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Abstract-This paper presents a theoretical study of fifth-harmonic 
generation (FHG) in an isotropic media. Two schemes are discussed- 
cascade generation in which the  fifth harmonic results from successive 
nonlinear interactions in two separate elements, and direct generation 
where the fifth harmonic is produced in an isotropic media with third- 
and fifth-order nonlinear susceptibilities. In the plane-wave  approxima- 
tion almost full conversion of the pumping  energy into the fifth har- 
monic  is  found to be possible. FHG with a focused Gaussian  beam is 
also investigated. To determine the optimum conditions  for FHG in 
the cascade scheme, the theory of four-wave mixing of light beams with 
arbitrary confocal parameters  and waist locations  is developed. In 
media with third-  and fifth-order nonlinearity, the  fifth harmonic re- 
sults from step and direct processes. The interference between these 
two processes is discussed. Numerical calculations are presented for 
metal vapor-gas mixtures and Nd:glass laser  pumping radiation. 

I. INTRODUCTION 

M ETAL VAPORS and  inert gases have recently been 
utilized as efficient nonlinear media for optical har- 

monic generation and mixing [l] -[3]. Coherent radiation in 
the W and V W  has  been  produced and theoretical considera- 
tions  predict  that this technique can be extended into the  soft 
X-ray range [ l ]  , [4]. Up to the  present  time, all nonlinear 
frequency conversion techniques have been based on  the 
utilization  of both second- and third-order nonlinear processes. 
However, the high power densities afforded by picosecond 
laser pulses permit  the consideration of higher order nonlinear 
optical polarizabilities for  the generation of still higher order 
harmonics  with greater incremental  steps  through  the  fre- 
quency  spectrum.  For  the improvement in the efficiencies of 
these processes, atomic systems should be selected in order to  
gain maximum advantage from specific relationships between 
their resonance lines and the  interacting frequencies. In addi- 
tion,  the existence of phase-matching conditions is desirable. 

It is important to note  that  in a system using higher order 
nonlinearity when phase matching for the direct process is 
achieved, the phase-matching conditions  for  the step processes 
produced by lower order nonlinearities as a whole  are also 
fulfilled, even though each step is individually considerably 
mismatched [SI , [6] . If we are interested in increasing the 
efficiency of higher order nonlinear conversion techniques 
care must be taken in considering all  possible coherent  inter- 
ference effects  between  the individual step processes and  the 
direct process. 

In this paper a detailed theoretical analysis of fifth-harmonic 
generation (FHG) in  an isotropic nonlinear medium is pre- 
sented. Although FHG has already been experimentally inves- 
tigated with an Nd : glass laser, relatively low conversion efficien- 
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cies  have been recorded [7] -[9] . In the present case two 
possible methods  of generation are considered. In  the  first,  a 
system consisting of  two separate cascades is employed to gen- 
erate  the  fifth  harmonic.  In  the second case, FHG in amedium 
having third- and fifth-order polarizabilities is investigated. 
Numerical calculations have been performed for the genera- 
tion of the  fifth  harmonic (A5 = 0.212 p) of Nd:glass laser 
radiation which are also applicable to the case of the Nd :YAG 
laser. The production of powerful radiation having a wave- 
length of 0.2 12 p is of interest because this wavelength is  close 
to the VUV limit, and consequently,  quartz optics can be 
employed for  further  optical processing. In  addition,  this 
radiation can also  be used in the generation of higher har- 
monics such as h5 /3 = 706.7 ii and X5 IS = 424 a. 

In Section 11, the phase-matching technique is discussed. 
I t  is shown that  the use of  a  mixture of more than  two gaseous 
components  permits simultaneous phase-matching conditions 
to be met  for more than one nonlinear process in a single cell. 
This would be very useful in  the VUV where technical prob- 
lems may arise when several different cells  are used. 

FHG in the cascade of  two separate nonlinear conversion 
media is  discussed in  Section 111. A detailed analysis is made 
of four-frequency mixing of Gaussian beams with  arbitrary 
confocal parameters.  The numerical results show that  the 
most  efficient case occurs when equal  confocal parameters 
for all interacting waves are provided. 

In Section IV, FHG in a medium with  third-  and  fifth-order 
nonlinearity is considered. It is found that, in the plane-wave 
approximation, -90-percent conversion efficiency is possible. 
FHG of a focused Gaussian beam is analyzed, and competing 
processes arising from the existence of  third- and fifth-order 
susceptibilities are discussed. 

Many of the results obtained in this paper may be extended 
for processes of higher order. 

11. PHASE-MATCHING  TECHNIQUE  FOR 
MULTISTEP PROCESSES 

In various gaseous systems, phase matching  has been achieved 
by mixing two  components, one having negative dispersion 
and the  other positive dispersion [ l ]  -[3] . In gases and vapors 
at low pressure the  absorption  and  the variation of the re- 
fractive index is significant only in the region of spectral 
resonances and  the  continuum.  Far  from resonance the dis- 
persion is weak. This permits  the use of  a gaseous system for 
frequency conversion over a wide spectral range. To date, 
phase-matching conditions for a single nonlinear process have 
been realized only for  a two-gas (vapor) mixture or for a gas- 
vapor mixture. It is our intent to show that if a gaseous sys- 
tem of more  than two components with suitable resonances 
is employed, phase-matching conditions for several  successive 
nonlinear processes can be  achieved in a single cell. Although 



5 2 2  IEEE  JOURNAL OF QUANTUM  ELECTRONICS,  SEPTEMBER 1976 

the  production of a homogeneous mixture of  several metal 
vapors and gases with specific relative concentrations may 
pose some problems, already, some progress has been made in 
this area [ lo] ,  [ l l] .  

Fig. 1 shows the variation of the refractive index n with 
wavelength for  a  mixture  of  sodium,  cadmium, and xenon in 
the  ratio 1 :2.86:  117.5, respectively. This mixture is simul- 
taneously phase matched  for  the following processes: 

o + o + w = 3 w   w + 0 + 3 w = 5 w  

w + o + w + w + w = 5 w  (1) 

where is the frequency of Nd :glass radiation. Note that the 
resonance line for Na (0.589 p) is situated between 1.06 and 
0.353 p,  and that of Cd (0.229 p), between 0.353 and 0.212 p. 
Xenon is positively dispersive  over the region of interest and is 
added in suitable proportion to compensate for  the negative 
dispersion of the  metal vapors. Although a  mixture of Na and 
Xe can provide phase matching for FHG (see  Table  I) when 
phase matching for THG  is met, the  mixture has n1 = n3 but 
nl  < n5 and is consequently positively dispersive from the 
point  of view of FHG. However the  addition of Cd which is 
negatively  dispersive provides n1 = n 5 .  At a  temperature T E 

555 K,  the ratio of  saturated vapor densities of Cd and Na is 
N c ~ / N N ~  = 2.86 and the use of  a relatively simple heat pipe is 
required for  the  production of phase-matched mixtures. But 
at this temperature  the  concentration of sodium atoms, 
N N ~  l O I 4  atom/cm3, is too small for good conversion effi- 
ciency. The saturated sodium vapor density is NNa = IOl7 
atom/cm3 at T E 810 K, and then NCd/NNa = 3.35.  In this 
case, a more complicated technique would be required for 
phase matching since the cadmium vapor would have to be 
unsaturated. In experiments where tight focusing is em- 
ployed,  the necessary phase-matching ratio will be variable, 
and some flexibility in operating parameters may be obtained 
by varying the  temperature  and focusing conditions. One can 
expect additional technical problems to arise when different 
metals are used, since not all combinations of two-metal va- 
pors mix homogeneously [ 121 . 

In the  mixture considered above, substitute vapors may be 
possible: sodium can be replaced with some other alkali metal 
(Na  has the smallest absorption  at 0.212 p), cadmium can  be 
replaced with Mg or Zn (Nxe/N~, = 57, N M ~ / N N ~  = 1.65; 
Nx,/NN, = 146, NNa/Nz, = 1.87). Zn is  of particular interest 
because its strongest line (0.2138 p) is close to  the  fifth- 
harmonic wavelength h5 = 0.212 p.  

If we add argon to the  mixture  of  Cd, Na, and Xe, simul- 
taneous phase matching for  the processes (l), and the fol- 
lowing processes 3w + 3w + 3 0  = 90, w + 3w + 5 0  = 9w, 
w + w + w + w + 5 w = 9 w ,  and w + w + w + w + w + w +  
w + w + w = 9 0  is also possible. In such a  mixture  the 
single-photon absorption cross sections for  the wavelengths 
of interest ( A l  = 1.06 p,  h3 = 0.353 p ,  h5 =0.212 p, and 
h9 = 0.1178 p) are all less than 0.2 Mbn (0.2 X lo-'' cm2). 
The ninth harmonic produced will result from the  coherent 
interference of both individual step and direct processes in- 
volving odd nonlinear susceptibilities from the  third to ninth 
order. Obviously the way these processes interfere will deter- 
mine the overall efficiency of the optical convertor. 
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Fig. 1. Refractive indices of Na, Cd, Xe, and  mixture of 1 part Na + 

2.86 parts Cd + 117.5 parts  Xe versus  wavelength. 

Finally, we note  that by suitable arrangement of the con- 
figuration of the  heat pipe oven, several different zones could 
be realized, each satisfying phase-matching conditions  for dif- 
ferent nonlinear processes. For example, in a phase-matched 
mixture  of  a  metal vapor and an inert gas, the  inert gas itself 
can be a  mixture of several  gases satisfying other phase- 
matching conditions. In addition, it may be  possible to 
locate, in one heat pipe oven, several different, physically 
separated zones of  metal vapor-gas mixtures. 

111. FHG IN Two SEPARATE STEPS 
Nonlinearities of second, third, and fourth orders may be 

employed to generate the  fifth  harmonic in a cascade system 
[6] -[9] . Phase matching  for each step is provided in separate 
nonlinear elements. Several combinations are possible. Here 
we will  discuss two of them in which an isotropic nonlinear 
media is employed in at least the final step: 

1) first step: tripling w + + w = 3w, and second step: 

2) first step: doubling w + w = 20, and second step: 
mixing w + w + 3 0  = 5 0 ;  

mixing w + 2 0  + 2 0  = 5w. 

For  a plane-wave approximation [ 131 

Ei =Ai  exp ( i q t  - ikiz). (2) 

Each one of the above processes can separately permit 100- 
percent conversion efficiency. To achieve maximum effi- 
ciency for  the  combination  of  two processes, additional re- 
quirements have to be met. Without detailed analysis, we 
will determine the  conditions  for full conversion of the  funda- 
mental radiation to  its  fifth harmonic for  both schemes. 

A .  Plane- Wave Approximation 
We assume that in both steps an optimal relation between 

the phases of the  interacting waves exists. At the  input of the 
two-step system it is  assumed that A (0) = A  A ,  (0) = 
A3(0)  = A 5  (0) = 0 (here the subscripts 1,  2,  3, and 5 refer to 
the wave with frequencies w ,  2w, 3 0 ,  and 50, respectively). 

First we discuss scheme 1). At the  output of the first step 
( z  = L ) we have for  the amplitudes 
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where Calculated phase-matched ratios in a  mixture of xenon and 
L length of the first nonlinear element; some metal vapors are presented in Table I  for  the  type of 
u3 = 1 8 ~ o ~ ~ ( ~ ) / k ~ ~ ~  ; interactions considered here. 
c velocity of light; 

x ( 3 )  nonlinear susceptibility of the  third 
order for  the process w + w + w = 3w; 

L30 = (U,?A;~)- '  characteristic interaction  length; 

and atL1/LBo =3jA3(L1)=0.95Alo .  
We assume linearly polarized light waves in the same direc- 

tion;  then the vector nature  of  the electric field as  well  as the 
tensor nature of the nonlinear susceptibilities may be ne- 
glected. The amplitudes of the  interacting waves  in the 
second step are described (in the slowly varying envelope 
approximation) by  the coupled wave equations 

where 

u$ = 2 n w 2 ~ ' ( 3 ) / k l ~ 2 .  

It should be noted  that  the nonlinear susceptibilities and 
x '('I may be significantly different since in the mixing process 
we have three different frequencies which may permit more 
optimum use of  upper  atomic levels. The features of  the 
solution of (4)  are determined  by  the ratio A l ( L l ) / A 3 ( L 1 ) .  
Full conversion efficiency of the two-cascade system is ob- 
tained when,  at  the  input to the second step one has 

Aq(L1)=0 .4A;o   A i (L1)=0 .6Aqo .  (5) 

In this case the second-step output amplitudes are 

A , ( L , ) = r n  A 10 
dl + L;/L;o 

here 

LzO = (m ui 
Obviously when L2/L20 >> 1 one has A5 (L, )  E A  and all 
fundamental wave energy is converted into  its fifth  harmonic. 

When the same analysis is applied to  the second scheme it 
is found  that  full conversion efficiency is achieved when after 
the first step (doubling) the amplitudes are 

A ; ( L l ) = 0 . 2 A ; o  A;(Ll)=O.8A:O (7) 

The physical interpretation  of ( 5 )  and (7) is quite clear in 
photon terminology: ( 5 )  shows that at  the  input of the second 
step,  the  number  of  photons with energy 3ho must be a half- 
integral of those with energy hw, since in every elementary 
interaction one 3hw photon is coupled with twohw photons 
and produces a 5 h w  photon. Similarly, from (7), the  number 
of  photons  with energy 2 h o  should be twice those of hw. 

B. Four- Wave Mixing by Gaussian Beams 
The high power densities required for  efficient higher order 

nonlinear processes in vapors and gases are achieved by focus- 
ing. Since second-harmonic generation (SHG) and third- 
harmonic generation (THG) in focused beams have been 
studied in detail elsewhere [ 141 -[ 171 , only four-wave mixing 
which takes place in the second step will  be treated in detail 
here. Bjorklund 1181 has recently presented a rigorous treat- 
ment  of four-wave mixing in an isotropic medium. In his anal- 
ysis, identical confocal parameters and identical waist locations 
for all fundamental  light beams were assumed. Here we ex- 
tend this  treatment to include the cases of interacting beams 
with  arbitrary confocal parameters and  different waist loca- 
tions. In mixing experiments  the wavelengths of  the  interact- 
ing beams may differ considerably, and with  equal confocal 
parameters (bi = kiwfo) the short-wavelength beam  will 
spatially overlap a smaller region of the longer wavelength 
beam. This might suggest that  the signal power could be 
increased if  the volumes of the focal regions are more equal 
for all three beams. 

In  addition it is necessary to determine how critically the 
output signal power depends upon  the  mismatch between 
focal spot  positions of the  interacting beams. These two 
points will now be addressed for  the second step of the FHG 
cascade. 

We will study  the process of four-wave mixing w, t wp t 
wy = w, with wave vectors 

k , + k p + k , = k , + A ,   ( l A l < < k i ) ,  j=a , /3 ,? .  (8) 

The  fundamental beams at a,, up, and wy are  assumed to be 
lowest order Gaussian modes which propagate concentrically 
along the z axis oriented normally to the nonlinear media 
surface as in Fig. 2. The cross section of nonlinear media 
considered infinite relative to the beam diameter. Similar 
refractive indices for  both linear and nonlinear media y e  
assumed. If a Gaussian beam passes through  a thin spheridal 
lens located  at z = 0, then  the amplitude of the beam is de- 
scribed by  the expression i 

Here wi is the radius of the  beam, Ri is the radius of  the beam 
wavefront after passing through.the lens. It is defined by  the 
curvature of the wavefront before the lens and the foc,al 
length of the lens. The three fundamental beams propagate 
along the z axis and may have arbitrary confocal paramet& 
and arbitrary waist locations.  The  absorption  for all !re- 
quencies and  the  depletion of the  fundamental beam ami&- 
tudes by the nonlinear process are neglected. ' I  ', 

Under these assumptions the propagation of a Gaud& 
beam is described by  the  equation I ,  ,. ' ! 

I /  

($5) 
I 8  

The  solution of (1 0) for the initial condition (9) is 
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TABLE I The  equation describing the behavior of the signal ampli- 
THE PHASE-MATCHED’  RATIO OF Xe TO METAL ATOMS FOR THG AND tude A ,  is FHG OF Nd:GLAss LASER  RADIATION (hi = 1.06 p) 

metal 

Rb 

Ca 

Cd 

Zn 

“+W+O = 3 w  

152.7 

150.4 

325.3 

412.5 

660.7 
242.4 

NXe’Nmeta 
+ W + 3 W  = 5 w  

12 .6  

9.6 

31.5 

39.8 

70.9 

34.4 

2 8 . i  

255.6 

2 w t 2 w t w  = 5w 1 W + W + U + l “ + W  = 5w 

I 
3 3 . 3  

30.2 

75.6 

95.8 

11.8 1 160.1 

58 .3  j 31.9 

33.1 I 31 .1  

2 : : : :  ~ 215.2 

1 5 . 6  

[At --!- (2 t s)] A ,  = -iuA,ApA, exp ( - iAz)  
az 2k, ax2 

(14) 
where (T = 2.rr0,2x’(~)/k,c~. With the initial conditons, 
A,(x, y ,  E l )  = 0, Ai = A ~ ( x ,  y ,  E l )  at  the interface z = Z l  , the 
solution of (14) is 

As(x, y ,  z )  = -i 
oA,oApo A y 0  

4 

( 1  5) 
‘The  refractive  index  of  Xe was  derived from  the Koch  formula [ 171 ; 

the refractive  index of metal  vapors was calculated  from the standard where 
Sehe ie r  equation  and  data as follows: alkali metals [ 171, Ca [24], Cd 
V51, Mg [261, Zn W I .  1 1 7 - 2  t i - ,  

4 (g, +gp +gy> 2k, 

Fig. 2. Fundamental  beam focused at z = fi in an  isotropic nonlinear 
medium.  Focal spot radius at fi is wio. 

where 

is a dimensionless measure of the beam cross-section variation 
along the z axis due to focusing and diffraction. If one trans- 
lates the beginning of the  coordinate system to the  point f i  
(Fig. 2 )  where the beam cross section is a minimum (focal 
spot)  with  the  substitution 

Q(7) = t ; , (d  t p ( 7 )  t ; y m  (go, +gp +gy>. 

Integrating over the  intensity  distribution gives the signal 
power P,: 

(16) 
Pio = 16AjoA,?j/cniw,? is the  fundamental beam power at 
frequency wi. 

In  further calculations we  will neglect the difference be- 
tween indices of refraction except  in  the expression for A.  

The expressions for  the signal amplitude ( 1 5 )  and signal 
power (16) can be extended  in  a very  simple  way for  the 
other four-wave interactions, such as 

1 )  for  the process w, i- wp - wy = os, k ,  t kp - kr = 
k, t A by the following replacement: 

Ayo  -fAy*o, gy ’g;, E T + ; ;  

{ . = - ( z - f i )  L 

I bi 

2 )  for the process O, - up - wi = a,, k ,  - kp - k ,  = 
( 1 2 )  k ,  t A by the following replacement: 

then A p o  +Ap*o, AyO +A?O, gp +g;, gy +g;, 

Bjo ki(X2 + y 2 )  E p + t ; P * ,  t y  -E;.  
A~(X~Y~<i)=-exp (- ) 

1 - iti bi(l - i{i) ( 1 3 )  Thus the formulas (15)  and (16) describe the signal ampli- 
tude and the power for all types of four-wave interactions in 
an isotropic medium between coaxial Gaussian beams with 
arbitrary confocal parameters and beam  waist locations on 
the z axis. 

Simplification of these expressions must be performed 
is the electric field amplitude at the  center of the focal spot explicitly for each experimental situation. I t  is seen that 
(0,  0 ,  f i )  and bi = 4/kja7 = kiwfo is the confocal parameter, in most cases the signal is not of a lowest order Gaussian 
ai being the far-field semiangular spread of the beam. mode. 

where 

Bio = Ajo [ (3 - i) $1’ 
ki w,? 
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Here we present in detail the dependence of the sum-mixing 
power P, on the beam confocal parameters and on  the posi- 
tions of the beam  waists for  FHG. Numerical computations 
have been performed  for  different values of the parameters 
of interest.  In order to determine the  optimum conversion 
efficiency for a practical system, special attention was paid 
to  the following three  situations: 

1) equal confocal parameters b,  = bp = b y ;  
2) equal cross section of  the beam waists wa0 = wpo = w y o .  
3 )  equal volume of the beam waist regions b f f w i o  = bpwio = 

b, w;o. 

For  the  most  efficient of these three configurations, the 
dependence of  the signal power P, on the relative beam focal 
spot  positionsfi was studied. 

For this purpose some new parameters in (16) will  be 
introduced. If the distance between focal spot fi  and input 
surface (Fig. 2) of the nonlinear medium is lo ,  the  parameter 
d = Zo/L will define the minimum spot size position.  The 
focal points fp  and f ,  are on  the z axis and fp - f, = t i p o ,  
f, -fa = B y o .  and By0 are pemitted  to be either nega- 
tive or positive depending on the positions of fp and fy relative 
to fff . 

Substituting 

2 
l ) = p f f f )  (17) 

(1 6)  becomes 

1280~P~oPpoP,okpk~(l t tp t t,) 
C 2  

P$ = 

and 

where 

qi = Lfbj is the focusing parameter. 

and  the focal spots coincide ( S p  = 6, = 0), then (19) becomes 
When the confocal parameters are equal ( b ,   = b o  = b y )  

an integral which has been investigated elsewhere [ 151 -[ 181 . 
It should be noted, however, that only in this case  is the 
resulting beam in a single  Gaussian mode.  For any other  con- 
figuration a  multimode output results due to the mismatch 
between the size and position of confocal parameters of  the 
interacting beams and  the induced polarization. 

For  the evaluation of Jo as a  function  of AL/2  for various 
sets of other parameters we have employed a  fast Fourier 
transform [19] . Numerical calculations of the integral (19) 
were performed  for FHG for  the  interactions w t w t 3w = 
5 0  and w t 2w t 2 0  = 5w. In the expressions to follow the 
indices a, 0, y, and s will  be replaced by 1,2,3,  and 5 for the 
fundamental, second harmonic,  third  harmonic,  and  fifth har- 
monic, respectively. In  the first interaction  the  two waves of 
the  fundamental frequency are identical,  thus tp = 1, t ,  = 3 ,  
41 = 4 p ,  and 6 p  = 0. We believe, as pointed out in [ 1 7 ] ,  that 
when tight focusing is employed and the focus position is 
far enough from both ends of the nonlinear medium 
(l/qi < d < 1 - l /qj ) ,  the value of Jo is almost independent 
of the  exact position of the  focus. In our  calculation, d =.; 
was chosen. The calculated products q1q3Jo are plotted in 
Fig. 3 for  the confocal parameter 41 = 20 and the  step 
6(AL/2 )  = 71. To obtain the confocal parameter configura- 
tion  mentioned above the confocal parameter of the  third 
harmonic and  its waist location were changed as indicated in 
the corresponding curves in Fig. 3. In curve q3 = 20 the 
maximum value occurs at AL/2 IT 67r which corresponds to 
A N 2/bl  obtained from the analytical approximation  for 
infinitely tight focusing. The maximum of 41 q3J0 at given 
confocal parameters moves towards smaller values of AL/2 
when q3 < q l  and towards larger values of AL/2  when 
q3 > q 1  . In both cases its  absolute value decreases. 

For equal confocal parameters q r  = q 3  = 20 we  have cal- 
culated the influence of the focal spot mismatch on  the 

t - ( 1  - iq,x) (1 - i4yx + i6,q,) 4ff 
tp qP 

t - ( 1  - i4,x) (1 - iqpx t iSpqp)  qf f  
t r  qY 
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1 .  
,q,=zo, a3=o.2 

0 4 8 12 16 20  24  28 

/I L/2 T 

Fig. 3. Function 41q3Jo versus A L / 2 n  for sum-mixing w + w + 
3 w = 5 w .  q1 = q3 = 20. Curve 4 3  = 20, corresponds to equal con- 
local parameters; 93 = 20/3, equal cross sections of the  beam waists; 
43 = 2 0 / f l ,  equal beam waist volumes. 

signal power. Two curves are shown in Fig. 3. For 6 3  = 0.02 
the maximum of 4143Jo decreases by -3 percent and at 
t i3  = 0.2, q143Jo is -30 percent of its  optimum value. From 
these and other calculations with  different h 3  we conclude 
that the accuracy of coincidence of the focal spots  for w and 
3w needs to be better  than 0.1 bl . 

Fig. 4 presents the results for q1 = 1. The maximum value 
of 4143JO occurs again for equal confocal parameters q1 = 
q3 = 1. For weaker focusing the sidelobe structure is more 
evident. It was found  that 4143JO decreases  less than 2 per- 
cent when a mismatch 62 = 0.2 was included.  Thus one can 
expect that with weaker focusing conditions  the influence of 
focal spots mismatch will decrease. 

The results for  the  interaction w + 2 w  + 2 0  = 5 w are 
plotted in Fig. 5 .  Here to = t, = 2 , 4 ~  = qy = 4 2 ,  and 68 = 6,. 
It should be noted  that  the curve with q1 = q3 = 20 is the same 
for both interactions as follows from (20). With variation of 
the parameters q2 and  the behavior of q:Jo is similar to 
that  for  the  interaction w + w + 2 w = 5 0. The  same accuracy 
of focal spot coincidence as above is  also required. 

Thusit is seen from these calculations that the  fifth-harmonic 
power has its maximum value for equal confocal parameters. 
Although we have no analytical proof we believe this to be the 
general  case for  the four-wave sum-mixing process. 

IV. FHG IN ISOTROPIC MEDIA WITH THIRD- AND 

FIFTH-ORDER NONLINEARITY 
In this section FHG in an isotropic medium with nonlinear 

polarization expressed as 

PNL = x(~)EEE -t x(’)EEEEE (21) 

will be considered. 

taneous processes: 
In such a medium the  fifth harmonic results from  two simul- 

1) the  step processes  involving the  third-order  nonlinearity 

w t w t w = 3 0  and w + w + 3 w = 5 w  

kl  +  kl + kl = k3 t A13 kl t kl t k3 = k5 + A135 (22) 

2) the direct process involving the  fifth-order nonlinearity 

- 2 - 1  0 I 2  3 

* L/2 II 

Fig. 4. Function q1q3Jo versus A L / 2 n  for sum-mixing w + w + 3w = 
5 w ?  4 = q 3  = 1. Curve q3 = 1 corresponds to equal confocal param- 
eters, 4 3  = *, ,equal cross section of the beam waists; 4 3  = l/fi, 
equal beam wast volumes. 
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Fig. 5. Function q$Jo versus A L / 2 n  for sum-mixing w + 2 w  + 
2 w = 5 w.  q1 = 20. Curve q2 = 20 corresponds to equal confocal pa- 
rameters; q 2  = 10, equal cross section of the beam waists; q 2  = 
2 0 / J z ,  equal beam waist volumes. 

where, obviously, A I 3  + A135 = A, ,  . 
We have shown in Section I1 that with the use of suitable 

combinations of vapors and gases, it is  possible to obtain dif- 
ferent values  of the wave-vector mismatch including A13 = 
A135 = A15 = 0. In Section 111-A it was found  that when the 
cascade system is used it is  possible to convert all the energy of 
the fundamental frequency to its  fifth  harmonic.  It is there- 
fore interesting to determine what the maximum conversion 
efficiency would be for only a single  cell  having nonlinear 
polarizability described by (21), under the same  plane-wave 
approximation. 

4. Plane-Wave Approximation 
From Maxwell’s equation  for  a lossless nonlinear medium, 

with a polarizability expressed by (21),  the following set of dif- 
ferential equations  for coupled amplitudes of the  interacting 
waves are obtained [ 131 : 
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%= - i o l A f 2 A 3  exp iA13z  - io;AT4A5 exp i A 1 5 z  
dz 

- io:AfA$A5 exp iA135z  

dA 3 -= -iu3A: exp - i A 1 3 z  - iozAT2A5 e ~ p i A ~ ~ ~ z  
dz 

dA 5 

dz 
-= -  iu5A: exp - i A 1 5 z  - iu4AIA3 exp - i A l B S z  (24) 

where 

u1 = 6 n o ~ ( ~ ) / c n ~ ,  u3 = 6 r r o ~ ( ~ ) / c n ~ ,  

0:' = 4 n w ~ ' ( ~ ) / c n ~ ,  az = 6 n o ~ ' ( ~ ) / c n ~ ,  

u4 = 1 0 n o x ' ( ~ ) / c n ~ ,  a; = 1 0 n o x ( ~ ) / c n ~ ,  

u5 = 1 0 n w x ( ~ ) / c n ~ .  

We have performed a numerical integration of (24), which 
has been verified by using the usual energy balance equation 
for  a lossless medium: 

IA ( z )  1' + (A3  (2) l2 t IA5 (2) 1' = constant (25) 

to an accuracy of  better  than  1  percent. Numerical integration 
is  possible in  complex numbers but, in the present case, the 
following procedure was adopted.  Introducing  the real ampli- 
tude  and phase of the waves, then 

Aj(z) = A;(z) exp (ie,(z)) (26) 

and through normalization 

ai(z)=A;(z)/A;(O) . ? = ~ U ~ A ~ ~ ( ~ ) = Z / L ~ ~ .  

The coupled amplitude  equations (24) then become 

sin ($ - 4) 

U ~ O  = u ~ A ~ $ / c J ~ ,  0 5 0  = 05A%/03 3 

$ =  3e1 - e 3  - ~ 1 3 2 ,  + = 5e1 - e5 - ~ 1 5 z .  

These equations have been numerically integrated  for param- 
eters corresponding to a nonlinear medium consisting of a  mix- 
ture  of Na, Cd, and Xe. Difficulties arose in defining some of 
these parameters due to a lack of knowledge of  the principle 
nonlinear susceptibilities. We assume the atomic susceptibili- 
ties x$3) = x:(3) = 8.5 X ESU, calculated by Eicher [20] 
for tripling of h = 1.06 1.1 in Na. In addition we note  that  in  a 
mixture of Na + Cd + Xe the  contribution to and ~ ' ( ~ 1  
from Xe atoms can be neglected but  the  contribution  from Cd 
atoms might be comparable and even greater than  that of Na 
atoms, especially in x ' (~ ) .  Much more uncertainty arises in 
x('). FHG in gases  was reported by Harris [4] but  no esti- 
mates of x(') were  given. Calculations using perturbation 
theory have yielded for sodium xi5)= 6.7 X ESU [21] . 
In  the present case, for lack of  better values, we will  assume 
similar  values for susceptibilities x g ) ,  x $ 3 ) ,  and xi5) for Cd 
and Na. Thus,  for  a  fundamental power density of  2 X lo1' 
W/cm2 (limited in  the case of Na by multiphoton  ionization 
[2] ) one obtains 

ulo = 020 = 1, oY0 = 0.667, 

040 = 1.667, O ~ O  = ~ 5 0  =0.0221, 

= (u3Ai2(0))-l = 6.3  cm, ( N =  lo" atom/cm3), 

L50 = (a5Ai4(0))-' = 283.6 cm. 

In addition ul0 = 0 5 0  = 1 and L 3 0  = L 5 0  = 0.14 cm when the 
power density is 9.1 X 10l2 W/cm2. 

The following initial conditions were assumed: 

a1(0)= 1, a3(o)=a~(o)=  w ,  @(o)=$(o)=o. 
The solution of (27)  for A 1 3  = z15 = 0 and ui0 = 0 5 0  = 

0.0221 is shown in Fig. 6(a): The  third-harmonic  amplitude 
reaches its first maximum, a3 = 0.6,  at z" = 1.3 and  the  fifth 
harmonic reaches its first maximum, a5 = 0.89, at z"= 7. We 
have calculated the amplitudes for z"< 130,  but experimental 
conditions limit practical values of .?< 10, and hence, only the 
dependence of  the normalized amplitudes is presented for 
small  values of .?. Although there is a periodic exchange of  en- 
ergy between interacting waves, a simple periodic function 
does not always exist due to the  competition  of both step-wise 
and direct processes. For example at z"= 62.8, a3 = 0.95 and at 
z" = 103.2, a5 = 0.97. To  compare  the  contribution  of  step and 
direct processes we have calculated the amplitudes for  the case 
when aio = 0 5 0  = 0 (this is the  situation when x(') = 0). The 
difference between solutions for both cases  is  less than 10 per- 
cent  for .?< 10.  For larger ,?', significant differences exist. To 
explain this we note  that  the  growth  of  the  fifth  harmonic re- 
sulting from the  step processes depends on z/L30, whereas the 
growth of  the  fifth harmonic resulting from  the  direct process 
depends on z /Ls0 .  In Fig. 6(a), L30/L50 = 0.0221 and sub- 
stantial influence of  the direct process will appear only at 
longer 2. 

When the power density is increased to a value permitting 
O;O = us0 = 1 [(Fig. 6(b)] , the normalized amplitude of the 



528 

I I I I I 1 I I 

IEEE  JOURNAL OF QUANTUM  ELECTRONICS.  SEPTEMBER 1976 

I I I I I I I 

----- 
0: I I I I I I I 
0 1 2 3 4 5 6 7  

4 
Fig. 6 .  Variation of normalized fundamental-, third-, and  fifth-harmonic 

amplitudes  for  perfect phase matching A1 3 = A15 = 0. (a) O;O = 
o~~ = 0.0221, (b) u i 0  = 0 5 0  = 1. Curves a3d and a5d represent  the 
growth of  the  third  and  fifth  harmonics by the direct process only. 
Note  that ?'=z/L30 and in (a) L30/L50 = 0.0221, but in @) 
L3O/L50 = 1. 

fifth harmonic is as = 0.94 at z"= 7. This corresponds to an 
energy conversion efficiency of 90 percent. Comparing both 
Fig. 6(a) and Fig. 6(b) one can  observe the difference in 
growth of a5 due to the  different  ratio  of L30/L50. We note 
that  the higher order harmonics are  growing slower than those 
of lower order even  in a single direct process. For example if 
every harmonic is generated only in a direct process then  the 
growth of  the normalized harmonic amplitude from zero with 
the normalized distance Tn =zun,A:il is at z"< 0.5 (and 
and < 0.4, al > 0.9) almost the same for all harmonics up t p  
the  fifth. However the value and = 0.894 is reached for  the 
second harmonic  at Z2 = 1.44, third  harmonic  at Z3 = 2,  fourth 
harmonic at Z4 = 2.95, and fifth harmonic at Z5 = 4.67. The 
exact functions a3 ,(z") and a5 ,(z") are shown in Fig. 6.  

In Fig. 7(a) the amplitude growth  for aio = a50 = 0.0221, 
A 1 5  = 0 ,  A13 =-4.54, and A13 = -9.32 are shown. i i 1 3  = 
-4.54 corresponds to a  mixture  of Na+  Cd+ Xe with 
T 810 K having saturated Na and Cd  vapor concentrations 
with NCd/NNa =3.35 and N N ~  = 1017 atom/cm3. A13 = 
-9.32 corresponds to a Cd + Xe mixture with Nc,-J = 1017 
atom/cm3. In Fig. 7(b) the same parameters as in  Fig.  7(a)  are 
employed,  except  that u lo  = ~ 5 0  = 1. In  the case of Fig. 7(a) 
the  step processes are more important  and  the  third harmonic 
changes periodically. Decreasing A13 leads to a significant im- 
provement in u 5 .  In Fig. 7(b) the direct process is comparable 
with the  step process and even at larger 2 1 3  = -9.32, a5 is 
higher. In this case the interference between step and direct 
processes  is substantial for  the  fifth-harmonic  amplitude. 

In  a phase-matched mixture of Na + Xe for  third-harmonic 
generation (A1 3 = 0) 2 5 = - 173.5, the maximum value of a5 
is  less than 3.5 X and as@) + 1 when z" >> 1 following 

The important result from these calculations is that in a 
single  cell of isotropic media, phase matched  for  step and di- 
rect processes (A13 = A15 = 0), the conversion efficiency of 
fundamental radiation into  its  fifth harmonic is comparable to 
that  obtained in a cascade scheme. In  a cell with a Cd + 
Na + Xe mixture with variable Xe concentration,  it is possible 
to obtain A13 = 0 and generate the  third  harmonic,  or A13 = 

(3)- 

I .o 

-A,3=-4.54 

L 

Fig. 7. Variation of the normalized am_plitude of the  fundamental, 
third,andfifthharmonicsforAls=O,A13=-4.54andA13=-9.32. 
(a) O;O = 0 5 0  = 0.0221, (b) U;O = 050 = 1. 

A15 = 0 and generate the  fifth  harmonic.  It should be noted 
that in the above  analysis we have not discussed the case  when 
different signs of x(3) ,  ~ ' ( ~ 1 ,  and exist because of  the lack 
of experimental or theoretical  data. 

B. FHG by Focused Gaussian Beam 
To  extend  (24)  for  a light beam with finite cross section, 

transverse  derivatives should be included. However, some sim- 
plifications are  necessary to permit analytical solution. We 
will thus neglect depletion of the fundamental amplitude, 
(hence A l ( z )  = constant) and also the term u2A T 2A5 in the 
second equation  of (24) (this term describes the depletion of 
the  third harmonic arising from  its partial convertion into the 
fifth harmonic). Under these assumptions, FHG  is described 
by the following set of partial differential equations: 

[$+ & ($t $)] A 3  = -iu3A: exp - iA13z  

[:+&--($+$)]A5 =-iu5A: 

.exp - i A 1 5 z  - iu4ATA3 exp - i A 1 3 5 z .  (28) 

The initial conditions are A,(x ,  y, 0) from  (9) and 

Without focusing of  the pumping beam .[R = 00 in (9)] and 
A 3 ( x , y , I 1 ) = A 5 ( x , y , E 1 ) = O ( s e e F i g . 2 ) .  

negligible diffraction  for  fifth-harmonic amplitude we obtain 

A 5 ( ~ , y , ~ ) = A : 0  exp ( - 5 7  xz;y2) 

' [(05 ' 0 3  a41A1 3) 
exp (-iA15z) - 1 

5 

-- u3u4 exp (-iA135z) - I (29) 1 A1 3 3 5  

and therefore  the effective fifth-order nonlinear susceptibility 
is 
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We recall that  in gases and vapors it is  possible that  the values 
of  and x ' ( ~ )  are different.  Note that the oscillator 
strengths among the  electronic  states of an atom and the res- 
onance enhancements which are most responsible for  the val- 
ues of and x'(j)  are also responsible for  the value of x('). 
A resonance of twice the  pump  frequency is particularly de- 
sirable since it will increase all these nonlinear susceptibiljties. 
As seen from (20) the relative signs of x(3),  x ' ( ~ ) ,  x (5) ,  and 
(nl - n3) are important.  Atoms  with approximately equal ab- 
solute values of susceptibilities and dispersion, but  different 
signs, would have different values of X$$. For example in  a 
mixture  of Xe t Na, when n1 = n5 , nl - n3 > 0 and in a mix- 
ture  of Xe + Cd, when nl  = n5 , nl  - n3 < 0. 

Successive solution  of (28) substituting (17) gives for  the 
fifth-harmonic  amplitude 

mations are possible. Here we will discuss the case when 
d = $, e.g., the focal spot is in  the  center  of  the cell. 

If x(3)  = x ' ( ~ )  = 0 only direct FHG exists and J1  E Jd .  For 
infinitely tight f o c u s ~ g ,  Jd reaches its maximum at A,, = 6/b 
[12] .  as a  function  of AlsL/2 is plotted in Fig. 8 for 
q 1  = 20. The  optimum value for AlsL/2 = 19n corresponds 

When step processes are taken  into  account  the value of J1  
depends on J, and W. Some consideration of the behavior of 
J, will be given. J, can be presented as a  complex  number: 

to A15 N 6/b1. 

J,(A13,L/2,  A13L/2, q l )  = R e  J, + i Im J,. 

As seen from (32) the  product WL Im J, is added to Jd and, 
depending on  the signs, the sum should be Jd ? I WL Im Js I. 
It is  easy to prove that  the real part can be presented as 
(d = 3): 

(33) Re J, = 1 I m exp ( - iA13,blx/2)   dx 
2 -m ( 1  - ix)2 

The  fifth-harmonic power is governed by  the integral (32) and 
its  optimization will now be  discussed. The first integral Jd in 
(32) results from  the direct process and  the second integral J, 
from  the  step processes. The  total value of J1 depends also on 

m 
exp (-iA13blY/2) dy 

(1 - iy)2 

the value and the sign of W which is the  ratio between the non- 
linear susceptibilities of the third  and  fifth orders: 

A13 > 0. 

For N = 10'' atom/cm3, X1 = 1.06 X cm, and the 
above-cited values of x',"), and x'd) we obtain W = 6.02 or A I 3  GO. 
an-'. For weak focusing q1 < 1 , and the maximum fifth- 
harmonic power is obtained  for phase-matching conditions The maximum value of Re J, is obtained when A I 3  = A 1 3 5  = 
A13 = A,, = 0. Then  the integrals in (32) may be performed 2/b1 which corresponds to A15 = 2A13 = 4 / b l .  For  tight  fo- 
to give cusing, Re J, is negligible when A13 < 0. This is the case for  a 

= 0, A 1 3 5  < 0, A13 GO; or A135 GO; 

(36) 

6 - 8q:(1 - 3d t 3d2) - i12q1(l  - 2d)  - i6WL(l - i2q1d)  ( 1  - i2q1 t i2q1d)  
3(1 t i 2 q , ~ l ) ~ ( l -   i 2 q 1 ( l  - d))3 

J1 = (34) 

At d = 3, the  function J1 reaches the maximum values for 
both  its integrals: 

J1  = 2(1 - q:/3 - iWL(1 t qt))/(l  + q1)3. 

With strong focusing, q1 > 1 because of the phase shift in  the 
waist  region for  optimum conversion efficiency some wave- 
vector  mismatch Aik should be introduced to  compensate for 
this  shift. Before evaluation of (32), some analytical approxi- 

mixture of an inert gas and Cd, Zn, or Mg. A13 is positive for 
a  mixture  of an inert gas and an alkali metal. 

We did not succeed in finding a simple enough analytical ap- 
proximation  for  the  function Im J,. However to obtain  a qual- 
itative estimation, the following procedure was adopted.  For 
d = 3, q1 = 20, the integral J, was numerically calculated using 
the same technique as for integral (19). Sets of points were 
found  in  the plane (&35L/2,A13L/2) with  the interval be- 
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Fig. 8. Functions J,(A,sL/2,  201, Im J,(6n, 201, Im 
J,!IT, A13L/2, 20), and  Re Js(6n, A13L/2, 20) versus  wave-vector 
mlsmatch Ai,. 

tween them r5(A135L/2) = 8(A13L/2) = 7112. Some of the 
most interesting results are shown in Fig. 8. The behavior of 
Re J, corresponds to the analytical approximation  obtained 
above. (ReJ,),,, is  achieved at A13L/2 = A13,L/2 = 671. 
The calculated value of (ReJ,),,, is 0.37 percent less than 
the maximum analytical value  derived from (36) at A13 = 
A135 = 2/bl .  In an  area  where A13 or A135 or both of  them 
are negative, Re I, has periodic positive and negative  values 
and is at least three orders of magnitude less than  its maximum 
value. 
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Fig. 9. Optimization of FHG power represented by 
IJ1(A15L/2, A13L/2, 20)12 as a function  of A15 for  mixture of Na+ 
Xe and Cd + Xe. Functions IJd + WL Im I ,  and I J ,~&,+~~  
are presented  for  comparison. 

ticomponent gaseous mixture. However, such an approach 
would involve further practical problems. 

The functions IJd 1 2 ,  IJ1 l', and IJd t WL Im Jslz versus 
AlsL/2  for  a  mixture of  Na t Xe are plotted in Fig. 9. For 
this mixture A13 > O  when A,, > O  and ImJ, > O .  In  the 
same figure, IJ1 1' for Cd t Xe  is plotted,  for which A13 < 0 
and A,,  > 0. In  this case Re J,  = 0 and Im J,  < 0. Because 
of the different sign of A13 the  ratio 

IJ1 &a+Xe/lJl @!d+Xe 8 

The investigation of Im I, shows that  the plane (A13,L/2, while 
A13L/2) can be  divided into three areas: 

1) That area defined by inequalities A135 > 0 and lA13 I < 
A135. In this area Im J, < 0 and reaches its maximum value at 
the  point A135L/2 = 12x,  A13L/2 = x. Im J, as a  function  of 
A13L/2 at A13,L/2 = n and A13,L/2 = 6n  is shown in Fig. 8. 

2) That area defined by inequalities A13 > 0 and lA13, I < 
A13. In this area Im J, > 0 and reaches its maximum at  the 
point A13,L/2 = n, AI3L/2 = 12n. The areas 1) and 2) are 
divided by the diagonal A13 = A 1 3 5  on whxh  ImJ3 = O  
(Fig. 8). The values of Im J, in these two areas are symmetric 
and 

[ImJs(A13sL/2,  A13Ll2)ll = 

- [Im&(A13L/2, Al3SL/2)1 2 * 

3) The rest of  the (A135L/2,  A13L/2) plane is the  third area 
where Im J, is changing its sign with variations of the variables 
and  its absolute value  is at least three orders of magnitude less 
than (ImJs)max. Other calculations for  different q1 between 
10 and 20 show the same behavior. They also permit US to 
conclude that ImJ,(A135L/2,  A13L/2) has a maximum abso- 
lute value at  the  points (A13,L/2 = n, A13L/2 =4/b1)  and 
(A135L/2 = 4/bl   ,A13L/2 = x). Some use of  this behavior of 
Re J, and Im J, may be exploited when the measurement of 
x(5) is performed. 

When J1 is calculated as a  function  of Als(or A13) for  a spe- 
cific mixture it should be noted  that  for every  given  value of 
A15 there is a corresponding exact value of A13 defined by the 
dispersion law of  the nonlinear medium. To achieve some in- 
dependence between A,, and A13 it is necessary to use a  mul- 

IImJ,l~,+Xe/(ImJs)~d+Xe N 2  

in their maxima. For  both mixtures W =  6.02 cm-' and 
L = 20 cm were adopted. With this value of W the  fifth  har- 
monic resulting from the  step processes is greater than  that 
from  the direct process. Hence the maximum of IJ1 1' moves 
towards lower AlsL/2  values. The accuracy of these curves is 
less than  that in the  other figures  because of the  step 
calculations. 

V. SUMMARY 
In this paper we have  discussed the  theory of the  most  prom- 

ising schemes for FHG of powerful laser radiation. The plane- 
wave approximation has been applied to the cascade process 
and also to the scheme employing media with third- and fifth- 
order susceptibilities, to estimate the maximum conversion ef- 
ficiency. Comparable efficiencies were found  for both 
schemes. 

Expressions for the signal amplitude and the power for  four- 
wave nonlinear processes in Gaussian beams with arbitrary con- 
focal parameters and waist locations have been derived. In  the 
case  of FHG, maximum output from the mixing step is ob- 
tained for equal confocal parameters of all the  interaction 
beams. Thus a practical system should have a simple arrange- 
ment since  SHG and THG  are  also optimized at equal confocal 
parameters. The analysis of FHG with a focused beam in a 
nonlinear media with third- and fifth-order susceptibility shows 
that consideration of interference between step-wise and direct 
processes  is important  for  fifth-harmonic efficiency. For  nu- 
merical estimation of various processes more data are neces- 
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sary, especially the nonlinear susceptibilities. A two-photon 
resonance will provide substantial  enhancement  in all nonlinear 
susceptibilities involved and consequently increase the conver- 
sion efficiency of  the system. 

Finally we note  that these results are applicable to FHG with 
IR lasers  using molecular gases  as nonlinear media [ 2 2 ] ,  [23]. 
The relatively weaker dispersion in the IR may pose  less tech- 
nical problems to achieve multistep phase matching. 

ACKNOWLEDGMENT 
The  authors wish to thank J. Curley and R. Fedosejevs for 

their assistance in the preparation ,of  the numerical programs 
used in this  study. 

REFERENCES 
[ l ]  S .  E. Harris, J. F. Young, A. H. Kung, D. M. Bloom, and G.  C. 

Bjorklund,  “Generation  of  ultraviolet and vacuum ultraviolet 
radiation,” in Laser Spectroscopy, R. G. Brewer and A. Moora- 
dim, Ed. New York:  Plenum, 1973, pp. 59-75; see  also 
references. 

[2] D. M. Bloom, G. W. Bekkers, J. F. Young, and S .  E. Harris, 
“Third  harmonic  generation on phase-matched  alkali  metal 
vapors,” Appl.  Phys.  Lett., vol. 26, pp. 687-689,1975. 

[3] D. M. Bloom, J. E. Young, and S .  E. Harris, “Mixed metalvapor 
phase  matching for third-harmonic  generation,” Appl,  Phys.  Lett., 

[4] S .  E. Harris, “Generation  of  vacuum-ultraviolet  and  soft-x-ray 
radiation using high-order nonlinear  optical  polarizabilities,” 
Phys.  Rev.  Lett.,vol. 31, pp. 341-344,1973. 

[5] E. Yablonovitch, C. Flytzanis, and N. Bloembergen,  “Anisotropic 
interference  of three-wave and  double two-wave frequency  mix- 
ing in GaAs,” Phys.  Rev.  Lett., vol. 29, pp. 865-868,1972. 

[6] a) S. A. Akhmanov et  al., “Direct  and cascade processes  in higher 
optical  harmonic  generation,”  in Abstracts  7th  All-Union Coat 
Coherent  and Nonlinear Optics (Tashkent, USSR,  May, 1974), 
Moscow, USSR: Moscow State Univ. F’ress, pp. 15-17. b) S .  A. 
Akhmanov, A. N. Dubovik, S .  M. Saltiel, I.  V. Tomov,  and V.  G. 
Tunkin,  “Nonlinear  optical  effects  of fourth order  in the field in 
a  lithium  formiate crystal,’’ ZhETFPis.  Red., vol. 20, pp, 264- 
268,1974 (JETP Lett..,vol. 20,pp. 117-118,1974). 

[7] A. G. Akmanov et al. “Generation of coherent  radiation  at 
h = 2120 A by cascade frequency conversion,” ZhETFPis.  Red., 
vol. 10, pp. 244-249, 1969 (JETP Lett.,  vol. 10, pp. 154-157, 
1969). 

[8] S .  G .  Dinev, K.  V. Stamenov,  and I. V. Tomov,  “Generation of 
tunable UV radiation in the range 216-237 nm,” Optics  Com- 
mun., vol. 5, pp. 419-421,1972. 

[9] V.  G. Tunkin, T. Usmanov, and V. A. Shakizov, “Generation of 

V O ~ .  27, pp. 390-392,1975. 

fifth  picosecond laser harmonic,” Kvantovaya  Electronica, vol. 

488,  1973). 
11, pp. 117-118,1972 (Sov. J. Quant.  Electron., vol. 2, pp. 487- 

[ l o ]  C. R. Vidal and M. M. Hessel, “Heat-pipe oven for homogeneous 
mixtures  of saturated and  unsaturated  vapors:  Application to 
NaLi,” J.  Appl.  Phys., vol. 43, pp. 2776-2780,1972. 

[ 111 M.  M. Hessel and T. B. Lucatorto, “The rotating heat-pipe  oven: 
A universal device for  the containment of atomic and molecular 
vapors,” Rev. Sei.  Instrum., vol. 44, pp. 561-561,  1973. 

[12] Laser Program Ann. Rep.,  Lawrence  Livermore Laboratory, 
Univ. California,  Livermore,  CA, UCRL-50021-74, p. 282,  1974. 

[ 131 J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S .  Pershan, 
“Interactions  between  light waves in a  nonlinear  dielectric,” 
Phys. Rev.,vol. 127, pp. 1918-1939,1962. 

1141 G. D. Boyd and D. A. Kleinman.  “Parametric interaction of  fo- -~ 
cused Gaussian light beams,” J. Appl.  Phys., vol. 39, pp. 3597- 
3639.1968. 

[15] J .  F. Ward and  G. H. C. New, “Optical  third  harmonic  generation 
ingasesbya focused laser beam,” Phys.  Rev., vol. 185, pp. 57-72, 
1969. 

[ 161 A.  P. Sukhorukov  and I. V.  Tomov, “Wave pattern of third  opti- 
cal  harmonic  generation in  isotropic and  anisotropic  media,” 
ZhETF, V O ~ .  58, pp. 1626-1639,1970 (SOV. PhyS. JETP, V O ~ .  31, 
pp. 872-879,1970). 

[17] R. B. Miles and S .  E. Harris,  “Optical third harmonic  generation 
in alkali metal  vapors,” IEEE J.  Quantum  Electron., vol. QE-9, 

[18] G.  C. Bjorklund,  “Effects of focusing on third-order  nonlinear 
processes in  isotropic  media,” IEEE J.  Quantum  Electron., vol. 

[ 191 F. Abramovici, “The  accurate  calculation  of  Fourier  integrals by 
the fast  Fourier  transform  techniaue.” J.  Comvut.  Phvs.. vol. 11. 

pp. 420-483,1973. 

QE-11, pp. 287-296,1975. 

. ,  
pp. 28-37,1973. 

“ ,  

[20] H.  Eicher,  “Third-order  susceptibility  of alkali metal vapors,” 
IEEE J. Quantum  Electron.,vol. OE-11. DD. 121-130.1975. 

[21] V. M. Mitev and I. V. Tomov, “No&&ar susceptibility of  the 
fifth-order of alkali metal vapors,” presented at  the Second Nat. 
Conf. Young Physicists,  Sofia, Bulgaria, Apr. 1974. 

[22] Y. Ueda and K. Shimoda,  “Optical  third  harmonic  generation by 
molecular  vibration,” J. Phys. SOC. Japan, vol. 28, pp. 196-207, 
1970. 

[23] C.  Y. She  and K. W. Billman, “Infrared-pumped  third-harmonic 
and  sum-frequency  generation  in  diatomic  molecules,” Appl. 
Phys.  Lett., vol. 27, pp. 76-79,1975. 

[24] W. L.  Wiese, A. W. Smith,  and B. M. Miles, Atomic Transition 
Probabilities, vol. 2. NSRDS-NBS 22,  1969 (sodium  through 
calcium). 

[25] W. R. Newell, K. J. Ross, and J. B. Wickes, J. Phys. B: Atom.  
Molec. Phys.,vol. 4,pp. 684-689,1971. 

[26] C. J.  Mitchell, J. Phys. B: Atom. Molec.  Phys., vol. 8, pp. 25-30, 
1975. 

1271 w. R. Newell, K. J. Ross, J. Phys. B: Atom. Molec.  Phys., vol. 5, 
~. 

Pp. 701-709,1972. 


