the theoretical curve of the beam profile shown in Fig. 3. 
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We also measured n2 in ZnSe at 1.06 pm where 2PA is not present. Using 40 ps pulses (FWHM) from 

a Nd:YAG laser focused to w0~40 pm, we obtained n
2
= +2.9xJO-H cm2/W (+1.7xJ0- 11 esu). In Fig. 

8 we plot closed aperture Z-scans obtained in ZnSe at 1.06 pm and at 0.53 pm showing the change in 

sign of n2• In this figure, the nonlinear absorption has been divided out of the 0.53 pm data. This 

observed dispersion in n2 and change in sign is consistent with the recent theory of Refs. [19-21] and 

shows the necessity of measuring the nonlinearity at more than a single wavelength. 

In addition to separately measuring NLA and NLR, Z-scan can be used to determine the anisotropy 

of these responses (eg. the different responses to linear and circular polarized light). This is 
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is large. 
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Figure 7. 6.n/Iodircctly derived from ATpv plotted as a function of 10 for ZnSe. 

particularly important for single crystal materials. We recently applied these methods to single crystals 

of GaAs, BaFz and KTP to determine various x(8) tensor elements.[30] 

One of the difficulties in the interpretation of the Z-scan data is the absence of temporal information. 

Recently we introduced a temporally resolved, 2-color Z-scan that can separately give the tcmpOI'al 

evolution of the NLA and NLR.[31] Next, however, we describe the use of picosecond DFWM to 

time resolve the nonlinear response. 

111.2 Degenerate Four-Wave Mixing 

In the experiments described here, the standard "backward" DFWM geometry is used.[3, 32, 33] A 

schematic of the experimental geometry using single 43 ps (FWHM) 1.064 J!ffi pulses, or 30 ps 

(FWHM) 0.532 I'm pulses is shown in Fig. 9. The single pulse input is divided into three pulses 

which, after passing through variable time delays, are incident on the sample. The three pulses can 

be independently adjusted in amplitude and polarization using half-wave plate and polarizer 

combinations. Two strong beams, forward (E1) and backward (Eb) pumps, of approximately equal 

irradiance are incident on the sample from counteipropagating directions. A weaker beam, the probe 

(Ep), is incident on the sample at an angle 0 with respect to E1. 

The physical operation of this technique involves scattering of one of the strong pump pulses off the 

grating produced by the interference of the probe with the other pump through the nonlinear 

modulation of the refractive index and±or absorption coefficient. The grating is only formed by a 

nonlinear interaction of the light with the material. While this is a somewhat simplified physical 

interpretation (eg. it doesn't describe two-photon coherence effects [31), it suffices for most 

experiments. Thus, assuming all beams are linearly polarized parallel to each other, there are two 



Nonlinear optical absorption and refraction 

" v 
-~ 

1.20 

-;;; 
E o.9o 1-,.. 
0 z 

0.80 
-8 -4 

• -• 

""o 
0 

• . ·:-

• 
0 • 

• 
0 

.o 

• 

I 

0 

0 0 'b 

'b oo 
0 

0 

Z/ZO 

ZnSe 

' 
4 8 

Figure 8. Closed aperture (S:o:0.4) Z·scan experimental data (filled circles) of ZnSe at 1.06 p.m and 

532 nm (open circles) in units of Z0~o'·/A. This figure clearly shows the dispersion in n, as it 

changes sign from positive at 1.06 J.'m to negative at 532 nm. 

amplitude gratings formed that can diffract a pump beam; one between Er and EP, and the other 

between Eb and EP. The grating spacing is determined by the angle 8 which is usually made to be 

small (a few degrees). In this case, one of the gratings has a spacing larger than A (~).jtln) while the 

other has a spacing of ~).jn. Calculating the direction of the beam diffracted off either of these 

gratings shows that this field, Ec: (the conjugate wave), retraces the path of EP (i.e. the sample 

retroreflects the beam). This retroreflection is the basis for phase conjugation and phase-conjugate 

Modelocked 
Nd:YAG Laser 

881 882 883 

M3 

Figure 9. Schematic of experimental DFWM apparatus. 0 1 is the input pulse energy monitor, while 

D
1 

monitors the phase· conjugate signal pulse energy. 
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mirrors.[34] If the beams that write the grating are not polarized parallel, there is a polarization 

grating formed in the material that can diffract light if the effective nonlinear susceptibility tensor 

has nonzero off diagonal elements (i.e. polarized light can induce an anisotropy).[34,35] The different 

DFWM signals obtained using different polarization combinations are useful for determining the 

various tensor components of the nonlinear electric susceptibility (eg. x(a)). 

Given the above physical interpretation, any spatial modulation of the optical properties of the 

material, index. or amplitude grating, will give rise to Ec. Herein lies the major difficulty with this 

method in characterizing nonlinear material coefficients. Both NLA and NLR give rise to a similar 

meaSured response, thus making it difficult to determine the origin of the nonlinearity. However, by 

temporally delaying one beam with respect to the others, the lifetimes of the various gratings can be 

determined which is helpful in determining mechanisms (this is similar to the information obtained 

by performing pulsewidth dependent studies in transmission or using Z-scan). In what follows we 

show how DFWM can be used to characterize nonlinearities using ZnSe at an input wavelength of 532 

nm as an example. 

DFlVM in ZnSe 

The DFWM signal in ZnSe is monitored as a function of input energy and pulse delay for different 

combinations of the polari~tion of the three input beams. Figure 10 shows a plot of the DFWM 

signal versus the temporal delay rb of Eb, with Eb polarized perpendicular to both E1 and EP (l:l=!3o, 

Ib~ 34 MW/cm2 and If~ 22 MW/cm2). This polarization combination results in an interference 

between Er and EP so that Eb is diffracted into Ee off either amplitude or phase gratings induced by 

this interference. In addition there can be polarization gratings which can also diffract light into Ee. 

In this arrangement (Fig. 10) no signal is observed for Eb incident prior to the other two beams, the 

grating rapidly forms reaching a maximum near zero time delay and then decays. Clearly, two very 

distinct nonlinearities are evident from Figure 10. Near zero delay, a large rapidly decaying signal is 

seen, while at longer delays, we observe a more slowly decaying signal. To better understand the two 

nonlinear regimes, irradiance dependence experiments were performed at different delays. Figure II 

shows a log-log plot of the DFWM signal versus the total input irradiance, (all three input beams 

were varied simultaneously) at two different delay times. The line in Fig. 10 labeled (a) shows the 

irradiance dependence at zero delay which follows a power dependence of JS.t±0.2, indicative of a 

third-order nonlinearity. This could be explained by either 2PA, nJ, or linearly generated FCR. 

FCA was ruled out by the results of Fig. 2 as our irradiance is less than Icr. However, as seen in Fig. 

10, this third-order response, with a peak near r=o, lasts for only a time of the order of the 

pulsewidth. If FCR were responsible, the grating would last as long as the carriers remained excited 

and did not diffuse to wash out the grating. For many semiconductors, with carrier lifetimes ~lQ-9 s 

and grating spacings of the order of micrometers, diffusion dominates the grating decay. By 

performing experiments for different values of 6 (i.e. different grating spacings), the fast component 

of response is unchanged. The decay of this fast component is too fast to attribute to decay of the 

carrier grating, The line in Fig. 11 labeled (b) shows the dependence at a delay of 240 ps, where Eb 

is no longer temporally coincident with the other two beams, giving a power dependence of 16·0±0.2. 

The fifth order dependence of the DFWM signal on the input beams is consistent with 2PA generated 
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FCR as discussed previously. Studies in other two-photon absorbing semiconductors, such as CdTe at 

1.06 p.m, reveal the same basic behavior, i.e. a fast third-order signal followed by a slowly decaying 

fifth-order signal. The results obtained from the DFWM experiments help to confirm the Z-scan 

results. Thus, the rapidly responding signal near zero delay in Fig. 10 is due to a combination of 2PA 

and n2 (]x<3l l2=[lm x(3l]Zt[Re x(3)]Z), while the slowly decaying signal is due to FCR (the real part of 

an effective fifth order nonlinearity).[25, 35] 

IV. Frequency Dependence 

Having performed picosecond experiments on a number of different materials using transmission 

and/or Z-scan and/or DFWM we have observed many similarities. If the photon energy is less than 

one half Eg, the bound electronic nonlinear refraction dominates the nonlinear response and n1>0 (if 

very high irradiance is used we have occasionally observed 3-photon absorption when energetically 

allowed prior to damage). Above one half Eg, the nonlinear respo~se is complicated by both 2PA 

and 2PA generated FCR. At very high irradiance the associated FCA can also become significant 

prior to damage. In addition we find that n2 becomes negative for photon energies above 

approximately 3/4 Eg. Figure 8 shows this sign change for ZnSe. 

To determine the spectrum of 2PA and the dispersion of n1, it would be best to perform the above 

series of experiments as a function of flw. This is often extremely difficult since the range of 

frequencies needed can be extremely large (i.e. the transparency range) and tuneable sources with the 

required irradiance, pulsewidth and beam quality are not typically available. However, using some 

very simple scaling rules some remarkable relations can be observed. Wherreu [39] has shown that the 

third-order nonlinear susceptibiltiy x<3l in inorganic solids should scale as 

I xi') ~ - f(hwfE,) , 
E' g 

( 18) 

where the complex function f depends only on the ratio flw/Eg (i.e. upon which states are optically 

coupled). The nonlinear coefficients P and n1 are related to x<3l by; 

(19) 

and 

(20) 

where the defined functions F and G are band structure dependent. Thus, F gives the 2PA spectrum 

and G gives the dispersion of n2• One method to test the above scaling relations is to scale the 
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expedmental data to obtain the t!x.perimental functions; 

and 

Ge(fiw/Eg) = K'~ n0 £!. n; 
p 

(21) 

(22) 

where pe and n; are experi.nental values of j3 and n2. and K and K' are proportionality constants. 

Here EP is the Kane energy as discussed in Ref. [12, 19, 39] and is nearly material independent with a 

value near 21 eV. Figur"3 12 and 13 plot these scaled data versus photon liw!E,, along with the 

predicted dependence frort a two-parabolic band model using a value of K=3100 in units such that 

EP and Eg are in eV and.-;9 is in cmjGW .[18-20] The value of K'=0.94xJQ8 is determined from the 

Kramers-Kronig integral of the nonlinear absorption spectrum using the above value for K.[l9] The 

data shown in Fig. 12 Ci'l!le primarily from direct transmittance measurements.[l2] The data in Fig. 

13 for semiconductors o.."lme from Z-scan measurements [19] and for dielectrics come from Z-scan 

[19] and nearly degene~ate three-wave mixing [40]. Several materials have now been measured by 

both techniques and the agreement for n2 is excellent. As seen in Fig. 12 the experimental 2PA 

appears nearly step-/unction like, turning on at approximately Eg/2. Figure 13 shows a small, 

positive, nearly dispr:rsionless n2 for liwJE, much less than Eg, reaching a peak near Eg/2, where 2PA 
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Figure 12. The solid line is the two-pambolic band prediction for the function F plotted as a 

function of 21iw/Eg using K=3100 in Eq. 21. The data are scaled according to Eq. 21 are from Ref. 

[12,62]. Figure reproduced from Ref. [62]. 
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Figure 13. A plot of n1 data scaled according to Eq. 22. The circ1es are measurements in [40], the 

diamond is from [61], and the squares are our Z-scan measurements (19]. We have labeled the 

semiconductor data. The solid line is the function G(Jiw/Eg) derived here for a two band model of a 

semiconductor using the 2PA data for the fit to the constant K'. 

turns on, and then decreases, reaching negative values as liw approaches the band edge. This curve is 

reminiscent of the behavior of the linear index in a solid which has its peak value at the band edge, 

where linear absorption turns on, and then rapidly turning down toward smaller values as liw 

increases. Just as the linear index n is related to the linear absorption through Kramers-Kronig 

relations, so the nonlinear index is related to the nonlinear absorption. These nonlinear Kramers

Kronig relations are discussed in more detail in Refs. [18-21]. 

·we find that the general trends in the data displayed in Figs. 12 and 13 are well described using the 

simplest possible band structure, i.e. two-parabolic bands. The solid line in Fig. 12 comes from a 

calculation of the transition rate for 2PA using such a band structure. Performing a Kramers-Kronig 

transformation on the nonlinear absorption calculated using this band structure gives the solid line of 

Fig. 13. While there are deviations from these curves of up to factors of 3, in general there is 

surprisingly good agreement considering the range of materials and differences in band-gap energies 

(from 0.2 to lO eV). Using the calculated spectral responses, we can compare the range of values of P 
and n1 for the different materials studied by replotting the scaled data on a log-log plot versus Eg as 

in Figs. 14 and 15 (i.e. dividing out the respective theoretical frequency dependences of the 

nonlinearities}. This shows the E~3 dependence of 2PA in Fig. 14 and the E~4 dependence of n1 in 

Fig. 15, revealing more than four orders-of-magnitude change in n1. 

After having separated the contributions of "fast" (i.e. /)and n1) and "slow" (i.e. ar) we can compare 

theoretical results for the free-carrier nonlinear refraction with experiment. As long as the 



• 
• 

10' 

10' 

10
3 

10' 

10' 

0.1 

Nonlinear optical absorption and refraction 

-----------~ 

' . ' 
' ' ' ' '. ' ' ' ' ' ' . ' 
' ' 
: 0 : 

' ' : o: .. 
' ' f ' ' . !___________ •• 

'· • 
• 

• 
•;, 

• 
10 

Figure 14. A log-log plot of the scaled 2PA coeffjcient (J as a function of the bandgap energy Eg (in 

eV). The data are scaled from Eq. 21 as pen2f..fE;F. The straight line is a fit to the data within the 

dashed box from Ref. [62] for a line of fixed slope -3. The data to the right of the box are taken 

from Ref. [59] using the third (X's) and fourth (closed circles) harmonics of 1.06 pm picosecond 

pulses. The data to the left of the box (closed squares) are taken from Ref. [60] using 10 pm 

nanosecond pulses, which carefully accounted for free-carrier absorption. Figure reproduced from 
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photogenerated carriers thermalize extremely rapidly with the lattice, u and 11r are independent of 

their generation mechanism. The so-called Drude band-blocking theory of the frequency dependence 

of these carrier nonlinearities appears to describe experiments reasonably accurately under a variety of 

conditions such that the spectral dependences are known.[36-38] Reference 25 gives a detailed 

comparison of different theories with experiments on semiconductors. 

V. Conclusion 

While we have only explicitly shown data for ZnSe, data obtained for other materials looks 

remarkably similar. For example, Fig. 16 shows Z-scan data for BaF1 at an input wavelength of 266 

nm where the material is a two-photon absorber (Eg~9.2 eV). This figure is to be compared with 

Fig. 5 for ZnSe. The deviation of the fit for negative Z is due to a linear background (i.e. 

independent of I) caused by surface curvature. Such background effects become more pronounced at 
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shorter wavelengths. We find for DaF2 at 266 nm, with the light propagating in the [100] direction 

and the field parallel to [010], p~0.06 cm/GW, and n2~+3.lxJ0-16 cmz;w (+LlxJ0-13 esu) while the 

anisotropy in this material is large (eg. 30% change in n2 with orientation). While a thorough study at 

this wavelength has not been performed, we expect the free-carrier effects at this irradiance and 

wavelength are small. This is due to both the small magnitude of p and the smaller expected free

carrier cross sections at short wavelengths. 

In order to extract the data needed to plot Figures 12, 13, 14 and 15, a clear understanding of the 

nonlinearities involved was necessary. In the final analysis these figures reveal relatively simple 
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trends and scaling rules. We have found that a simple 2-parabolic band model for semiconductors 

describes semiconductor data well and even appears to work for wide-gap dielectric materials. 

The examples given here demonstrate the importance of measuring materials nonlinearities using 

different techniques and/or as functions of several parameters including pulsewidth and wavelength. 

For example had we only measured nonlinear refraction in ZnSe at one pulsewidth we could not have 

determined whether the response was due to a bound electronic n1 or to linearly generated free-carier 

refraction. Additionally, the nonlinear refraction in ZnSe coming from the two-photon absorption 

generated carriers, depending on the irradince range of the experiment, could be mistaken for a larger 

third-order response (i.e. the fifth-order response may not be recognized without analyzing data over 

an extended range of irradinnce levels). In turn, when analyzing data from different materials in an 

attempt to discover scaling rules, trends could easily be masked if the nonlinearities were not properly 

separated. 

The wavelength dependence is not only of importance to determine nonlinear mechanisms, but it can 

be crutial in determining whether a material is promising for a given application. As seen in Fig. 13, 

n1 has a zero near 3/4 Eg. If a measurement were made near this wavelength, the material could be 

labeled useless for applications involving large n1's independent of how large the peak n1 is (see Fig. 

13). While the wavelength dependence of the nonlinearities in these inorganic materials as shown in 

Figs. 12 and 13 is relatively simple, molecular (organic) crystals can be expected to have considerably 

more structure, for example several wavelength separated 2PA peaks. It is hoped that the knowledge 

gained in understanding the nonlinear response of inorganic materials will be helpful in unraveling 

the response of organics. 
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