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We calculate the coherent electronic contributions to the third-order optical response 
x<3 > ( -w; w, n, -0) of bulk semiconductors in the independent-particle approximation using a sim­
ple two-band model. The formalism used to derive this response coefficient naturally accounts for 
all relevant contributions and, in contrast to existing results in the literature, leads to physically 
realistic, nondivergent expressions in the limits w, 0 --+ 0. Such well behaved infrared limits imply 
that the imaginary part of our x<sl correctly describes the dispersion of nondegenerate absorption; 
indeed for 0 = 0 our results are consistent with predictions from Franz-Keldysh theory. Comple­
menting these results, we can now also unambiguously extract from the real part of x<3 l the below 
band gap, two-band model predictions for the nonlinear refractive index, the de Kerr effect, and the 
virtual photoconductivity; all of these predict a finite, real x<3 >(o; 0, 0, 0} as physically expected for 
clean, cold semiconductors. Finally, our specific results help expose more general consequences of 
the gauge choice when employing common approximate band-structure models. 

I. INTRODUCTION 

Bulk semiconductor optical nonlinearities play a cen­
tral role in many optical devices and optical systems. l-S 

In particular, the nonlinear refractive index n 2 (w) has 
potential use for fast all-optical switching, which has 
led to intense study of third-order nonlinearities in 
semiconductors.4- 10 Simple band-structure models can­
not only lead to a better understanding of such nonlinear 
responses, but are also often essential for the efficient de­
sign and analysis of practical devices. A two-band crys­
tal, an analog of the familiar two-level atom, is perhaps 
the simplest such model, and so its suitability in cal­
culating physically realistic optical response coefficients 
should be well understood. 

A two-band model has recently been employed in a 
transition rate calculation of the third-order nonlinear 
absorption Lla(w, S1) (the change in absorption at w due 
to the presence of light at S1), from which n2 (w) is then 
obtained via a Kramers-Kronig relation.8- 10 While that 
work has been very successful in explaining the universal 
dispersion of n 2 (w) below the band gap, certain aspects 
of the calculation deserve further investigation. Perhaps 
most striking is the result that the expression for n 2 ( w) is 
formally divergent as w --+ 0; on physical grounds, this is 
certainly not expected for cold, intrinsic semiconductors 
(insulators). The origin of the unphysical divergences 
was associated with a divergence in Lla(w, {}-+ 0), and 
suspected to be due to the use of the velocity gauge. 
While the divergences in the n 2 ( w) expression can in the 
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end be removed "by hand," the necessity of such a heuris­
tic adjustment is clearly unsatisfactory. A better under­
standing of the origins of such divergences, and how to 
avoid them in general, would be quite helpful. Not only 
would this reveal the actual n2(w) and Lla(w, S1) rele­
vant here, but would also insure that similar problems 
do not enter in future studies employing more sophis­
ticated band-structure models, or in studies of entirely 
different nonlinear processes.11- 13 Second, we note that 
the "quadratic Stark effect" enters the previous calcula­
tion quite differently than all other contributions. We 
instead desire a formalism that more symmetrically and 
naturally includes all contributions, so that consistent 
approximations can be more transparently applied. This 
also insures that as new problems are studied one does 
not accidentally neglect any relevant terms. Finally, al­
though the transition rate approach is adequate for the 
calculation of many nonlinear coefficients, we are inter­
ested in a more generally applicable susceptibility for­
malism. 

In recent work14- 16 we have presented a general sus­
ceptibility formalism that can address the various points 
outlined above, and we thus apply it here. From our cal­
culation of x<3l( -w; w, n, -S1} one can obtain both the 
nondegenerate absorption Lla(w, S1) and Lln(w, S1), the 
third-order change in refraction at w due to the pres­
ence of light at S1. Our formalism automatically includes 
all distinct contributions to nonlinear coefficients, and so 
accounts for all Stark effect terms in x<3l. More impor­
tantly, as we have previously discussed, our approach also 
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avoids the unphysical infrared divergences which gener­
ally plague the calculation of optical susceptibilities of 
insulators.14- 16 Hence, denoting the electric field as lEn I, 
we can extract a n2(w) = .6.n(w,w)/1Enl 2 , which is finite 
for w ~ 0, in contrast to the previous work. Further, 
we also obtain two-band model predictions for the de 
Kerr effect .6-n(w, 0), and the virtual photoconductivity 
.6-n{O,O) discussed elsewhere,17 both finite as w,O ~ 0. 
These refractive coefficients are well behaved since our 
.6-a(w, 0) is itself finite as 0 ~ 0, implying that our re­
sults correct the 0 and w dispersions of absorption previ­
ously quoted. Illustrative of this is that our .6-a(w, 0) is 
consistent with the "second-order" contribution to the 
established Franz-Keldysh theory, which describes the 
change of absorption at w due to a de field. 18- 20 

Our main emphasis in this paper is to understand the 
origin of the unphysical dispersions in the previous work, 
and how to correct them as simply as possible. Hence, we 
adopt a similar two-band model and also only consider 

the diagonal tensor component x~~zz. So, in the limit of 
small linear absorption, 21 we find 

2411"2 (3) . ) 
.6-n(w, 0) = In---Re XzzzA -w, w, 0, -0 , 

cn..,nn 

48n2w (3) 
.6-a(w, 0) = In 2 Im Xu.zz ( -w; w, 0, -0), 

c n..,nn 

(1) 

(2) 

where In is the irradiance of light at 0, and n..,, nn are the 
relevant linear refractive indices. The formalism which 
we present, however, can be implemented with more so­
phisticated band structures, and to study other tensor 
components. 6 •22 In the end, we show that it is primarily 
our use of the length gauge which leads to the various well 
behaved expressions, a gauge consequence reminiscent of 
findings in many atomic system studies. 23•24 

After reviewing the general formalism and describing 
the adopted two-band model in Sec. II, we explicitly de­
rive the predicted expressions for the various x<3 > contri­
butions in Sec. III. In Sec. IV we include a discussion and 
compare to previously published results. We sun1marize 
in Sec. V. 

II. GENERAL FORMALISM 

A. Optical susceptibilities for crystals 

The optical properties of solids are commonly studied 
theoretically in the velocity gauge, where the interaction 
enters as -(efmc)p·A, rather than the -er·E appearing 
in the length gauge. 23 This is mainly because extended 
crystalline states cause complications when working with 
the position operator. Nevertheless, there are benefits 
to using the length gauge, and we have shown how its 
implementation need be no more difficult.15•16 The es­
sential points of our approach, which is similar to other 
formulations, 20•25•26 are summarized here. 

The troublesome nature of the position operator in 
crystals can be illustrated by considering its Bloch state 
matrix elements (nklrlmk'); here (rink) = eik·runk(r) is 
an eigenstate of bulk crystal Hamiltonian Ho for band n 
energy li.wn(k), with normalization (nklmk') = dm,.8(k­
k'). It is convenient to separate r into intraband ri and 
interband re pieces, r = ri + re, where for crystals of 

interest here27 

(nklrilmk') = dnm [8(k- k')~nn + iVk8(k- k')J, {3) 

(nklrelmk') = (1- dmn)8(k- k')~nm· (4) 

The soon-to-be-discussed vectors ~nm have an implicit 
k dependence (to simplify notation, we suppress such 
k labels). The highly singular nature of ri, involving 
Vk8(k-k'), generally makes r more difficult to manipu­
late than the momentum operator; note that (nklplmk') 
is simply 

(nklplmk') = 8(k- k')PnTn• (5) 

involving only 8(k- k') regardless of nand m. Further, 
all Pnm can be easily calculated from integrals over the 
unit cell volume v;,, 

while the less familiar ~nn have an ambiguous phase sen­
sitivity, and cannot be as conveniently calculated. 27 

In the end, however, these difficulties in the position 
operator need not prove troublesome. For example, to 
identify re define rnm = (1- dmn)~nm• and use the com­
mutator relation [H0 , r] = i!_p to discover the familiar 
relationship 

Pnm 
rnm == -.--, 

zmwnm 
(7) 

where Wnm = Wn- Wm.28 Secondly, ri is in practice no 
more difficult to deal with than p because one can ar­
range that ri only appears in commutators with simple 
operators S [simple here is defined as meaning that ma­
trix elements of S are analogous to Eq. (5)]. Such com­
mutators [ri, S] have matrix elements of the form 

(nkl[ri, S]lmk') = 8(k- k')i(Snm);k, (8) 

where the ; k operation indicates the generalized deriva­
tive 

This shows that if S is a simple operator the commutator 
[ri, S] is also simple, and can be as easily manipulated as 
p. Finally, as we later show, the diagonal elements ~nn 
never actually need to be explicitly calculated. 

These realizations allow one to easily implement stan­
dard perturbation theory for the density operator pin the 
length gauge for crystals.16 One can then obtain the mean 
microscopic current (j) = Tr(.jp) whose local spatial av­
erage ( (j)) provides the macroscopic polarization density 
P, since dP f dt = ( (j)). From this one extracts the third-

order susceptibility tensor, Pd = X~baEcEbEa. The 
general expression is presented elsewhere16 and shows 
that a diagonal element X~~zz(-WdjWc,Wb,Wa), Where 
Wd =We+ Wb + Wa, can be most conveniently written as 
the sum of four contributions x<3> = xee + xie + xei + xii. 

Here, we assume that only two bands exist, a filled va­
lence band v and an empty conduction band c, and in 
the long-wavelength limit we find16 
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In these expressions w1 = Wa, w2 = Wb + wa, and wa = 
wc+wb+wa; intrinsic permutation symmetry is yet to be 
incorporated. Divergences for w 1 , w 2 , or w 3 approaching 
zero are apparent here. These are similar to the secular 
divergences discussed elsewhere29 since, as we show in 
Sec. IV, the properly symmetrized expressions are finite 
in these limits for the cases of interest here. Lastly, we 
comment that while the splitting of the total x<3> into the 
above four terms is primarily for convenience here, there 
are some conceptual advantages to such a decomposition 
as well.14,16 

B. Two-band model details 

In order to evaluate the above expressions we must 
model the k dependent w.,.,, r~, p~,., and in principle the 
e ..... These quantities should be determined so that they 
are consistent among themselves, and with the two-band 
assumption. These requirements can best be illustrated 
by considering the commutator identity [ra,pb] = ilwab. 
That is, decompose r into intraband and interband com­
ponents, and then take matrix elements of the relation, 
(nkl[ra ,pb]lmk'} = iMab8,.m8(k - k'). Stich matrix el­
ements, and some simple algebra, lead to the following 
two-band relations, 

1 8 2wc 1 ~5ab Wcv { a b a b ) 
A8ka8kb = m +---,; r.,.,r.,c+r.,crcv' (14) 

1 8 2w., 1 ~5ab Wcv { a b a b ) 
/i 8ka8kb = m - T r .,.,r vc + r vcr cv ' (15) 

( b ) 1 ( a 8wc., b 8w.,.,) 
r.,., ;loa=-Wcv r.,., 8kb +r.,., 8ka. ' (16) 

where we have used Eq. (7) and the fact that p':,,./m = 
8w,.j8kb. Equations {14) and {15) are familiar as just 
the (possibly k dependent) inverse electron effective mass 
tensors m~1 and m;1 • Adding Eqs. (14) and {15) shows 
that the two-band assumption imposes a certain symme­
try, m~1 + m;1 = 2m-1 , on these bands. Note, more 
importantly, that the less familiar Eq. (16) can be used 
in Eqs. (10)-(13) so that strictly the e .... never need to 
be explicitly calculated. 

{10) 

(11) 

(12) 

(13) 

Equations (14)-(16) represent the self-consistent two­
band model equations for We, w.,, and r.,.,. Rather than 
obtaining a solution to these equations, it is more com­
mon to adopt a simple model which mirrors the actual 
bands of interest. Hence one often adopts constant diag­
onal effective mass tensors (con.Sistent with m~1+m;1 = 
2m-1 ), which leads to the parabolic, isotropic dispersion 

li2k2 
liw.,., = E9 + -2--, 

m.,., 
(17) 

where m~1 = m~1 - m;1 • Further, the involved valence 
band is considered to be light-hole-like so that the vector 
r.,., is taken to be in the radial k direction;9 its magnitude 
is. then inferred from Eqs. (14) and (15), 

lrcvl2 =( li )· 4m.,.,w.,., 
(18) 

One often also approximates the w.,., in the denomina­
tor above by simply E 9 fli. Unfortunately, although the 
above described model is. often used, it is strictly not con­
sistent with the exact two-band expressions of Eqs. (14)­
(16). One minor problem is the parabolicity of Eq. (17). 
For example, consider the one-dimensional case, and ap­
ply another ; k operation to Eqs. (14) and (15) (equiva­
lently, these are matrix elements of a "higher-order" com­
mutator, (nkl[ri, [r,p]Jink'} = 0), subtract the results, 
and use Eq. (16) to find that 

83w.,., I 12 aw.,., 
8P = -12 r.,., Tk' (19) 

' 
This implies that a parabolic dispersion cannot be ex-
act, which is not surprising since a solution of Eqs. (14)­
(16) is analogous to solving a coupled two-band prob­
lem; such an analysis shows that parabolicity is only valid 
for small enough k. A second problem with the disper­
sion in Eq. (17) and the assumed radial r.,., is the three­
dimensional isotropicity it implies. This is also inconsis­
tent with Eqs. {14)-(16). For example, with this model 
a diagonal element (say, a = b = z) of Eq. {14) has a 
left-hand side which is the constant m~1 , while the right­
hand side is angularly dependent since lr~l 2 oc lz · kl 2 • 
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This shows that, even in the parabolic limit, the isotropic 
dispersion in Eq. (17) is strictly not a possible solution 
to Eqs. (14)-{16).30 

Recalling that Eqs. (14)-(16) originate from the com­
mutator [r0 , pb] = i!Wab, the above inconsistencies can be 
restated more dramatically: the parabolic, isotropic two­
band model does not formally satisfy [ra, pb] = i!Wab. 
Indeed, Eqs. (14}-{16) can be considered sum rules, 
and the above statement is completely analogous to the 
breakdown of the Thomas-Reiche-Kuhn sum rule which 
strictly occurs for the two level atom. 31 Further consid­
erations show that thP- problem can also be viewed as the 
fact that matrix elements of [ri, Pi], [ri, Pe], and [re, Pi] 
are being treated at a different level of approximation 
than matrix elements of [re, Pe]· Despite these problems 
we choose to adopt the simple parabolic, isotropic two­
band model for several reasons. First, we would like to 
compare to previous work9 •10 and so should employ a sim­
ilar band-structure model. Second, the bands of interest 
are well represented by the parabolic, isotropic disper­
sions, while dispersions more consistent with Eqs. (14}­
(16} are qualitatively different. Lastly, this parabolic, 
isotropic two-band model illustrates the common, general 
situation: even in more sophisticated models the band 
structure is approximated as best as possible, and usu­
ally does not represent a self-consistent solution to the 
analogs of Eqs. (14}-{16). 

Hence, aware of the problems with this model, we cau­
tiously proceed and identify possible problems as they 
arise. Realize, however, that we are not limited to this 
simple band-structure model, and our technique could be 
used in the future with more sophisticated band struc­
tures. Indeed, while the isotropic model used here may 
give an adequate description of the diagonal x~~)zz com­
ponents, more accurate band structures should obviously 
be used to study other tensor components.6 •7 

III. EVALUATION OF x<8 >(-w;w,O,-O) 

A. Nondegenerate absorption 4a(w, 0) 

The third-order nondegenerate absorption ~a(w, !l) 
can be obtained by investigating the resonances in the 
imaginary part of x<3l( -w; w, n, -0). Equations (10)­
{13) show that resonances occur when Wcv=w17 w2, or 
w3 , which were defined as one, a sum of two, or a sum of 
three of the frequencies involved, respectively. Here, as 
in the previous work,9 •10 we are interested in 1ifl < E 9 , 

and for definiteness we take both w, n 2:: 0. Hence, res­
onances can OCCur for Wcv=W - {}, W, or W + {}; these 
are labeled the electronic Raman effect, Stark effect, and 
two-photon absorption, respectively. Since some of the 
manipulations involving the ; k operation are not stan­
dard, we describe the calculation in some detail. 

Consider first the w2 resonances, which lead to the 
two-photon absorption and electronic Raman effects and 
are the easiest to obtain and describe. Such w2 reso­
nances are clearly only possible in the xei and xii terms 
of Eqs. (12) and (13). In these equations a ; k"' opera­
tor does not act on the w2 resonant factors, and so does 
not complicate the evaluation significantly; one only need 

use Eq. {16) to reveal the relevant ; k"' affected matrix 
elements. Hence, since we have already implicitly as­
sumed the limit of infinite crystal volume V, each k sum 
in Eqs. (10}-{13) is interpreted in the standard way, ac­
counting for spin, as representing 

!__"' = .2_ J d3 k. 
V L 871"3 

k 

{20) 

The resonances are also treated in the usual way since 
we have assumed that frequencies have a small imaginary 
component, and use the identity 

lim-1- = p!__- i11"8(E). 
•--+OE +if E 

(21} 

Still leaving the incorporation of permutation symmetry 
as a last step, this leads to w2 resonant contributions 

(22) 

-+-( 2 1 ) 
w2 w21 ' 

(23) 

where Wij = Wi- w; and the constant 

(24) 

Now for two-photon absorption w2 = w + n, so WI is 
either w or !l; both must be considered to insure intrinsic 
permutation symmetry. Adding all terms we get that the 
dispersion of two-photon absorption is given by 

T (w + 0)3 ~ 
(Im x) = C w4n4 (w + n - E 9 /'li) •. (25) 

The electronic Raman effect is obtained by simply chang­
ing n to -n, this gives 

R (w- 0)3 !1. 
(Im x) = C w4n4 (w- n- E 9 fli)•. (26) 

Here our only comment is that if we went beyond a simple 
parabolic approximation in Eq. {17) then higher-order 
powers (> 3/2) would be introduced. 

Obtaining the Stark terms requires much more algebra, 
but is not difficult. Resonances at w can come from both 
w3 and wl for this case ofx(3)( -w; w, n, -n), and all four 
terms xee, xie, xei, xii have Stark contributions. Further, 
one must now deal with the possibility that the ; k"' op­
erator acts on a resonant factor, which complicates the 
situation by introducing higher-order poles since 

a ( 1 ) ( )-2 8wcv 
8k" Wcv - W = - Wcv - W 8kz . (27) 

Strictly, we could avoid this problem by using partial 
integrations to move the kz derivative (one can easily 
show that the entire ; k"' operator can be moved in this 
way) away from the resonant factor of interest; in fact, 
such manipulations were used to obtain the particular 
form of xei, xii in Eqs. {12) and (13}, which we have 
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seen simplifies the w2 resonance evaluation. However, 
one must be careful about such partial integrations in 
general since the resulting different expressions, although 
formally equivalent, can lead to different answers in a 
model calculation. This discrepancy arises since, as dis­
cussed in Sec. IIB, the parabolic, isotropic two-band 
model treats matrix elements of [re, Pe] differently than 
those of [r,,pe], [re,Pi], and [r,,p,]; although not ob­
vious, this implies that distinct approximations will be 
introduced into the (partial integration) related expres­
sions. Nevertheless, we can avoid significant problems 
in our scheme by not performing any partial integration 
rearrangements of the adopted expressions. For exam­
ple, the Stark contributions of xe•, x" are evaluated from 
the same expressions [Eqs. (12) and (13)] used to derive 
Eqs. (25) and (26). This insures that the two-photon 
absorption, electronic Raman, and Stark effects are eval­
uated at the same level of approximation, and that the 
0 = 0 limit is then well described; for 0 = 0 the three 
effects are indistinguishable. 

Hence, whenever higher-order poles appear,32 we treat 
them instead by using relations such as 

( 1 )"+1 1 an ( 1 ) 
Wcv - W = n! awn Wcv - W ' 

(28) 

which again let the k sum be easily done for the simple 
pole, and leaving derivatives to be applied in the end. 
This outlines a method which consistently applies sim­
ilar approximations to each of the Raman, Stark and 
two-photon absorption contributions. We admit, how­
ever, that it is still open to the nontrivial objection that 
different, formally equivalent expressions (those related 
by partial integrations) lead to different answers. We do 
not regard this as too troublesome since it is clear that 
the discrepancies are due to the model inconsistencies; 
this is very similar to the situation in a two-level atom 
calculation.31 Further, the answers which arise from the 
formally equivalent expressions are not drastically differ­
ent; either constants arising from angular integrations in 
k space are slightly modified, or extra terms arise which 
can be ignored in light of the parabolic approximation. 
Again, since our main goal here is to compare to the pre­
vious work, we proceed and discuss these points further 
in Sec. IV. 

We simply state our Stark results here, but quote the 
xee, x•e' xei' x" contributions separately in order to allow 
independent verification. From xee we find 

(Im Xee)s = 2C (w - Egfli) l 
w2(w + O)(w - 0) 

-C (w - E9 /1i)-l 
w(w + O)(w- f!) · 

(29) 

We do remark that to obtain the above result one must be 
careful to avoid the w2 = 0 secular divergences discussed 
elsewhere.29 Next we find from xe' and x•e 

while from x•• we have the contribution 

(Im x")s = 2C (w- Egfli)~ 
w3 (w + f!)(w - f!) 

C (w-E9 f1i)l 
-3 

w2 (w + f!)(w - f!) 

_ 4C(w- E9/1i)~ _ 2C(w- E9f1i)~ 
w3f!2 wf!4 

(30) 

(31) 

_ 9C(w- E 9 f1i)l _ 3C(w- E9 f1i)-l. (32) 
w2f!2 4wf!2 

We have found the algebra is simplified by introducing 
permutation symmetry only as a last step, but that it is 
convenient to consider the case w1 = Wg separately from 
wl =1- Wg. The total Stark effect contribution to Im x<3> 

is then (Im x) 5 , which is the sum of Eqs. (29)-(32). 
We can now obtain .6.a(w, f!) from Eq. (2) using the 

result that 1m x<3 > = (Im x)R + (Im x) 5 + (Im x)T. We 
find that each of the two-photon absorption, electronic 
Raman, and Stark effects can be written in the form 

where33 

K= ~ (c:~). (34) 

As previously noticed, this form displays the material 
scaling properties since F2 (x, y) is a dimensionless func­
tion of dimensionless variables, and Ep = 2lp~ 12 /m is 
common for many materials; here IP~I 2 denotes the value 
of IPcvl2 at k = 0.9 Our results for F2(x, y) are summa­
rized in Table I, and will be discussed further in Sec. IV. 

B. Nondegenerate refraction .6-n(w, 0) 

The real part of x<3>(-w;w,f!,-f!) or the nondegen­
erate refraction .6.n(w, f!) could in principle be obtained 
directly from Eqs. (10)-(13). However, we can also use 
a Kramers-Kronig transformation since we have already 
calculated the imaginary part of x<3 l. In this latter ap­
proach, we find that all three of (Im x)R, (Im x)5 , and 
(Im x)T provide a contribution which can be written as 

where G2 (x, y) is again a dimensionless function, 

G ( ) = ~""1oo F2(z,y)d 2 x,y r 2 2 z. 
1T 0 z -x 

(36) 
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TABLE I. Nondegenerate absorption dispersion function F:z(:z:,y) as derived in this paper. The analogous results from Ref. 
10, scaled by a constant factor, are also shown. 

Contribution 

Two-photon absorption 
x+y?:1 

Raman 
x-y?:1 

Stark 

x?:1 

F:z(:z:,y) derived here 

<:t;t {:z: + y- 1}~ 

<:a;t {:z:- Y- 1}~ 

This is similar to the results of Sheik-Bahae et al.,9 and 
all of the relevant integrals can be performed as described 
there.34 Our results for the G2 (x,y) expressions are sum­
marized in Table II and also discussed further in the next 
section. 

IV. DISCUSSION 

In this section we will compare our derived lla(w, 0) 
and lln(w, 0) to those previously quoted in the litera­
ture. Along with understanding the differences in these 
expressions, we also wish to illustrate how our general 
nondegenerate dispersions are consistent with physical 
expectations and with certain well-known results in the 
limits 0 -+ 0 and/or w -+ 0. We begin by comparing our 

F2{:z:,y) of Ref. 10 

<:t;t (x + y- 1}~ 

(z-v)2 { 1)1!. 
~ x-y- 2 

lla(w, 0) with that obtained by Sheik-Bahae et al.,9 •10 

both results are given in Table I. We contrast these dis­
persions in Fig. 1 by plotting their respective degenerate 
two-photon absorption, F2 (x,x), below the band gap; for 
the comparison we have normalized these curves to the 
same peak value. We can identify two distinct reasons 
for the differences in Table I. The first minor difference 
arises since in the previous work9 •10 one or more fac­
tors of w= have effectively been approximated as sim­
ply E9 /1i; these factors arise from the value for lr=l2 , 

or analogously IP=I2 , as in Eq. (18). Such an approxi­
mation is often adopted and not completely inappropri­
ate here as it does lead to the correct material scaling 
prediction. However, the predicted dispersions are mod­
ified by this approximation; if we "correct" the results 

TABLE II. Nondegenerate refraction dispersion function G:z{x, y). We are interested in :z: < 1 andy< 1 here and it is to be 
understood that the {1- x- y) i term in T(x, y) only contributes for 1- :z:- y?: 0. 

Contribution G:z(x, y) derived here 

Two-photon absorption T(x, y) + T( -x, y) 

Raman T(x, -y) + T( -x, -y) 

Stark S(x, y) + S( -x, y) + S(x, -y) + S( -x, -y) 

where ( ) ( z+v )3 { } 1!. [ 1 3 ] ( } l! 9 { } 1 3 ( } - 1 T x, y = ~ 1 - x - y 2 - y;o + yQ 1 - y 2 + 2112 ,.3 1 - y 2 - ~ 1 - y li 

and S(x,y) =- [±+::b) (1- x)~ + ;;::6{1- z)l - -d-,:(1- x)-l - -:b v z v z 2v z sv z 11 z 

1 [ 2 ( ) 1!_ 2 ( ) 8 2 ( ) 1 2 ( ) 1 1 ( ) -1 1 {1 ) _!] +~ r 1 - y 2 - ;J" 1 -X li - ;'I 1 - y 2 + ;-2' 1 -X 2 + 2i 1 - y 2 - :Zz -X 2 
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FIG. 1. The two-photon absorption dispersion function 
FlPA(:c,z) versus z of this paper (solid) is compared to pre­
vious results of Ref. 10 (dashed), which have been normalized 
to the same peak height. 

of Sheik-Bahae et al.9 •10 for this approximation we find 
that their two-photon and electronic Raman dispersions 
agree with our results. In contrast, the similarly "cor­
rected" Stark effect dispersions still differ from our re­
sults, and so a second reason for discrepancies must be 
found. Perhaps the most striking illustration of these 
remaining discrepancies is that the total (corrected or 
uncorrected) .:la{w, 0) of Sheik-Bahae et al.9 •10 diverges 
as {} --+ 0, while our .:la(w, 0) is finite. Indeed, we physi­
cally expect this to be finite for insulators. This quantity, 
or lm x<3>(-w;w,O,O), should be related to the relevant 
(second order in the de field) contribution to the Franz­
Keldysh effect. This situation is also similar to recent 
findings in a Pockels effect study11 where an analogous 
quantity, 1m x<2>(-w;w,O), has also been shown to be 
finite in clean, cold semiconductors. 

The unphysical divergence which plagues the .:la{w, 0) 
of Sheik-Bahae et al.9 •10 as {} --+ 0 also infects their 
.:ln(w, 0). In fact, both are examples of a very 
common problem which we have discussed at length 
elsewhere.14•16 We have shown that such problems are 
a consequence of using approximate band structures and 
opting to work in the velocity gauge. This can be de­
scribed schematically by considering Xp·A and Xr·E• the 
susceptibilities obtained through the velocity and length 
gauges, respectively. We find that 

Xp·A = Xr·E + 'R., {37) 

where as expected by gauge invariance 'R. is strictly zero. 
However, it is easy to show that the vanishing of 'R. re­
lies on commutator identities, such as [r", pb] = ilw"b, 
[rc, [r",pb]] = 0, and so on. Hence, the implied break­
down of such commutators (as discussed in Sec. liB) in 

our approximate two-band model leads to dramatic qual­
itative problems when using the velocity gauge. That 
is, 'R. does not vanish, which proves very troublesome 
since 'R. is also proportional to powers of the vector po­
tential, Ae-i0t = Ee-i0t fO, and so diverges for {} --+ 0. 
Hence, this unphysical divergence is introduced into Xp·A 

through Eq. {37). In contrast, we employ the length 
gauge and find that the formal loss of identities such 
as [r",pb] = iM"b in this two-band model lead only to 
much subtler problems. [For example, recall the discus­
sion in Sec. III regarding the ambiguity in the evaluation 
of Eqs. {10)-{13) if partial integrations are performed; 
similar ambiguities have been noted in a model calcula­
tion for a two-level atom.31] Quite distinct effects seen in 
other systems can also be interpreted as manifestations 
of these same issues.16•23•24•31 •35 In general, the prob­
lems seen here would be avoided if one could instead 
employ an approximate band structure which is consis­
tent with [r", pb] = iM"b, as both gauges would then lead 
to the same divergence-free expressions. As discussed in 
Sec. liB, this is not our main goal and regardless, the ex­
pressions we derive can be considered realistic, physically 
well-behaved approximations. 

Proceeding, we find that after taking the limit {} --+ 0 
we are left with a .:la{w, 0) described by 

which of course is only valid above the band gap, x ~ 1. 
Note that the last term above leads to a strong posi­
tive band-edge divergence, as illustrated in Fig. 2. This 

1.5 
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FIG. 2. A plot of the dispersion of the nonlinear absorption 
change F2(z, 0) versus z above the band gap. 
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is qualitatively in agreement with the Franz-Keldysh 
effect, 18•19 which predicts absorption into the band gap, 
similar to a redshift of the band edge. Note also how this 
constrasts with the band-edge blueshift associated with 
the Stark effect indicated by the negative band-edge di­
vergence of F2 (x,y) for y :F 0.9 Further, we can even 
compare our results somewhat quantitatively with the 
Franz-Keldysh predictions. Of course, the Franz-Keldysh 
theory is formulated by treating the intraband perturba­
tion of the de field exactly, but the weak de field limit of 
the Franz-Keldysh effect (to second order in the de field) 
has also been discussed by Aspnes and Rowe. 20 There 
it is shown that the strong band-edge divergence indeed 
has a (liw- E9)-~ dependence, in agreement with our 
results in Eq. (38). This dispersion eventually leads to 
the familiar result that electrorefiectance resembles the 
third derivative of the linear absorption or joint density 
of states. The additional terms of F 2 (x, 0) which we find 
in Eq. (38) are not described by Aspnes and Rowe20 since 
there many small contributions were neglected. We only 
comment that the alternating signs in the band-edge res­
onant terms of Eq. (38) are already suggestive at this 
second-order level of the the absorption oscillations seen 
in the strong field Franz-Keldysh effect;36 this is also il­
lustrated by the sign reversal in Fig. 2. 

We next consider the nondegenerate refraction 
~n(w, 0) and its comparison to the previously quoted 
expressions. Again we find that the expressions of Sheik­
Bahae et al.9 •10 have certain zero divergences which our 
expressions lack. In the previous work, such divergences 
were realized to be unphysical and were removed in each 
of the electronic Raman, two-photon absorption, and 
Stark effect terms separately. However, our results show 
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-20 .__..__..__..__._..__..__..__._..__..__..__._..__..__..__._..__..__.Ll......J 
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FIG. 3. The dispersion of nondegenerate nonlinear refrac­
tion G:~(z,y) versus z for two values y = 0.2 andy= 0.8 is 
shown by the solid lines. The dashed lined lines corresponds 
to the results in Ref. 10, which have been normalized at zero 
frequency. 

that such a removal is somewhat unphysical as these 
three terms need not be separately finite. Hence, this 
artificial divergence removal makes a direct term by term 
comparison of earlier results9 •10 with our expressions 
meaningless. Further, even the total "divergence-free" 
~n(w, 0) from the previous work will differ substantially 
from our results due to its use of the Wc11 ~ E 9 /li approxi­
mation which we have discussed above. For these reasons 
we instead concentrate on graphical comparisons between 
our results here, and quote the physically well-behaved 
expressions for ~n(w,w), ~n(w,O), and ~n(O,O) which 
we can obtain. 

Our general nondegenerate refraction ~n(w, 0) is il­
lustrated in Fig. 3 for the particular choices lin = 0.2E9 

and lin = 0.8E9 • We have also plotted the correspond­
ing curves from Sheik-Bahae et al./0 where for compar­
ison purposes their expressions are normalized to ours 
at zero frequency. These curves are seen to be quali­
tatively similar, with the most significant difference be­
ing the behavior near the band edge. Consider next the 
special case of the degenerate nonlinear refractive index 
(0 = w), which is equivalent to the n 2 (w) coefficient, 
~n(w) = ~n(w,w)/2 = n2(w)IEwl 2 /2.9 We find that 
the dispersion of this nonlinear self-refractive effect is de­
scribed by G 2 (x, x} = g(x) + g( -x}, where 

8 10 " 8 3 
g(x) = --- -(1- x)' + -(1- 2x)2 

x4 :z:S :z:S 

17 1 2 1 

+-(1- x)•- -(1- x)-• 
x4 x3 

1 3 
--(1- x)-•. 

4x2 
(39) 

Again, this expression is finite at w = 0, and the ex­
pression for n 2 (0) is similar to a previous estimate.37 In 
contrast, the n 2 (w) of Sheik-Bahae et al.9 •10 formally di­
verges, and the divergence had to be removed by hand; 
we compare this against our result (again normalized at 
zero frequency) in Fig. 4. We again see the qualitative 
agreement of the two curves, which is reassuring since 
the previous results are in excellent agreement with ex­
perimental results for many materials.9 •10 New behavior 
in our n 2 ( w) near the band edge may help explain some 
of the experimental data for Al.,Ga1_.,As,38•9 but one 
should remember the crudeness of this two-band model 
and the independent-particle approximation. Indeed, 
even though our results modify the predicted ~n(w, 0), 
as in the earlier work9 •10 we also find that absolute agree­
ment with experiments requires a more sophisticated 
model (for example, including the heavy holes6•7 and pos­
sibly excitonic effects10). Other many body effects which 
will introduce dephasing times and broadening may also 
be important. 

Our physically well-behaved expressions also allow us 
to unambiguously evaluate ~n(w, 0), which describes the 
de Kerr effect, or the change in the refractive index at w 
to second order in the de field. Again we note that the 
results of Sheik-Bahae et al.9•10 are formally divergent in 
this 0 -+ 0 limit, but here we find G 2 (x, 0) = k(x) + 
k(-x), where 
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FIG. 4. The nonlinear refraction dispersion G2(z, z) versus 
z predicted in this paper (solid) and from Ref. 10 (dashed), 
which has been normalized at zero frequency. 

As we now expect, this expression is itself finite in the 
limit :z: -t 0. Further, Eq. (40) is consistent with the 
Franz-Keldysh-type predictions which also display the 

w-2 (E9 -liw)-l band-edge divergence.20 We have plot­
ted this de Kerr effect dispersion in Fig. 5; a compari­
son would show the general similarity of this dispersion 
to the below band gap clamped lattice calculation for 
x<2>( -w; w, 0) of Ghahramani and Sipe.11 A quantitative 
comparison of this curve with experiment would be inter­
esting, although again this simple model employing only 
two bands and neglecting excitonic effects may not be 
able to account for the absolute magnitude of the effect. 

Lastly, we can also obtain from our general nonde­
generate nonlinear refraction an expression for G2 (0,y), 
which describes the virtual photoconductivity effect 
x<3 l (0; 0, -0, 0) discussed elsewhere.17 Yablonovitch et 
al. 17 argued that one should expect a formal similarity 
between G2 (0, y) and the de Kerr effect, G2 (:z:, 0). In 
fact, if we evaluate the virtual photoconductivity from 
our an(w, 0) in thew = 0 limit, we do indeed find that 
G2(0, y) = G2(y, 0), as given in Eq. (40). This might have 
been expected from the more general symmetry between 
:z: and y shown in Table II, which is consistent with an 
overall permutation symmetry in this crystal problem. 39 

We end by noting that since G2(0,y) is finite, a de po­
larization exists but that strictly there is no de current 
here for y :5 1.16 
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FIG. 5. A plot of the below band-gap de Kerr effect 
G2(z, 0) versus z. 

V. SUMMARY 

We have shown how physically realistic expressions for 
the coherent third-order optical response of semiconduc­
tors can be rigourously obtained in the length gauge using 
a simple two-band modeL The length gauge has allowed 
us to obtain the nondegenerate absorption and refraction, 
aa(w, 0) and an(w, 0), in a form which exposes their 
true behavior at w = 0 and/or 0 = 0. This has led us 
to obtain the third-order contributions corresponding to 
the Franz-Keldysh effect, the nonlinear refractive index, 
the de Kerr effect, and the virtual photoconductivity, as 
well as identifying the finite two-band model prediction 
for an(O,O). 

In addition, the manipulations involved here have more 
clearly exposed the consistency requirements of simple 
band-structure models, and clarified some of the conse­
quences of the gauge choice. Although we have explicitly 
described only a two-band model, even multiple-band for­
mulations often encounter unexpected unphysical diver­
gences whose origin can be explained by the same issues 
considered here. Further note that, while here our di­
vision of x<3l into xee' x'e' xei' and x" components is 
mainly for convenience, elsewhere16 we have shown how 
this can be used to better understand the relationship 
between the optical response of crystals and the analo­
gous responses of atomic and free electron gas systems. 
Finally, we state that our technique can also be used in 
conjunction with more sophisticated band structures in 
order to look at other x<3l tensor components, as well 
as entirely different nonlinear properties. Several such 
applications are currently being developed. 
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