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Cascading is the process by which the exchange of energy between optical beams 
interacting via second order nonlinearities (X (2)) leads to various effects such 
as nonlinear phase shifts, the generation of new beams, all-optical transistor action, 
the formation of soliton-like (solitary) waves, etc. Here we review the fundamentals of 
the processes and discuss experimental verification of the effects and various related 
applications. 

1. Introduction 
Nonlinear optics has traditionally been discussed in terms of second and third order nonlinear- 
ities and the effects to which they lead. For example, second order nonlinearities are well- 
known for phenomena such as frequency conversion, parametric amplification, etc. [1-4]. 
Typically the goal is to optimize the transfer of power from one frequency to another. Third 
order nonlinearities, on the other hand, are usually associated with an irradiance-dependent 
refractive index, four wave mixing, solitons, etc., phenomena in that the beam frequencies 
are degenerate [2-4]. Although there are third order processes that are used for frequency 
conversion, for example EFISH (electric field induced second harmonic generation) or THG 
(third harmonic generation), they are primarily used for material characterization and not for 
efficient frequency conversion [5]. However, it was recognized in the early stages of nonlinear 
optics that second order phenomena could effectively contribute to third order nonlinearities, 
and even lead to the generation of spatial solitary waves [6-9]. In such phenomena the emphasis 
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is on the amplitude and phase shift of the fundamental beam(s) in a second harmonic interaction. 
Clearly the physics of the process requires two successive second order processes in order for the 
net output to be back at the input frequency (~). This can occur via up-conversion (~ + ~ ~ 2w, 
better known as second harmonic generation (SHG)) followed by down-conversion ( 2 ~ -  

--+ w), or via down-conversion (~ - a~ ~ 0, better known as optical rectification) followed 
by up-conversion (~ + 0 ~ w). It is the successive nature of the processes needed to modify 
the fundamental beam that initially led to the name 'cascading' being applied to this class of 
effects and to the symbolic representation X (2) : X (2) as the effects are proportional to [X(2)] 2. 

It is interesting to note that the two key features of 'cascading' had been predicted in the 
first decade of nonlinear optics. The existence of nonlinear phase shifts in the fundamental 
beam during SHG was first discussed by Ostrovskii in 1967 and the existence of soliton-like 
(henceforth called simply solitons) waves due to X (2) was predicted in 1974 by Karamzin 
and Sukhorukov [6, 9]. However, until about 1990 there was no evolution of cascading as 
defined above as a well-defined field. There were sporadic reports aimed at understanding vari- 
ous aspects of related phenomena, with the focus on frequency conversion efficiency [6, 9-19]. 
In fact the importance of pulse distortion in SHG due to phase modulation was a popular topic 
in the 1980s [16-19]. The experimental work, starting in the late 1960s, was concerned pri- 
marily with measuring the interference between X (3) and X(2)-related contributions, invariably 
far from the SHG wavevector-matching condition Ak = 2kl - k 3 = 0 where k3 and k 1 are the 
fundamental and harmonic wavevectors respectively [7, 20-23]. In addition, cascading was 
used to calibrate the third order susceptibility of glass [24]. In general the resulting cascaded 
contributions were small because Ak was relatively large and the effective nonlinearity is 
proportional to ]X(2)I2/Ak. Until recently there was no experiment that definitively showed 
that cascaded processes could actually be larger or more useful than the corresponding third 
order effects. 

In the late 1980s and early 1990s a number of different experimental developments contri- 
buted to the current interest in cascading phenomena. One important factor was two direct 
experimental measurements of the nonlinear phase shift. A little known Soviet paper by Bela- 
shenkov and coworkers reported a nonlinear phase shift of the fundamental in excess of 7r near 
the phase-match condition in CDA [25]. A few years later an independent study of nonlinear 
refraction in a KTP crystal via Z-scan showed a dominant contribution from cascading, 
again near the phase-matching condition [26]. These experiments showed that cascading was 
indeed a large effect near phase-matching for SHG. This occurred in a climate in which the 
nonlinear optics community, especially those interested in all-optical phenomena, had realized 
that it is extremely difficult to find materials which gave large nonlinear phase shifts via X (3) 
without excessive losses due to one or two photon absorption [27]. However this cascaded 
nonlinearity is proportional to Ix(2)l 2 and requires phase-matchable geometries to be really 
useful. Fortunately many new organic materials were being reported in the early 1990s with 
nonlinearities in the 100s of pmV -1 range, for example [28-30]. Furthermore, efficient 
SHG was being demonstrated with quasi-phase-matching which allowed large, but normally 
not phase-matchable, X (2) coefficients to be used [31]. Cascading offered a new and promising 
direction to explore for all-optical phenomena. 

In a parallel development, the laser community became involved when it was shown experi- 
mentally that X(2)-active elements in laser cavities could lead to mode-locking and pulse 
compression [32, 33]. The early 'nonlinear mirror' work of Stankov used a phase-matched 
SHG crystal and dichroic mirror in a laser cavity to provide positive feedback and amplitude 
modulation (via SHG conversion) for passive mode-locking and switching [32]. Cerullo and 
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E i (m) ~ ::~ Eo(m) 
I ~  i x ,  ~ Figure I Schematic of the general cascading geometry 

E i (20)) L-- l--- ~!2! ....... :: Eo(20)) in which both a fundamental and a second harmonic 
.... ""',1 ~ beam are incident on a X(2)-active medium near its 

" ~  phase-matching condition. 

coworkers appeared to be the first to use the cascaded nonlinear phase shift away from phase- 
matching for mode-locking [33]. 

Coincidentally, there was a growing interest in spatial solitons. Again around 1990 1-D 
spatial solitons (i.e. beams which diffract in one spatial dimension) were first demonstrated 
in slab glass waveguides [34]. This has led to the investigation of new spatial solitons in 
different kinds of materials, which have now included quadratic solitons, photorefractive soli- 
tons, Manakov and vector solitons, etc. [35-38]. Cascaded soliton waves were part of this wave 
of new types of spatial solitons. 

Thus, the key elements needed to make cascading an interesting alternative to third order 
nonlinearities for 'self-action' effects were in place by about 1990. As will be discussed 
here, since then there has been a great deal of progress in the field [39, 40]. 

What are the distinguishing features of cascading? Consider the generalized SHG geometry 
shown in Fig. 1. The fundamental beam inside the medium is given by 

E(w) = ~ lal (z)l exp{i[wt - kz - ~bNL(z)]} + C.C. (1) 

There is both a nonlinear phase shift ~bNL(z) and a modulation in the fundamental amplitude 
distribution lal(z)l. In the last few years, near phase-matching a number of cascading 
phenomena based on q~NL(z) and lal (z)] have been investigated: 

(1) large nonlinear phase shifts (>270; 
(2) cavity and integrated waveguide all-optical devices; 
(3) transistor action, i.e. gain and phase modulation; 
(4) applications to lasers for mode-locking, pulse compression, etc.; 
(5) frequency degenerate and almost degenerate four wave mixing; 
(6) spatial soliton waves, their steering and beam transformation. 

These have all been demonstrated experimentally. Concurrently a large number of effects based 
on both the nonlinear phase shift and the formation of soliton waves, including their inter- 
actions, have been analysed theoretically. In this paper we will review the simple physics 
involved in the nonlinear phase shift and soliton formation aspects of cascading, some of the 
essential features (especially those different from similar third order effects), related 
phenomena and selected experiments. 

2.  T h e  n o n l i n e a r  p h a s e  s h i f t  v i a  S H G  
2.1. Theoretical considerations and physical model 
Cascading effects will occur in all parametric interactions governed by the second order 
nonlinearities X (2). This clearly includes SHG, sum and difference frequency generation, optical 
rectification, optical parametric oscillators and amplifiers, etc. In the most complicated case, the 
input can include finite cross-section pulsed beams at all of the interacting frequencies with 
spatial and temporal walk-off between them. Because the relative beam phases at the input are 
important parameters in such coherent interactions, the response can be very complicated indeed. 

There is a rich variety of phenomena which can occur. One way of classifying them is to 
discuss the effects in terms of the two principal methods of phase-matching used in practice, 
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Type I and Type II [3]. Note that other techniques such as quasi-phase-matching are now used 
but for our purposes they can usually be discussed as Type I. 

2.1.1. Type I phase-matching 
2.1.1.1. Unseeded SHG 
In order to obtain an understanding of the underlying physics, we consider first the simplest case of 
Type I phase-matching (one fundamental input and no input SH) with plane wave inputs (no spatial 
diffraction, strictly valid for a channel waveguide). The fundamental beam amplitude of the form 

E(w) = ~a,  (0) exp[l(~ot - kz)] + c. c. (2) 

is incident onto a lossless X (2)-active medium at z = 0. The evolution of both the fundamental 
beam, given by Equation 1 with a~(z)= lal(z)lexp[-lifbnL(z)], and the generated second 
harmonic E(2~o) [amplitude a3(z)], is described by 

d 
al (z) = - i n ( - w ;  2w, -;v)a 3 (z)a 1 (z)e iAkz (3) 

~z.a3 (z) = 

,~(-2~o;  w, ~o) = 

n(-co; 2w, -w) = 

- in( -2a ; ;  co, w)a2(z)e -iLxkz (4) 

wd,~2) (-2w; w, w) e, (2w)ej (w) ek (w) 

[2n,(2w)nj(w)nk(w)C3 eo]l/2 (5) 

(2) . 
~od,, k (-~o, 2co,--w)ei(w)ej(2aa)ek(cO) 

[2ni(co)nj( 2w)nk(~o)c3 %]l/2 (6) 

Ak = 2kvac(CO)[n(~o) - n(2w)]. When full permutation for uniform wavevector mismatch 
symmetry is valid, n(-2a~; w, w) = n(-w; 2w,-w) = n is the nonlinear coupling coefficient. 
The electric field polarization vectors are e(w, 2w). The irradiance (plane wave) is given by 
]al(z)] 2 = Ii(z). All of the nonlinear phase shift physics is contained in the solutions to 
these equations under different input beam conditions. For SHG, [al(0)] 2 =I1(0) and 
la3(0)] 2 = I3(0) = 0. Analytical solutions were first given by Armstrong et al. and the equa- 
tions have subsequently been analysed for cascading in detail by a number of authors [1, 6, 
11, 41-43]. Our approach in discussing the nonlinear phase shifts will be to give some typical 
results and then offer a simple physical interpretation. 

Only under very restrictive conditions is there a linear dependence of ~b NL on either the 
distance into the sample or on the incident irradiance (and hence equivalence to X(3)). An 
example of the variation of ~bNL(z) with distance is reproduced in Fig. 2a [41]. This shows a 
linear variation with distance only for large phase-mismatch [AkL] and/or small phase shifts. 
In fact the salient characteristic is a stepwise change in q~NL(z) with increasing distance, with a 
maximum step size of 7r/2. Note that even for large phase-mismatches the increase occurs via 
steps, the larger the phase-mismatch the smaller (and more frequent) the steps. Comparison 
with the throughput curves (Fig. 2b) indicates that the increment in nonlinear phase occurs 
primarily during the cycle in which power flows back from the harmonic into the fundamental. 

The dependence of ~bNL(L) (i.e. at the output) versus increasing input irradiance is shown in 
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Fig. 3 [41]. Note that there is an irradiance range over which the nonlinear phase shift is linear 
in the irradiance. There it is sensible to discuss cascading as leading to an 'effective third order 
nonlinearity' for self-phase modulation, i.e. an 'effective nonlinear refractive index coefficient 
n2,eff'. It is clear that the maximum phase shift in which this approximation is valid depends on 
the detuning from phase-matching, the larger the detuning [AkL] the larger the range of irradi- 
ances in which this concept is valid. Another feature different from the Kerr nonlinearity case is 
the apparent saturation of the nonlinear phase shift with irradiance, even after averaging over 
the steps. In fact cNL(L) becomes asymptotically linear in the field at large phase shifts [41]. 
This just emphasizes the second order nature of the cascading interaction as being different 
from the third order nonlinearities in which the effects remain proportional to irradiance unless 
the material response (and not the process) saturates. 

As indicated in Figs 2 and 3, the net phase shift depends on the phase mismatch, commonly 
called the SHG detuning. This variation is shown in Fig. 4a. Just by adjusting the wavevector 
mismatch condition, the magnitude and sign of the 'effective nonlinearity', i.e. nonlinear phase 
shift, can be varied. Furthermore there is an irradiance-dependence to the detuning needed for 
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Figure 3 Typical variation in the nonlinear phase shift 
q~NL(L) versus fundamental input irradiance for various 
net phase mismatches. (From [41].) 

maximum phase shift: in the small depletion limit, this maximum occurs at AkL = + 7r. The 
dispersion in the low depletion limit is reminiscent of the wavelength dispersion in refractive 
index due to the strong energy exchange between an EM field and a two level transition near 
resonance: here the corresponding energy exchange is between two electromagnetic modes, the 
fundamental and second harmonic and the corresponding resonance in the phase-matching 
condition between the two modes. As shown in Fig. 4b, the 'price' for obtaining large phase 
shifts is effectively the 'loss' of the fundamental throughput to second harmonic (which effec- 
tively acts as the well-known two photon absorption in X (3) nonlinear optics). In fact the 
connection between the phase shift and the 'loss' to SHG has been shown to satisfy the 
Kramers-Kronig relations in the limit of weak depletion [44]. This reduction in fundamental 
throughput is a serious drawback for cascading. However, because the process is nonlocal, it 
can be avoided as will be discussed later. Note also the well-known effective change in coher- 
ence length at high input irradiances [1]. 

There is a simple model which reproduces the essential physics of the nonlinear phase shift 
and gives useful insights. Off phase-match, the fundamental and harmonic periodically 
exchange energy with propagation distance. For illustrative purposes, consider the almost 
phase-matched case in which the fundamental is strongly depleted, AkL : 0.17r in Fig. 2. 
The SH grows with distance from the input, eventually almost completely depleting the fun- 
damental. The part of the fundamental which is not converted to SHG propagates at the 
phase velocity vl ~ v3 where v3 is the second harmonic phase velocity. After approximately 
one coherence length, the energy flows from the SH back into the fundamental. During the 
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Figure 4 Typical variation in (a) the nonlinear phase shift ~bNL(L) and (b) the fundamental transmission versus 
detuning from phase matching AkL for three different input irradiances. From low to high the parameters cor- 
respond to ~ = 4, L = 1 and al (0) = 1, 2 and 4 respectively. 
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back-conversion cycle of second harmonic to fundamental, the regenerated fundamental wave 
is no longer in phase with the non-converted fundamental. So the net fundamental phase is 
either advanced or retarded relative to the unconverted fundamental, depending on which is 
larger, v 1 or v3. The conversion to second harmonic is a nonlinear process and the input funda- 
mental irradiance determines what fraction of the fundamental is converted to SHG. Hence the 
larger the input irradiance, the larger the contribution from the down-converted fundamental 
and hence the larger the net nonlinear phase shift. Furthermore, because propagation is 
involved, this is a nonlocal process, in contrast to X (3) based nonlinear phase shifts! Note 
from Fig. 2 that the upwards step in nonlinear phase does coincide approximately with the 
back-conversion of the SH to the fundamental. There is also a phase shift produced in the 
second harmonic. It has been of limited interest to date. 

In the limit of negligible fundamental depletion it is possible to give a simple expression 
for the maximum phase shift and effective nonlinearity n2,ef f which occurs at AkL = + 7r 
[26, 41]: 

n2,ef f = • 2"r  
L 

n3c% ,X (7) 

Note that this maximum value is proportional to the sample length. Assuming that phase- 
matching can be achieved for the coefficients shown, in Table I we list these maximum values. 

Given that the largest non-resonant nonlinearity reported to date is n2 = 2 .2x  
10 -12 cm 2 W -1 in the single crystal polydiacetylene PTS, clearly cascading offers the promise 
of very large effective nonlinearities [46]. 

2.1.1.2. Seeded SHG 
The situation becomes considerably more complex when a second harmonic 'seed' is included 
at the input. The fundamental output, both its magnitude and phase, is very sensitive to the 
relative input phase A~b = q~3 - 2q~1 between the seed (q~3) and the fundamental (41) beams. 
There are three clear cases here: one, a weak second harmonic seed; two, a strong second 
harmonic seed; and three, nonlinear eigenmodes. 

Trillo, Wabnitz and coworkers have considered the general problem of seeding [47]. They 
used phase plane portraits of both the fundamental and second harmonic to find the nonlinear 
eigenmodes, their properties (discussed in detail later) and the regions of instability of the solu- 
tions. Using these phase plane portraits, they were able to identify the effects of relative phase 
angle, seeding power, etc., on the evolution of the fundamental and second harmonic. 

T A B L E I Effective, optimized, nonlinear coefficients n2 via cascading 
for materials with representative d,j 

Material d .  d~] n 2 (effective) 
L = 1 cm (pmV - l )  (pmV -1) (cm2W -1) 

LiNbO3 36 2 x 10 11 
LiNbO3 5.8 5 x 10 -13 
MNA 165 7 x 10 -1~ 
NPP 84 2 • 10 -1~ 
DAST 600 6 X 10 -9 

NPP 
MNA 
DAST 

N-(4-Nitrophenyl)-(L)-prolinol [28] 
2-Methyl-4-nitroaniline [45] 
Dimethyl amino stilbazolium tosylate [29, 30] 
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Because the coupled mode equations are in the field and not the irradiance, even a 1% seed in 
terms of irradiance can produce large effects because it corresponds to a 10% amplitude seed. 
We give two examples in Figs 5 and 6. In Fig. 5 we show both the fundamental amplitude and 
nonlinear phase for two different seeding conditions [48]. Clearly large changes occur with 
very small seed irradiances. In Fig. 6 the detuning curve shows that adding a seed is nearly 
equivalent to moving the effective phase-matching condition away from AkL = 0 [49]. The 
effect is so large that the fundamental output can be changed from a maximum to a minimum 
by a 7r-relative phase change. On the one hand this can be used to implement on-o f f  device 
functions, on the other hand it also means that the phase is a critical variable requiring sub- 
wavelength tolerances before the sample. Note that the unseeded case, taken as the limit 
I3(0)---* 0, corresponds to A~b = - 7 r / 2  due to the ' - i '  in the coupled mode equations, 
assuming ~bl = 0 as a reference. 

In addition to seeding with SH, a weak fundamental can be used to seed a strong SH. A 
strong second harmonic input can potentially achieve two goals. Via its coherent interaction 
with a weak fundamental, the fundamental can be amplified. This case has been analysed by 
St. J. Russell, and Assanto and coworkers [50, 51]. Alternatively, a large nonlinear phase 
shift can be induced into the fundamental by copropagating with the strong second harmonic. 
As suggested by Lefort and Barthelemy, this phase shift could be used to switch an interfero- 
metric device [52]. 

2.1.1.3. Nonlinear eigenmodes 
Under appropriate input conditions, a fundamental and harmonic can together form a nonlinear 
eigenmode. Consider again Equations 2 and 3. For a steady-state solution in which there is 
no net energy exchange between the fundamental and harmonic, the left-hand side of these 
equations must be zero. Note that this does not mean that energy (and phase information) is 
not exchanged, just that the net balance of energy flow is zero. Trillo and Wabnitz, and Kaplan 
have shown that this leads to two eigenmodes under certain conditions [47, 53]. They must be 
launched with both a specific difference between their phases at the input, i.e. Aq~ = 
(S - 1)7r/2 with S = +1, and with relative wave irradiances given by 

I(~)  = 2I(2w) + S cAk ~//~/~)Ima x /max = n ( w ) ~  (8) 
03 A(2) 

~eff 

As long as/max < 4I(2w)w2/c2Ak 2, i.e. for small enough wavevector mismatch, there are two 
solutions. Otherwise, only the S = + 1 solution exists. These eigenmodes both have nonlinear 
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Figure 5 Nonlinear phase shift ~NL(L) (monotonically 
increasing step-like response) and fundamental throughput 
P~(L)/P~(O) (oscillatory response peaking at 1) versus 
input fundamental power with (solid line) and without 
(dashed line) a second harmonic input seed power 1000 
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Figure 6 Fundamental transmission versus detuning AkL 
for various relative phase A<p = ( ~ 3 -  2~1 of the seed 
second harmonic relative to the fundamental. The seed 
irradiance is 3.4% of the fundamental (From [49].) 

phase shifts which are linear with distance into a medium and field amplitude. They are given 
by ~bNL(z) = --s[wZI(2w)/(c2lmax)]l/Zz. It is interesting that the sign of this phase shift depends 
on the relative phases at the input. However, note that the phase shift is linear in the field, the 
asymptotic limit of unseeded SHG. 

The stability of these cw eigenmodes has proven to be an interesting theoretical question. 
Kaplan has shown that they are stable against spatial perturbations along the propagation 
direction in the one-dimensional case, i.e. in planar waveguides. Analysing a different 
aspect of this problem, Trillo and Ferro have shown that modulational instabilities can 
occur in the time domain in the presence of perturbations [54]. Frequency sidebands grow 
around both the fundamental and harmonic frequencies. These latter authors have also con- 
sidered the stability in the presence of third order nonlinearities and under some conditions 
chaos was predicted. Their analysis has shown that the eigenmode stability depends on the 
ratio of the contributions of the two nonlinear processes, cascading and the third order 
susceptibility. 

2. 1.2. Type II phase-matching 
There are new possibilities (and therefore opportunities) for the case of Type II phase-matching 
because there are two, independently controlled, fundamental beams [55-61]. This leads to 
three coupled mode equations for the three complex amplitudes a 1 (z) [frequency co, wavevector 
k 1], a2 (z) [frequency ca, wavevector k2] and a3 (z) [frequency 2w, wavevector k3]: 

~Z * IAkz al (z) = - i t~(-w; 2~o, -w)a3(z)a2(z)e (9) 

-~Z * 1Akz a2(z) = -i t~(-w; 2w, -w)al (z)a3(z)e (10) 

d~a3 (z) -it~(-2a;; a;, = w)al (z)a2~z)e . . . .  iAkz (11) 

where the wavevector mismatch for collinear beams is given by Ak = [kl + k 2 -  k3] and 
assuming Kleinmann symmetry again reduces the coupling coefficients to a common n. The irra- 
diances (plane wave) are given by Ii(z) = lal(Z)l z, I2(z )  = laz(z ) l  2 and I3(z) = la3(z)[ 2. For 
SHG, lal(0)l = =I i (0) ,  la2(0)l 2 =12(0) and [a3(0)l 2 =  0. This case was first analysed by 
Hutchings et al. in the context of sum and difference frequency mixing [55]. 

The most detailed analytical exposition of this case was given by Kobyakov and colleagues 
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for Type II SHG [61]. The additional degree of freedom relative to the Type I phase-matching 
case is the relative irradiance of the two fundamental inputs. (We note that the relative phase of 
the two input fundamentals does not affect the conversion efficiency or any of the nonlinear 
phase shifts.) A typical example of the variation in the beam irradiances and nonlinear phase 
shift versus propagation distance on phase-matching [AkL] is shown in Fig. 7 for the simplest 
case of phase-matching, AkL = 0 [61]. These illustrate some of the major differences from the 
Type I phase-matching case. The irradiances of all three beams oscillate (Fig. 7) with distance 
with a period given by 

Lp(6) = 2K[(1 - 6)/(1 + 6)] (12) 

vq-+6 
where 6 = [11(0)-12(0)]/[11(0)+I2(0)] with I1(0)>  I2(0) is a measure of the irradiance 
imbalance. The Manley-Rowe relations require equal energies to be removed from both funda- 
mental beams during SHG and hence the stronger beam only depletes to the point that the 
weaker beam is completely depleted. For the stronger beam to grow during the succeeding 
down-conversion cycle, Equation 10 requires a change in sign which can only be accomplished 
by al (z) changing phase by or when its energy increases back from complete depletion. This 
explains the nonlinear phase shift behaviour for the weak fundamental shown in Fig. 7b. Simi- 
larly, the harmonic phase must change by or when the fundamentals pass through a maximum 
and the harmonic is completely depleted. (Note that [61] has a positive harmonic phase shift 
because a different form of the coupled mode equations was used there.) The stronger funda- 
mental never can undergo a discontinuous phase change because it never depletes. Note, 
however, that for exactly equal fundamental irradiances, the response degenerates into that 
discussed previously for the Type I phase matching case, i.e. the period Lp ~ oo, and there 
are no nonlinear phase changes in the fundamental. Hence, one expects large changes in the 
output for a crystal of a given length near irradiance balance when 6 --* 0 with AkL small. 
And indeed this region has been identified as interesting for various optical devices which 
will be discussed later. 

The variation in the nonlinear phase shift of the weak beam as a function of normalized 
strong beam irradiance is shown in Fig. 8 [59]. Similar to the Type I case, the phase shift 
becomes linear in the field [al(0 )] at high irradiances, exhibiting apparent saturation in 
Fig. 8. The key feature, however, is that the weak beam nonlinear phase shift is optimum 
when 3 ~ 1 whereas the strong beam experiences a small phase shift. Therefore the 
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'cross-phase' modulation of the orthogonally polarized weak beam is large and the 'self- 
phase' modulation of the strong beam is small, a very unusual property for nonlinear optics. 
As 6 ~ 0, the phase shift for the two fundamental beams becomes equal. 

As suggested by Assanto, approaching zero imbalance between the fundamental irradiances 
can be very useful for all-optical transistor action [58, 59]. Consider, for example, Fig. 9 
in which the fundamental throughput for the strong beam is shown. Because of the 
irradiance-dependence of the oscillation period with beam irradiance in the Type II case, 
there is a rapid oscillation in the fundamental throughput near 6 = 0 for small AkL. If the 
input to the crystal is biased around a region of rapid change, for example 89% in Fig. 9, 
and if the input is modulated about this bias point, then large gain will occur for the 
modulation due to the steepness of the response curve in Fig. 9. This is desirable for a 
power transistor. 

1701 



G. L Stegeman et al. 

1.0 

0.8 

0.6 

0.4 

,0 o o ~ 0' . . . . . . .  6,'2 . . . . . . .  6.~ . . . . . . .  6.'~ . . . . . . .  6.~ . . . . . . .  1 '  

I2(o)/I1(o) 

Figure 9 The throughput of the strong fundamental versus 
the irradiance ratio 12(0)/11(0) with different net phase- 
mismatches AkL. (From [58].) 

Additional interesting responses can be obtained by seeding with a second harmonic at the 
input. Again the relative phases will play an important role and a rich variety of different 
outputs can be expected. Such cases have not been analysed in detail to date. 

Nonlinear eigenmodes also exist for this case, as considered in detail by Kaplan [53]. The 
three beams must be launched with both a specific difference between the phases at the 
input, i.e. q~3- ~ 2 -  ~1 = ( S -  1)7r/2 with S = +1, and with relative wave irradiances 
which are too complex to be given here (see [53] for details). These eigenmodes also have 
nonlinear phase shifts which are linear with distance into a medium, similar to the eigenmodes 
in the Type I phase-matching case. 

2. 1.3. Cross-phase modulat ion 
A key question is whether the equivalent of the familiar X(3)-based cross-phase modulation is 
possible with cascading. Although always present with third order nonlinearities, in cascading 
the beams must be coupled via appropriate X (2) coefficients and there must be energy exchange 
between them. By default cross-phase modulation occurs between the fundamental and the 
harmonic, as well as between all of the waves participating in sum and difference frequency 
generation of which Type II SHG is a limiting case. That is, for a weak secondary input 
beam at a different frequency, there must be an almost phase-matched link between the strong 
and weak beams via sum or difference frequency mixing for there to be cross-phase modu- 
lation. This case has been considered in detail by Hutchings and coworkers [55]. The results 
closely resemble those already discussed for the Type II SH case. 

A different form of cross-phase modulation is feasible with two orthogonally polarized funda- 
mental inputs which are separately linked to the same second harmonic via different X (2) tensor 
elements. This would be difficult to implement in bulk crystals but is conceivable in wave- 
guides. That is, a second harmonic can be generated by either one of the fundamental beams 
alone. This case and some of its repercussions have been considered by Assanto and coworkers 
[62]. There are many variables, specifically the two effective nonlinearities, detunings, relative 
powers, etc. Typically one of the fundamental beams is weaker than the other and it is possible 
to control the strong beam output just by varying the relative phase between the two inputs, i.e. the 
phase of the weak beam. Another operation demonstrated numerically is the large gain experi- 
enced by a weak beam over a large range of relative phases between the beams at the input. 
This can be potentially useful for an optical transistor or demultiplexer. The authors predicted 
numerically that such operations could be implemented in LiNbO 3 waveguides [62]. 

Introducing the extra degrees of freedom in this case also affects the stability of the system at 
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high powers. Trillo and Assanto have found that this cross-phase modulation scheme can lead 
to spatial chaos in the polarization at the output for long enough waveguides [63]. The funda- 
mental output polarization can undergo stochastic evolution with distance so that small changes 
in the input power produce large polarization changes at the output. 

2.2. Experimental measurements of SHG-generated nonlinear phase shifts 
2.2.1. Bulk crystals 
The cascaded nonlinear phase shifts have been measured directly, both in bulk crystals and in 
channel waveguides. The first work was by Belashenkov et al. in 1989 on bulk CDA [25]. 
Using a form of time-resolved interferometry, they were able to image the nonlinear phase 
change across the temporal profile of a pulse. More recently DeSalvo and coworkers using Z- 
scan measured the complete detuning and fundamental depletion curves near SHG phase- 
matching in KTP [26]. The results of that work are reproduced in Fig. 10. Note that in [26], 
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using Z-scan with an incident of 9.4 GW/cm -2 on focus. (b) The corresponding fundamental transmission. 
(From [26].) 
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the sign of the phase mismatch is defined opposite to the definition given elsewhere in this paper. 
The agreement with theory is excellent. What is most noteworthy is that the cascading effect at its 
optimum detuning was much larger than the corresponding third order nonlinearity in KTP. And 
this is the exciting promise of cascading, i.e. that large nonlinear phase shifts can be obtained at 
input irradiances much less than those currently needed for nonlinearities in the best Kerr media. 

Although the non-resonant X (2) response of a material is very fast (of the order of femto- 
seconds), this does not mean that the linear phase shift response as shown in Figs 2-4  is also 
this fast. Figure 4a or 10 can be interpreted as a frequency detuning curve, showing that there 
is a bandwidth associated with cascading. The importance of this bandwidth depends on where 
the centre frequency of a pulse occurs. For large detunings, the nonlinear phase shift leads to 
some modification of the frequency spectrum of the pulse, i.e. q~NL (L) varies with AkL  (and there- 
fore the Aw associated with a fast pulse). The influence of the SH bandwidth becomes more severe 
for pulses near the phase-match condition if the pulse bandwidth is broader than the phase- 
matching bandwidth. This effect has been observed for/3-barium borate, and the corresponding 
calculations are shown in Fig. 11 by Hache et al. [64]. These results show a significant decrease 
in the net nonlinear phase shift for pulses shorter than 300 fs in/3-barium borate. 

The nonlinear phase shift has been measured via Z-scan in KNbO3, CDA, KTP and/3-barium 
borate [25, 26, 64-66]. Examples of single crystal organics which have been measured are DAN 
and MBA-NP [67, 68]. To date, the largest effective nonlinearities reported have been of 
the order of 2 • 10 -13 cm 2 W -1 obtained near phase-matching in a 0.8 mm thick DAN single 
crystal, a factor of five larger than CS2 even for such a short crystal [68]. 

2.2.2. Waveguides 
Nonlinear phase shifts in general are probably best utilized in optical waveguides in which the 
input power for a desired phase shift can be minimized by virtue of their strong field confine- 
ment without diffraction. The first waveguide measurements were performed by Sundheimer 
et al. using spectral broadening to deduce the phase shift in segmented, ion-exchanged KTP 
waveguides [69]. However the key experiments were in LiNbO3 channel waveguides which 
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utilized temperature-tuned Type I phase-matching at 1320 nm [70]. The details of this experi- 
ment are important because of the valuable lesson learned from it. For the geometry used, the 
phase-matching temperature was around 340~ and an oven was necessary to operate at this 
temperature. Because of the short working distance of the lens required for coupling into the 
single mode waveguides, the sample ends were located right at the oven windows where the 
temperature was lower than in the central part of the oven (and waveguide). Thus, when 
the central part of the waveguide was wavevector-matched, the ends were not, and vice 
versa. This led to a highly asymmetric fundamental throughput around the temperature 
(336.6~ associated with phase-matching the central part of the waveguide, as shown in 
Fig. 12. The nonlinear phase shift (Fig. 13) was measured directly with a Mach-Zehnder inter- 
ferometer. The key point is that a large nonlinear phase shift (> 1.570 was measured commen- 
surate with a loss of only 10% or less to SHG at the output. 

The results in Figs 12 and 13 have very important repercussions. With a uniform wavevector 
mismatch along the waveguide and useful nonlinear phase shifts, the throughput of the funda- 
mental is dramatically reduced due to SHG. These LiNbO 3 results showed that this loss to SHG 
can be minimized with an appropriate wavevector mismatch distribution with distance. The 
'price' for minimizing this 'loss' is that the required waveguide length is increased relative 
to the uniform wavevector mismatch case. 

Cascaded phase shifts have also been measured in a single crystal core fibre using the organic 
DAN in the core [68, 71]. Although the fundamental mode was guided, this waveguide was 
below cut-off for the second harmonic which could therefore not propagate as a guided 
mode. The second harmonic was emitted in the form of Cerenkov radiation into the fibre 
glass cladding. Nevertheless, cascaded phase shifts still occurred, a fact that does not invalidate 
the simple model introduced above. Even in this case the harmonic exchanges energy with the 
fundamental within the fibre with distance. Initially the harmonic grows with distance inside 
the fibre core, continuously leaking energy into the cladding at each reflection from the 
core-cladding boundary due to the non-unity reflection at that interface. In the Cerenkov 
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Figure 13 Nonlinear phase shift q~NL(L) near Type I phase-matching for SHG in LiNbO3 channel waveguides 
versus temperature in the centre of the oven for temperature tuned phase-matching. (From [70].) 

SHG limit, the harmonic generated 'between reflections' just equals the harmonic radiated out 
of the waveguide, resulting in steady-state radiation into the cladding, i.e. Cerenkov SHG. Even 
in the steady-state region, the harmonic and fundamental trapped in the fibre continue to 
exchange energy and hence lead to a ~b r~. A nonlinear phase shift of 7r/4 was obtained with 
only a few tens of watts of input. 

3. Effective cascaded nonlinearities via optical rectification 
As mentioned in the introduction, cascaded effects can also occur due to optical rectification. 
Just as the second harmonic is the intermediate and necessary step for cascading using 
X(2)(2co; co, co), the optical rectification field is the intermediate step for cascading based on 
~((2)(0; CO, --CO) [10, 72]. A d.c. electric field Ei(O ) is created by the mixing of the fundamental 
field with itself via X (2) (0; w, -co) 

Pi(O ) 1 (2) . , : ~ eoX,j k (0, co,-w)Ej(w)E i (co) = s  1)Ei(0) (13) 

where e,i is the relative d.c. dielectric tensor component. Through a second X (2) process, essen- 
tially the electro-optic effect, and effective nonlinearity n ~ due to the optical rectification 
effect (versus n2 from X (3) and n sHe for the SHG cascading discussed previously) is obtained 
of the form 

(2) 
OR 1 [Xitk (--CO; CO' 0) ]  2 n 6  

n2 - -  Ceo n2 (kk - -  1 -- 4Ce0(ekk -- 1) [riik]2 (14) 

where rij ~ is the electro-optic tensor. The magnitude of n ~ is always positive, and depends on 
polarization and propagation only through the values of the second order tensor coefficients. 
Clearly this process again leads to an effective nonfinear refractive index change. 

The contributions of n ~ to the nonlinear refraction in a Z-scan experiment have been 
measured by Bosshard et al. in KNbO3 which has some of the biggest electro-optic coefficients 
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known [72]. By using the largest coefficient of 360pmV -1, an optimum n ~ of ~ 2  • 
10 -14 cm 2 W -1 was measured. For this optimum geometry they also evaluated numerically the 
contribution from n sHC which was far from phase-matching and hence far from optimum, i.e. in 
the limit where n sn6 c( 1/Ak. In the geometry for which n ~ is optimized, it is about one order of 
magnitude larger than this n sn6. Along other directions the contributions are comparable. 
However, it is worth noting that near phase-matching in KNbO3 with d2,efr = 5.6pmV -1, the 
second harmonic cascaded contribution was measured to be a factor of about four larger [66]. 

Recent calculations and experiments on degenerate four wave mixing have shown that the 
optical rectification effect is again dominant for certain polarization and propagation directions 
in materials with large electro-optic coefficients. This effect has been analysed by Zgonik and 
Gtinter and Unsbo [23, 73, 74]. The physical picture follows that of the usual degenerate four 
wave mixing process, i.e. the two counterpropagating beams (wavevectors k 1 and k2) are taken 
with the signal input (k3) in pairs to produce two gratings (wavevectors k5 and k6) which can 
'reflect' a beam into the output direction (k4). The general formalism for the optical rectifica- 

. (3), leads to tion contribution to the effective third order susceptibility xeff 

3 (3) /~(i]3k~,eff (--CO; CO'--CO'CO:-k4;kl,k2,-k3) = 2Xijkl(--co;co,--co, co:-k4;kl,k2,-k3) 
(2) (2) 

.~_ Xikp (0; CO, --CO : -ks ;  k l, - k 3 )  Xjlp (-CO; CO, 0 : - k 4 ;  k2, -ks )  

s  

(2) . (2) 
+ Mjkq(O, CO, --CO : - k 6 ;  k2, -k3)X,lq (-CO; CO, 0 : - k 4 ;  k l ,  k6) (15) 

s -- 1 

However, as pointed out by Zgonik and Gtinter, the physics of the material and mixing process 
must be taken into account in deciding which terms actually contribute. For example, in strong 
ferroelectrics like KNbO3, changes in the polarization are associated with polar optical 

. (3) which involve the generation of longitudinally phonons. That is, rectification terms in xeff 
polarized static fields need to be omitted. 

The theory was tested experimentally in KNbO 3 and very good agreement was obtained [74]. 
The experiments were done with 532 nm beams so that the SHG cascading term was negligible 
because of the material absorption at the harmonic wavelength of 266 nm. Directions were identi- 

l fled which involved the largest electro-optic coefficient r232 = 365 pm V- and for which optical 
rec (3) tification dominated the relevant X component by a factor of 15-20. 

3.1. All-optical switching devices 
3.1.1. Waveguide devices 
There has been a concentrated effort in the last 10 years to implement all-optical switches in 
waveguides which operate with reasonable peak powers [27, 75]. Their purpose is to direct 
the input signal either to one of two possible outputs (nonlinear directional coupler, NLDC), 
or to modulate it (nonlinear Mach-Zehnder interferometer, NMZI), both depending on the 
irradiance of either the signal itself, or that of a control beam. These devices require a nonlinear 
phase shift of 27r and 7r respectively and have already been successfully implemented with a 
variety of third order nonlinear mechanisms [75]. Assanto et al., Schiek and others have 
shown theoretically that the cascaded nonlinear phase shifts can indeed be used for all-optical 
switching devices [43, 48, 76-78]. In fact, Schiek has given a very complete analysis of 
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all-optical switching with an NLDC, including switching with temporal solitons supported 
by the cascading nonlinearity [43, 76]. 

Picciau and colleagues have extended the cascading nonlinearity to Bragg periodic structures 
[79]. The system is complicated by the presence of four waves inside the structure, a funda- 
mental and harmonic travelling in both directions. Amongst the rich variety of all-optical 
response was a versatile bistable gate, and many features different from those expected from 
classical Kerr nonlinearities. 

Both an NMZI and an NLDC have been demonstrated in LiNbO3 channel waveguides in 
which the cascaded nonlinear phase shift is used to mimic a third order nonlinearity [80- 
82]. The waveguides used were similar to those described in section 2.2. That is, the wave- 
vector mismatch varied with position in such a way that the net conversion at the output to 
SHG was only of order 10% and the nonlinear phase shifts were large, > 27r. The design needed 
was quite sophisticated, especially for the NLDC (inset of Fig. 14) because there are four fields 
involved, and there is potential coupling between the two fundamentals and between the two 
second harmonics in the two parallel waveguide arms [82]. The output from the two channels 
as a function of input power is shown in Fig. 14. Note that the response does not show any large 
oscillatory behaviour superimposed on the switching curves. Such oscillations are expected 
from an NLDC with uniform wavevector mismatch [43, 48, 76]. However, the switching 
power is currently larger than the best x(a)-based and active semiconductor amplifier devices 
[75]. This is primarily because the nonlinearity for this cut of LiNbO 3 (5pmV -1) is small. 

An NMZI has also been successfully implemented by the same authors, both in hybrid and 
completely integrated formats in LiNbO 3 channel waveguides [80, 81]. The hybrid device 
interfered a cascaded phase shift in an LiNbO3 channel waveguide with a reference beam 
propagated in a linear medium. For the fully integrated version, different channel widths 
were fabricated to produce different wavevectors. This resulted in different wavevector 
mismatches in each channel and hence different nonlinear phase shifts. The switching 
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Figure 14 The all-optical response of a nonlinear directional coupler based on cascading nonlinearities in 
LiNbO3 channel waveguides using temperature tuned Type I phase-matching. The geometry is shown in 
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characteristics were excellent, even though pulses were used. Although these devices also 
required relatively large powers for switching, just like the NLDC, the key point is that they 
can be implemented based on the cascading nonlinearity. 

3.1.2. Intracavity SHG devices 
Optical bistability initiated the interest in all-optical devices over 20 years ago and has been 
implemented with just about every known nonlinear mechanism which changes the refractive 
index [83]. The effects of cascading on SHG in cavities has led to interesting effects, including 
optical bistability [84-86]. In some cases the origin of the bistability is not attributed to 
cascading nonlinearities although they seem to be a reasonable candidate for the response 
observed [84]. The role of cascading has been recognized in a number of cases. For example, 
by placing KNbO3 in an optical cavity and implementing Type I phase-matching of a Ti : sap- 
phire laser, Ou has observed asymmetries in both the fundamental and harmonic temporal line 
shapes [85]. Although the details of the experiment have not yet been explained, it is clear that 
the cascading process in some form is responsible for the observations because the effects 
depend on the detuning from phase-match [85]. With his available theory, Ou deduced a 
huge cascading phase shift of 57r. 

In a very recent report, White and coworkers clearly observed and interpreted cascaded 
bistability in a monolithic LiNbO3 resonator tuned for SHG with 1064nm input [86]. The 
wavevector mismatch was adjusted by temperature tuning and the laser frequency was then 
swept through the resonance and the line shape function measured. A nonlinear phase shift 
is accumulated in the cavity away from the phase-matching condition, which acts to pull the 
cavity back towards resonance during the strong illumination part of the cycle. The result is 
shown in Fig. 15. There are three important features: (1) bistability occurs when the linear 
and nonlinear detunings are of opposite sign; (2) the line shape at powers above a 125 mW 
threshold is asymmetric and exhibits bistability; and (3) the direction of both the bistable 
loop and the line asymmetry reverses when the process is tuned to opposite sides of phase- 
matching. Most remarkable here are the low powers required for bistability, and the high quality 
of the bistable response. Note that the SHG losses had to be minimized by operating near the first 
zeros of the SHG response curves. This allowed the cavity to have a high enough finesse to make 
the bistability occur at such low powers. The agreement with theory was very good. 

Reinisch and colleagues have analysed the problem of coupling into X(2)-active waveguide 
resonators near their phase-matching conditions for both resonant excitation of the guided 
modes and for SHG [87, 88]. They used the usual coupled mode equations for prism or grating 
coupling, augmented by the SHG interaction (Type I). Under steady state conditions, i.e. infinite 
plane wave illumination approximation, they found that the cascaded phase shifts should lead 
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Figure 15 Optical bistability in an LiNbOa resonator temper- 
ature detuned on both sides of phase-matching versus 
frequency tuning of the incident laser. (From [86].) 
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to optical bistability with appropriate detuning and irradiance thresholds [87]. However, when 
the input was seeded with a second harmonic, bistability was predicted above a threshold power 
for the seed and over a range of different phase angles between the two inputs, even on 
phase-matching [88]. They linked this bistability to a nonlinear resonance of the waveguide 
coupler-seeded SHG interaction. In the absence of a fundamental input, this resonance also 
leads to parametric down-conversion of the incident harmonic into the fundamental once the 
parametric instability threshold is crossed. 

3.2. SHG mode competition in waveguides 
Second harmonic generation has been investigated in channel waveguides for over 20 years and 
has reached a high level of sophistication [31, 89]. Quite frequently waveguides which are 
single mode at the fundamental wavelength are multimode at the harmonic. Therefore, as 
the input wavelength is scanned, phase-matching to harmonics corresponding to different 
waveguide modes occurs at different wavelengths. Because the harmonic modes are separated 
from one another by at least a few SHG bandwidths, their SHG responses are expected to be 
independent of each other. 

However, looking at Fig. 4a, we see that the nonlinear phase shift can still be quite large, 
many linewidths away from an SHG resonance if the input power is high enough or the 
nonlinear coupling coefficient (n) is sufficiently large [90]. If only one fundamental mode is 
excited and if two harmonic phase-matching resonances (two different modes) are possible, 
then the two harmonics are both excited to some degree and hence they compete with each 
other for the fundamental power. Furthermore, a nonlinear phase shift due to each harmonic 
resonance is induced at every wavelength, even at the centre wavelength for SHG of the 
other mode. This nonlinear phase shift varies with distance into the waveguide as shown in 
Fig. 2a. It is further complicated due to the mode competition for power which also varies 
along the waveguide. The net result is that the phase-matching condition which includes the 
nonlinear component will vary with distance from the input. This implies that the wavelength 
of maximum conversion can change its centre wavelength and the normalized figure of merit 
for SHG will depend on fundamental input power and waveguide length. 

Such effects have been observed experimentally in quasi-phase-matched LiNbO 3 wave- 
guides with fundamental wavelengths in the 1500 to 1600nm range [90]. Examples of the 
SHG detuning curves are shown in Fig. 16 along with pictures of the actual mode patterns 
seen at different wavelengths. Note the changes in the peak positions with increasing incident 
power as evidenced by the arrows, and the changes in the relative conversion efficiencies. 

3.3. Degenerate and almost degenerate four wave mixing 
A number of experiments have been reported in which two successive X (2) processes have been 
used to mimic four wave mixing. In the cascading context, first a second harmonic beam is gener- 
ated by one of the input beams, and then difference frequency mixing between that SH beam and 
the second input beam leads to the signal of interest. Back in the 1980s Baranova and Zeldovitch 
analysed this case and predicted that large cross-sections should be achievable [15]. 

Two particular variations of this process have been demonstrated [64, 66, 91, 92]. In the first, 
two equifrequency (w) beams with wavevectors kl and k2 are incident in slightly different 
directions near the phase-matching condition and overlap inside the sample. When wave 1 is 
doubled (2w) and wave 2 mixes with this harmonic via difference frequency generation, a 
new beam (at 2w - w ~ w) near the phase-matching condition with wavevector 2k 1 - k2 is 
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Figure 16 Variation in the second harmonic detuning 
curves for two closely spaced (in wavelength of the funda- 
mental) second harmonic modes in a multi-mode LiNb03 
channel waveguide at different input powers. The maxi- 
mum conversion efficiencies ~/= P~(L)/P~(O) and the 
input fundamental powers Pin (~/, Pro) are: (a) (0.005%, 
4roW); (b) (0.069%, 15mW); (c) (0.63%, 60mW); (d) 
(17%, 38W); (e) (23%, 103W); and (f) (27%, 113W) 
respectively. The positions of the peak second harmonic 
powers (arrows) and the guided wave modal profiles are 
also shown. (From [90].) 

generated. Of course the complementary output at 2k  2 - k  1 is also generated via harmonic 
generation of wave 2. If these two new beams are strong enough, they generate another pair 
of beams via cascading, and so on. The generation of a sequence of such beams was demonstrated 
by Danelius and coworkers in fl-barium borate with 1064 nm inputs [91]. The results shown in 
Fig. 17 indicate the generation of at least six extra beams. 

This particular interaction has an interesting application to the control of the frequency chirp 
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Figure 17 The relative output beam powers (all at the frequency 
~) observed versus angle away from the phase-matching angle 
due to multiple, successive four wave mixing processes via cas- 
cading. The two strongest peaks correspond to the unconverted 
input beams. (From [91].) 

1711 



G. L Stegeman et al. 

of pulses [92]. For example, if wave 1 has a frequency chirp al  and wave 2 a chirp o~ 2, then the 
frequency chirp of the beam scattered into the direction defined by 21( 1 - -  k 2 is 2al -- a2. This 
becomes especially interesting if a2 --- - a l  so that the frequency chirp in the new beam is 3al,  
which can subsequently be used for enhancing pulse compression. In the experimental verifica- 
tion, a tripling of the frequency chirp was indeed observed and used for pulse compression. 
Because a cascaded nonlinear phase shift occurs on the down-conversion step back to the 
original fundamental beam (wave 1 in this case), it is not present in the scattered beam resulting 
in a clean transfer of the chirp. 

The second case has potential applications to frequency shifting in communications. This 
requires two collinear input beams, one at w (strong beam) and the other at w - Aw (weak 
beam). The process is arranged to be near phase-matching for doubling the strong beam. 
Then difference frequency generation occurs via mixing of the weak beam and the harmonic 
which leads to a beam at co + Aw, that is the frequency has been shifted by 2Aw. Equivalently 
a signal at ~ + Aw can be shifted by - 2 A ~ .  

The efficiency of this process has been demonstrated in MBA-NP and t-barium borate 
crystals at 1064nm [64, 66]. Results for MBA-NP are reproduced in Fig. 18. Although the a(2) 

2 4 L 2 (2) 4 Left 
was only 2.5pmV -l ,  the conversion efficiency ( = [W,o+A~/W~W~,_A~,]n / oc Ideff I was 
impressive for 100 MW cm -2 pump irradiances where W is the pulse energy. For calibration, 
the signal obtained via X (3) from BK7 glass is shown, as well as for two different field polariz- 
ation directions in which the MBA-NP crystal is far from phase-matching. 

3.4. Gain and transistor action via cascading 
A number of characteristics of the cascading process discussed in the theory section suggest 
that it could be used as an optical transistor. To date, several schemes for applying cascading 
in second-harmonic generating (SHG) crystals to optical transistor-like devices have already 
been proposed and demonstrated [48-52, 57-62, 93-97]. Such devices allow a weak signal 
beam to impose a large amplitude modulation on a strong 'pump' beam, through wave mixing 
in a X (2) crystal, or vice versa. Owing to the coherent nature of the cascaded nonlinearity, there 
are two distinct classes of cascading used to obtain transistor-like action, phase and amplitude 
controlled modulation. Numerical studies show that if a weak SH beam is input, both the ampli- 
tude and phase of the fundamental output can be controlled with the phase and/or amplitude of 
this seed, leading to new applications to switching devices including small-signal gain and tran- 
sistor action [48, 49, 51, 52]. Another example is to use Type II SHG in which the relative 
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Figure 18 The conversion efficiency ( =  [W~+~,,,I 
[W 2 W,,, m,]n41L 2 for frequency shifting an input beam (at 
~, 1064nm) to ~ + A w  via cascading in MBA-NP versus 
angle detuned from phase-matching (AkL) of the strong fun- 
damental beam. Here W is the pulse energy. To show the 
large cascading enhancement, the signals obtained far 
away from phase-matching in MBA-NP and from a reference 
sample of BK7 glass are also shown. (From [65].) 
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amplitudes of the two input fundamental beams are used to control the output [57-62]. This 
second case utilizes the rapid change in the fundamental throughput and SHG efficiency as 
the fundamental irradiances approach equality, see section 2.1.2. 

We first discuss the phase controlled process through second harmonic seeding which does 
not have an analog with X (3) nonlinearities. The idea was discussed previously in section 
2.1.1.2. The key is Fig. 6 which shows the response of the fundamental throughput as a function 
of relative phase angle between the seed and fundamental. To our knowledge only one experi- 
ment has been performed and this involves SHG in KTP with a weak SH seed beam [48]. A 4.6 
to 1 switching ratio was achieved for a 1064 nm fundamental by modulating the relative input 
phase of the 530 nm control beam having 3.4% of the fundamental peak irradiance (or 18% of 
the peak field as it is the field that is of consequence). Figure 19 shows the fluence transmittance 
(i.e. on axis) of a 1 mm thick KTP crystal with AkL = 1.3 as a function of the phase difference, 
A~b = ~b 3 - 2~b 1 at a fixed fundamental input irradiance of 20 GW cm -2. Temporal averaging 
over the 40 ps (F-WHM) of the pulses gives the observed modulation ratio of 4.6 to 1 which 
agrees with the numerical calculation shown by the solid line. This modulation scheme requires 
that the seed beam which can be used to control the strong fundamental beam (pump) must be 
coherent with the pump. This is also true even if the seed modulates the pump through ampli- 
tude modulation, which is equally possible. 

Although the phase sensitivity of the cascaded interaction may be exploited in some circum- 
stances, it may be impractical because it requires interferometric stability between input beams 
and consequently between successive switching devices. A device of this nature is also very 
limited in application, as the pump and signal must be derived from the same source. This 
phase-sensitivity problem may be avoided by the use of Type II second-harmonic interactions 
where orthogonally polarized fundamental beams produce SHG even when mutually inco- 
herent. Two groups have successfully pursued this concept [58, 93-97]. The approach is 
based on a feature of Type II SHG discussed previously in section 2.1.2, most specifically 
Equation 12 which predicts that the fundamental throughput oscillates with propagation 
distance and the relative irradiance of the two inputs 11 and 12. As Ii ~ 12, the oscillation 
period ~ oc and the fundamental throughput can go from maximum to minimum (which 
corresponds to maximum SHG). 

Assanto and coworkers have measured a large increase in the fundamental transmission on 
phase-matching when the input angle was rotated away from 45 ~ giving 11 ~ 12 [93, 94]. Their 
results for fundamental transmission as a function of irradiance imbalance are reproduced in 
Fig. 20 for a 2mm KTP crystal excited at 1064nm [94]. When the results are averaged over 
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Figure 19 The fundamental throughput on phase- 
matching for a weak second harmonic seed (3.4% 
energy of the fundamental) versus relative phase angle 
~q~ = ~3 - 2~1 at the input. 1064 nm pulses were used 
and KTP was the doubling crystal. (From [49].) 
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Figure 20 The fundamental (1064nm) throughput 
versus the relative difference in the incident irradi- 
ances, 6, of the two orthogonally polarized funda- 
mental beams at two different input irradiances. 
The solid lines are the theoretical fit. Open circles: 
/in = 12 GW cm -2 . Solid circles: ] In = 6.2 GW cm -2. 
(From [94].) 

the temporal profile of the pulse, excellent agreement with theory was obtained. Considering 
the fundamental polarized at 45 ~ as the pump beam, a small additional signal which creates 
an irradiance imbalance in one of the inputs is amplified as the net output increases dramatic- 
ally. Such a gain has been measured in an independent experiment by LeFort and Barthelemy 
who added a polarizer at the output to block the fundamental output for the pump beam when 
I 1 = I 2 [95] .  The factor of 70 gain obtained by using pump energies of 200 #J in 35 ps pulses is 
shown in Fig. 21. Subsequently they extended their experiment by measuring the transmittance 
as a function of the irradiance imbalance between the inputs [96]. 

Wang et al. have proposed a novel optical transistor which is insensitive to the relative phase 
between input beams by using two Type II SHG crystals in tandem [94, 97]. The first crystal 
couples the mutually incoherent signal to a strong 'pump' wave, while the second crystal 
amplifies the coupled modulation. The configuration is shown schematically in Fig. 22. The 
pump beam is split into two, approximately equal, orthogonally polarized components. One 
of these, I l, passes through the first nonlinear crystal (the 'coupler'), where it is modulated 
by the weak, incoherent signal Is with a gain of less than unity. The key feature of the device 
is the method of imposing a modulation o n  I 1 from a weak signal, Is, that can be temporally 
incoherent with both fundamental pumps. This modulated pump is recombined with the 
other component of the pump and incident on the second crystal (the 'amplifier'), where 
the modulation is strongly amplified. This is seen in Fig. 23, where the output fundamental 
irradiance is plotted as a function of input for different biases, where the bias is defined by 
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Figure 21 The all-optical transistor gain for a 1 pJ 
input signal pulse from a KTP crystal versus funda- 
mental input pump energy for 35ps pulses at 
1064 nm. (From [95].) 
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Figure 22 Schematic of a phase-insensitive all-optical tran- 
sistor based on two successive Type II SHG processes. 
(From [94].) 

6 --- (11 - 12)/1 t. For small 6, the modulation of the transmitted irradiance is directly propor- 
tional to 6. An amplifier of this type is fundamentally different from a laser amplifier in that 
it has no amplified spontaneous emission. The gain also may have a narrow bandwidth and 
has the potential to be rapidly switched by control of the pump waves. In principle a polarizer 
can be added at the end of the device to block all light unless the signal is present to eliminate a 
background signal, but this becomes an interferometric device with the incipient dependence on 
the relative phase between pump waves. 

3.5. Mode- lock ing  of lasers 
The application of second order nonlinearities to the mode-locking of lasers was developed 
quite independently from the other cascading effects described in this review. Despite this, 
the similarities between the ideas generated in the two fields are remarkable, as we shall 
demonstrate. Techniques using cascading to mode-lock lasers have seen steady improvement, 
from the initial studies in 1988 [32, 98] that were only applicable to high peak power pulsed 
systems, to the current state-of-the-art, where cw mode-locked and diode pumped systems 
have been demonstrated [33, 99, 100]. Most of the work in this field has its roots in the original 
papers of Stankov in 1988 [32, 98], where a 'nonlinear mirror', made from an SHG crystal and 
a dichroic mirror, was used as a positive-feedback, amplitude-modulation intracavity element to 
provide passive mode-locking and Q-switching. The first demonstration of such mode-locking 
was presented by Stankov and Jethwa [32], where a nonlinear mirror was used to mode-lock 
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Figure 23 Calculated transistor output versus input 
signal for a 1 cm KTP amplifier. IT = 1 .0GWcm -2, bias= 
1MWcm -2 (dashed line); I T = 1 .0GWcm -2, bias= 
- 5 M W c m  -2 (solid line); / T = 0 - 6 G W c m  -2, b ias= 
4 MWcm -2 (long-short dashed line). (From [94].) 
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an Nd:YAG laser, producing lOOps pulsewidths in a lOOns train of about 3 rnJ total energy. 
This paper also presented a simple theory for the nonlinear mirror, elaborated on by Stankov in 
[98], that we will describe below. It is noteworthy that this analysis, and most of the many 
ensuing papers on the subject, assumes only phase-matched interactions, ignoring the phase- 
mismatched case. It was not until much later, after significant growth of the field of cascaded 
nonlinearities, that the value of phase-mismatched interactions was recognized. 

The nonlinear mirror in question, hereafter referred to as the 'Stankov Mirror', is shown in 
Fig. 24. Light at the laser emission frequency, ~, is incident on the phase-matched SHG crystal, 
sufficient to provide substantial conversion to the second harmonic under mode-locked opera- 
tion. The dichroic mirror reflects 100% of the light at 2w (R~ --- 1) while only partially 
reflecting the fundamental R~ < 1. Upon re-entering the SHG crystal on the return path, the 
interaction between the ~v and 2~c waves will depend on their relative phase, A~b. This is similar 
to the behavior of the Type I, seeded SHG, described in section 2.1.1.2. For Agb = 
-7r/2 + 2myr, where m is an integer, further conversion to the second harmonic will take 
place, but for A~b = + 7r/2 + 2mTr, the energy will convert back to the fundamental. Note 
that the sign of 7r/2 may vary in the literature because of different notations. The latter case 
gives the condition under which positive feedback will take place, the higher the incident 
irradiance, the greater is the energy at the second harmonic incident on the dichroic mirror 
and hence the higher is the reflectance of the overall device. The device essentially provides 
mode-locking by mimicking the behaviour of a saturable absorber, but is different in two 
advantageous ways: (1) it is based on a reversible process that has the potential to be lossless; 
(2) the mechanism is instantaneous so the pulse shortening is equally effective on both rising 
and trailing edges of the pulse. However, the minimum pulsewidth is limited by the bandwidth 
of the SHG process, which is dictated by phase-matching considerations. Adjustment of Ag~ 
proves to be relatively simple in practice, as dispersion in air may provide the necessary 
phase shift, with adjustment being achieved by variation of the distance from the SHG crystal 
to the mirror. An alternative scheme uses the tilting of a glass plate to provide a more conve- 
nient method to adjust A~b. The operation of the Stankov Mirror is best illustrated by Fig. 25, 
taken from [98], which shows the propagation of the irradiances at ~v and 2~ as they propagate 
through the SHG crystal on their initial and return paths for A~b = + 7r/2 + 2mTr and R~ << 1. 
Here, the similarity to the operation of the SH-seeded optical transistor described in section 3.4 
is clear. 

Under the condition of A~b = + 7r/2 + 2mTr, the irradiance-dependent reflectance is given by 
[98], 

R (r/) = G{ 1 - tanh 2 [x/G tanh-1 (x/-~) - tanh-1 (~/~//G)] } (16) 

SHG 

R2o=l 
P~<I 
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Figure 24 Schematic of the nonlinear mirror based 
on SHG. R2~ and R~ are the reflectances at the SH 
and fundamental wavelengths, respectively. 
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Figure 25 Dependence of fundamental and SH 
irradiances as they propagate through the SHG crys- 
tal on their initial and return paths, for a dichroic mir- 
ror with 100% reflectance at the SH and 1% at the 
fundamental, with Aq~ = +7r/2 + 2rmr. (From [98].) 

where G = r/+ (1 - ~)R~, ~ is the conversion efficiency to second harmonic after the first pass 
through the SHG crystal and it is assumed that R2~ = 1. This behaviour is plotted in Fig. 26 for 
various values of R~. Clearly, making R~ smaller causes the nonlinearity of the mirror to be 
more pronounced, as is appropriate f3r Q-switched operation. We will see later that relatively 
large values of R~ are appropriate for cw mode-locking. 

This positive feedback, amplitude-modulator form of the Stankov Mirror was the subject of 
many experimental and theoretical studies over the next few years. In 1989, Stankov refined the 
mode-locking of an Nd:YAG laser to produce transform-limited, 45ps pulses [101], later 
producing even shorter pulsewidths by using a BBO crystal [102]. Mode-locking of an 
Er : YA103 laser at 1660nm and an Nd: YA103 laser at several wavelengths was also demon- 
strated [103-105]. Theoretical studies of mode-locking by this technique were presented by 
several authors [106-110]. The problem of group-velocity mismatch (GVM) in the SHG 
crystal, was described by Stankov et aL in 1991 [111]. The same authors proposed a scheme 
to compensate for GVM, where a birefringent plate is placed between the nonlinear crystal 
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Figure 26 Overall reflectance at the fundamental for the Stankov mirror as 
a function of single-pass conversion efficiency, r/, for several values of R,. 
(After [98].) 
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and the dichroic mirror [112]. However, their analysis indicates that GVM should become a 
problem only for pulsewidths close to or less than 1 ps, and they did not experimentally demon- 
strate GVM compensation. However, GVM was studied in more detail in 1995 by Xue and Lou 
[113] who indicated that the effects of GVM may be more severe than estimated in [111] and 
[112]. Experimentally, the birefringent plate compensation was first demonstrated in 1995 by 
Cerullo et aL [114], who showed that the technique could significantly shorten the pulsewidth 
of Nd : YAG and Nd : YLF lasers, as we will describe below. 

A slight modification of the Stankov Mirror to produce mode-locking by negative feedback 
was first introduced in 1991 [115]. It was previously shown that the introduction of a negative- 
feedback element (i.e. one that has loss that increases with irradiance) to a cavity mode-locked 
with a positive feedback element can produce superior performance [116]. It is straightforward 
to achieve negative feedback with an intracavity SHG element such as the Stankov Mirror. All 
that is required is to make A~b = -7 r /2  + 2mTr. Using this technique, long pulse trains are 
produced in an Nd:YAG laser mode-locked by an active acousto-optic mode-locker and a 
nonlinear mirror using BBO [115]. This performance was later improved upon by use of an 
LilO3 crystal in the negative feedback configuration in an actively mode-locked Nd:YAG 
laser cavity to produce stable pulse trains in excess of 1 ms, limited only by the flashlamp pulse- 
width [117]. In the absence of the negative feedback, 600ns bursts of mode-locked pulses at 
fluctuating intervals of 5 -10#s  are produced. 

Another variation of the Stankov Mirror was introduced by Barr and Hughes in 1989 and 
uses a coupled cavity configuration [118]. Here, 30-50 ps pulses are produced in a Q-switched, 
mode-locked train from an Nd : YAG laser. Subsequent theoretical analysis by the same authors 
[119] models the mode-locking as an amplitude modulation effect, but shows it can occur via 
either positive or negative feedback. It was noted, however, that by choosing different values of 
A~b, pure phase modulation is possible, though this was not explored. 

It is interesting to note at this point that all of the cases mentioned so far consider the case of 
perfect phase-matching. This does not necessarily preclude the possibility of phase modulation, 
however, as hinted at in [119] above. As seen in section 2.1.1.2, if A~b # +7r/2, nonlinear 
phase shifts may occur, even for AkL = 0. Although the analysis for the systems described so 
far assume pure amplitude modulation, the experiments were performed on pulsed-flashlamp 
pumped lasers, where the dynamics of Q-switching and mode-locking are complicated. Given 
that it is difficult to know A~b with any degree of certainty in these systems, it is probable that 
nonlinear phase shifts associated with the cascading may have played a role in some of them. 
That this was not considered in the early models for mode-locking with the Stankov Mirror, 
may be attributed to the independence of the respective fields of mode-locking and of cascaded 
nonlinearities. 

The first serious consideration of nonlinear phase shifts through cascading as applied to 
mode-locking was by Zhao and McGraw in 1992 [120], who provided a detailed analysis of 
a phase-matched 'parametric mirror', which is a nondegenerate frequency mixing variation 
of the Stankov Mirror. Such a device was originally proposed in 1988 by McGraw [121] 
with a similar concept presented in 1989 by Stankov [122]. Stankov proposed using such a 
device synchronously to mode-lock two lasers running at different wavelengths, although 
this has not been realized experimentally. Zhao and McGraw used their device to provide 
AM mode-locking in a sync-pumped dye laser, although the process reported requires an 
external laser pulse to participate in the nonlinear mixing process. The effect of the parametric 
mirror is to reduce the pulsewidth from 13.7 ps in the pure sync-pumped case to 7.5 ps with the 
parametric mirror. This is probably the first case of cw mode-locking using a second order 
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nonlinearity, albeit a hybrid mode-locking system. Although, in their analysis, the authors made 
no connection to the work in cascaded nonlinearities, they clearly showed how nonlinear phase 
shifts could be produced in the case of A k L  = 0. The use of this effect for FM mode-locking 
was proposed and analysed, but was not experimentally realized. In retrospect, the difficulty of 
applying nonlinear phase shifts to the mode-locking of such a cavity may be the strong self- 
focusing or defocusing that results from such nonlinear phase shifts [26]. 

There are some cases where cascaded nonlinear phase shifts have clearly played a role in 
mode-locking, although the authors may not have been aware of the exact mechanism at the 
time. In 1990, Carruthers and Duling [123] used a KTP crystal, cut for Type II SHG, in an anti- 
resonant ring to mode-lock an N d : Y A G  laser as shown in Fig. 27. Under cw flashlamp 
pumping, self-starting mode-locking with 11 ps pulses was observed when Faraday rotators 
were oriented to make the counter-propagating beams cross-polarized. The mode-locking 
was particularly sensitive to alignment of the KTP crystal and it was noted that optimum 
mode-locking could be found with a slight phase-mismatch, indicating that nonlinear phase 
shifting could be a possible mechanism for the mode-locking. Indeed, the authors did attribute 
the mechanism to phase modulation, but it was left to DeSalvo et al. [26] to point out the possible 
connection between this experiment and cascaded nonlinear phase shifts. In 1993 Wu et aL [124] 
also observed mode-locking in a cw Nd: YAG laser with an intracavity KTP SHG element. In this 
case, the mode-locking had to be forced by moving one of the end mirrors, but similar to reference 
[123], optimum mode-locking was observed with a slight phase-mismatch. Again, self-phase 
modulation in the KTP is given as the mode-locking mechanism but this was attributed to X (3) 
rather than X (2). 

Probably the first clear demonstration of passive cw mode-locking using the positive feed- 
back Stankov Mirror was in 1994 by Danailov et al. in Milan [99]. There, a cw flashlamp 
pumped Nd: YLF laser was mode-locked with an intracavity LBO SHG crystal. To facilitate 
serf-starting mode-locking, the dichroic mirror had a relatively high fundamental reflectance 
of 77.5%, and the cavity was designed to produce a small mode area in the SHG crystal, 
with a much larger mode size in the laser rod. The laser produced near transform-limited pulses 
of 13 ps duration at a wavelength of 1047 nm with an average power of 1.5 W. The same year, 
the Milan group demonstrated the first mode-locking of this type in a diode-pumped laser [100]. 
In this case, an Nd : YAG laser, pumped with 3.2 W of power from two GaA1As diode lasers, 
was mode-locked using a temperature tuned LBO crystal in a geometry similar to that of [99]. 
Pulses of 10 ps duration were produced in a beam of 700 mW average power. Figure 28 shows 
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Figure 27 Schematic of cw mode-locked laser using KTP as the passive mode-locking element in an anti- 
resonant ring. (From [123].) 
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Figure 28 Autocorrelation of mode-locked output 
from the diode-pumped Nd:YAG laser [100]. The 
laser is mode-locked with an LBO SHG crystal. 

an autocorrelation trace used to determine the pulsewidth. The analysis in this paper is of parti- 
cular interest as it clearly describes the near equivalence of changing the relative phase, Aq~, 
and changing the phase-mismatch, AkL, although the application to nonlinear phase modula- 
tion is not mentioned. 

It was not until 1995 that the theory of nonlinear phase shifts via cascading of second order 
nonlinearities was directly applied to mode-locking. Using self-focusing by cascading in an 
LBO crystal, Cerullo et al. [33] were able to achieve Kerr-lens mode-locking (KLM) [125] 
of a Ti : Sapphire-pumped Nd : YAG laser shown in Fig. 29. Unlike the other techniques we 
have described, KLM relies on irradiance dependent cavity gain or loss that results from 
self-focusing in a nonlinear element [125]. The irradiances required for this effect in X (3) 
materials are large however, and therefore the technique is difficult to implement for pulse- 
widths longer than 1 ps [126]. Consequently, nonlinear phase shifts due to cascading are ideally 
suited to this application owing to the much larger n2,ef f. The KLM laser of [33] used a 
geometry quite similar to the diode-pumped laser of [100], but for the KLM laser, the mirror 
at the SHG end of the cavity is not dichroic, having R~ ---- R2~ ---- 1. This precludes any positive- 
feedback amplitude modulation due to the SHG crystal. Like some other KLM lasers [125], a 
slit was placed in the cavity to produce a nonlinear loss associated with the self-focusing. The 
mode-locking was found to depend strongly on the adjustment of the slit. This laser was 
made to operate at irradiances where ~/was only a few per cent. Under these conditions the 
low depletion approximation may be applied to find simple expressions for the double pass 
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Figure 29 Configuration of cascaded Kerr-lens mode- 
locked Nd:YLF laser using a cw Ti:Sapphire pumped 
laser. (From [33].) 
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~ oc -(~a~L)212 AkL-s inAkL s i n c 2 ( - ~ ) s i n ( A ~ + A k L ) ]  (17) (a L)2 k 

Optimum mode-locking was found to occur for AkL = 7r/2 with A~b adjusted to minimize the 
amount of SH remaining after double passing the crystal. Under these conditions, serf-starting 
mode-locking was achieved, with 14ps pulses at 0.5W average power. To verify that the 
mode-locking was truly due to KLM, the mode size in the vicinity of the slit was measured to 
change by about 3% between the mode-locked and cw cases. In a subsequent paper, Cerullo et 
al. [114] showed that the pulse width may be reduced further by compensating for GVM in the 
SHG crystal. Using a birefringent plate to compensate the GVM, pulsewidths of 5.1ps and 
5.9ps were obtained for Nd: YLF and Nd:YAG respectively. 

The results of the Milan group [33, 99, 100, 114] demonstrate that there has been significant 
progress in the field of mode-locking via second order nonlinearities since its inception less 
than ten years ago. In particular, the application of cascading to Kerr-lens mode-locking [33] 
is particularly attractive for picosecond pulse generation, because for these pulsewidths, the 
use of X (3) is problematic. Similarly, the use of the Stankov Mirror in a flashiamp-pumped 
Nd:YLF laser [99] has several advantages (pulsewidth, stability, passivity) over acousto- 
optic active-mode-locking that is currently used in such laser systems. 

3.6. Pulse compression 
The mechanisms for pulse compression using second order nonlinearities are usually more 
complex than for mode-locking, as they may utilize the effects of GVD, as well as self- 
phase modulation (SPM) due to nonlinear phase shifts by cascading. The first suggestion of 
the use of second order media for extracavity pulse compression came in a theoretical paper 
by Wang and Draglia in 1990 [127]. This study primarily considered the effect of GVD on 
the efficiency of Type II phase-matched SHG in KDP for 1 ps Nd laser pulses. The authors 
showed that the effect of temporal walk-off can severely reduce the conversion efficiency 
under normal input conditions. However, it was noted that for this particular system, the 
group velocity at the second harmonic, v3, lies between that for the fundamental ordinary 
and extraordinary waves, Vo and re, i.e. vo < v3 < re. With this in mind, it was found that 
predelaying the extraordinary wave pulse could result in both an increase in SHG efficiency 
and a five-fold compression of the SH pulse. In this geometry, the extraordinary pulse passes 
through the ordinary pulse as they propagate through the crystal, while the SH pulse propagates 
with a group velocity that is the average of the two fundamental pulses. This form of compression 
was also predicted for the more general case of SFG by Stabinis et al. [128]. Their modelling 
showed that SF (or SH in the degenerate case) pulses could be produced from a KDP crystal 
with a 15-fold compression with respect to 3 ps input pulses from an Nd: YAG laser. Figure 30, 
taken from [128], shows the time dependence of the normalized irradiances of the waves to be 
summed, al and a2, and the SF wave, a3, in the frame of reference of the SF pulse. Depletion 
of the trailing edge of a 1 (with lower group velocity) and the leading edge of a2 (with higher 
group velocity) causes the temporal overlap to be limited and the shapes of a 1 and a2 to be flat- 
tened. The extra bandwidth required for the compressed SF pulse comes from the strong saturation 
of the upconversion process. 

This type of compression was later demonstrated experimentally by Wang and Luther-Davies, 
who showed compression of 1.2ps Nd: YLF laser pulses to 250fs at the second harmonic with a 
1.4ps predelay, in a 25 mm Type II KDP SHG crystal [129]. The effect of GVD actually allowed a 
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Figure 30 Temporal behaviour of normalized pulse irra- 
diances in pulse compression via sum frequency genera- 
tion, in the frame of reference of the SF pulse, al 2 and 
a 2 are the irradiances of the lower frequencies and a32 is 
the SF irradiance. (From [128].) 

peak power conversion efficiency of 240%. However, it was noted in the paper that the require- 
ment on the group velocities combined with the phase-matching condition is quite specific to KDP 
at this wavelength, and hence not generally applicable to all SHG systems. In 1995, Umbrasas et 
al. reported a detailed experimental study of SH pulse compression of Nd : YAG laser pulses in 
KDP [130]. They demonslrated compression of 12ps input pulses to 360fs SH pulses in a 
4 cm length KDP crystal with an 11 ps predelay between the 'o' and 'e' waves. It was shown 
both theoretically and experimentally that the optimum ratio of ordinary to extraordinary wave 
irradiances, lo/Ie, is 1.3. Also, it was shown that the predelay for maximum compression is not 
the optimum for SHG efficiency. The compressed pulses have significant energy in satellite pulses, 
however, and the compression is not uniform across the spatial profile of the beams. Figure 31 
shows an autocorrelation of the compressed SH pulse, measured at beam centre. It was suggested 
in [130] that the large satellite produced in the compressed pulse may not be detrimental to the 
application of pumping an OPO. At the same time, this was actually demonstrated by Danielus 
et al. [131] who used this type of compression to produce a short-pulse pump source for a 
BBO Optical Parametric Generator (OPG). It was shown that the satellites on the OPG output 
pulse were suppressed by a factor of ~ 4  x 104 with respect to the compressed pump pulse. 
Using similar techniques, Nisoli et al. demonstrated pulse compression by SFG [132]. In this 
experiment, 160fs signal and idler pulses from a Ti: Sapphire-pumped OPO at wavelengths of 
1300nm and 1950nm, respectively, were mixed in a BBO crystal. With a predelay of around 
200 fs, an SF pulsewidth of 34 fs was produced at a wavelength of 780 nm. 

Self-compression of pulses was observed in a femtosecond OPO, by Laenen et al. [133]. 
When the BBO crystal was tuned near the degeneracy point, the OPO output pulsewidth 
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Figure 31 Autocorrelation of an SH pulse, compressed by SHG 
from a t2 ps Nd:YAG laser pulse in a 4cm KDP crystal with an 
input irradiance of Io + le = 4.2 GW cm -2. The number in paren- 
theses is the pulse duration assuming a sech 2 pulse shape. 
(From [130].) 
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was reduced from over 200 fs to 65 fs. The mechanism suggested for this was chirp reversal of 
the idler pulses as a result of transference of the downchirp of the pump pulse through second 
order processes in the BBO crystal. The combination of the reversed chirp on the idler pulse 
and the normal dispersion on other intracavity elements results in the shortened output pulses. 
In a latter BBO-based OPO scheme, self-compression of pulses down to 50 fs was observed at a 
signal wavelength of 640 nm, far from degeneracy for this 400 nm pumped device [134]. It was 
shown later in [135] that this can be due to phase modulation by cascading associated with SHG 
of the signal wave in the BBO, as the phase-matching angles for the noncollinear parametric 
generation and collinear SHG of the idler are coincident at this particular wavelength. 

Other methods of pulse compression using second order nonlinearities have also been demon- 
strated. The chirp enhancement in two-wave mixing, demonslrated by Danielus et al., and described 
in section 3.3, was shown to provide an equally enhanced reduction of pulsewidth after compres- 
sion by a grating pair, although the efficiency is small [92]. Pulse compression has also been 
observed by production of large spectral broadening through SPM in a DAN fibre and subsequent 
compression of the broadened pulse with a grating pair [136, 137]. In [137], a 39fs pulse, at a 
wavelength of 623 nm from a colliding-pulse mode-locked dye laser, was compressed to 22 fs. 
The mechanism attributed to the SPM in [136] and [137] was a large third order nonlinearity, appar- 
ently neglecting the effects of cascading of second order nonlinearities which are very large in DAN 
[68]. A later paper from the same group [138] calculated that 100W, 100fs pulses could be 
compressed to around 10fs based on the data taken in [136], but again, second order effects 
were neglected, so it is not clear if this can be realized experimentally. 

4. Spatial solitons 
The cascading nonlinearity can lead to self-trapped waves. The class of beams and pulses that 
propagate in the presence of diffraction and/or dispersion without spreading are called solitary 
waves. A special case is that of mathematical solitons which are obtained as the solutions of 
those very special evolution equations referred to as 'completely integrable'. However, arbi- 
trary small perturbations to such equations that arise in all real macroscopic systems break 
the delicate balance required for an equation to be a 'soliton equation'. As a consequence, even 
though solitons are robust against certain types of perturbations, integrability is lost [139]. There- 
fore, except in rigorous mathematical contexts, it is accepted practice to use the term soliton in 
a broad sense to include also mathematical solitary waves and this terminology is used here. 
Such solitons can occur in many physical systems and their amplitude and phase distributions 
can be quite complex. The most common in optics in general, and in cascading in particular, are 
'bright' and 'dark' solitons. Bright solitons consist of light waves which are strongly localized 
in space and/or time, whereas dark solitons consist of a dark region (hole) in a bright, constant, 
background light field with typically a 7r-phase change across the zero intensity point. 

4.1. Simple models 
The existence of quadratic spatial solitons was first discussed over 20 years ago [9, 12]. There 
are two limits of interest. In the limit in which the cascaded nonlinear phase shift closely 
mimics a third order nonlinearity (far from phase-matching), the types of solitons known for 
Kerr (X (3)) nonlinearities are expected. In the cascaded case this region corresponds to very 
small harmonic conversion so only the fundamental carries significant power. By analogy, 
then, stable quadratic solitons are expected to exist in slab waveguides (1-D case) for positive 
nonlinearities. The self-focusing action of the nonlinear phase shift is the mechanism which 
allows the quadratic solitons to counteract spatial diffraction. Continuing the analogy to Kerr 
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nonlinearities, 2-D stable spatial solitons would not be expected to exist in the low SHG limit. 
However, they do exist as we shall discuss below. 

One of the unique features of quadratic spatial solitons is that there are two strongly coupled 
fields which exchange energy with propagation distance. This energy exchange leads to another 
mechanism (in addition to self-focusing) for mutual self-trapping. There is a simple way to 
understand how this phenomenon can occur. (The more formal theory, etc., will be discussed 
in the next section.) Consider the coupled mode equations, including diffraction in one trans- 
verse dimension. For simplicity assume a 1-D slab waveguide with diffraction possible along 
the y-axis, i.e. the field amplitudes are functions of y and z and a(z) -+ a(z, y). The confinement 
along the x-axis is supplied by the index differences used to make the slab waveguide. The rele- 
vant coupled mode equations are: 

d 1 02 
--al(y,Z)dz + 2i k(~)--  0y 2 al (y,z) = - i n ( - w ;  2ca,-w)a3(y,z)a*l(y,z) (18) 

1 o 2 
~za3 (y, z) -~ (y, Z) = - in ( -2~ ;  ~o)a 2(y, z) (19) a3 2i k(2w) Oy 2 

How these equations can lead to self-trapping can be explained with reference to the schematic 
in Fig. 32. Assume initially that there is no diffraction. Because aZl(y, z) has a narrower spatial 
distribution along the y-axis than al (y, z), then the generated SH via Equation 19 is narrower 
than the fundamental. When the fundamental is regenerated via a3(y, z)a*l(y, z), it is narrower 
than the original a 1 (y, Z) not converted to SHG. Thus both the fundamental and harmonic can 
become progressively narrower due to the SHG process. However, all beams diffract on propa- 
gation. When the diffraction balances this narrowing effect, a spatial soliton can result in which 
both the fundamental and harmonic are mutually trapped. These waves are stable, i.e. small 

Figure 32 Illustration of how spatial beam overlap can lead to mutual beam trapping. The beams travel from 
left to right. Although shown separately, the fundamental (~) and harmonic (2~) are overlapped in space and 
have a common propagation axis. The lines with double-ended arrows represent power flow between the two 
beams. The regenerated fundamental (dotted line) is narrower in space than the non-converted and diffracted 
fundamental (light solid line) so that the total fundamental (heavy solid line) maintains its spatial profile with 
distance. The second harmonic maintains its spatial profile in the same way. 
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fluctuations in the input or propagation conditions do not destroy them. The key parameters are 
the parametric gain length cx [hal (y, z)] -1 and the diffraction length. For the scenario described 
here, the parametric gain length, which is a measure of the distance over which the power can be 
efficiently exchanged between the two beams, should be of the order of, or shorter than, the char- 
acteristic diffraction distance for the two beams. Note that this argument extends directly to two 
transverse dimensions (and to the time domain) and hence this simple model would predict 2-D 
quadratic spatial solitons (and temporal solitons) which also consist of strongly coupled funda- 
mental and harmonic beams. Note that in any real case, it is also necessary to consider the 
other mechanism, the self-focusing or self-defocusing due to the nonlinear phase shift. 

4.2. Properties of X (2) solitons 
4.2.1. Self-trapping in X (2) media 
Self-focusing effects in SHG have been known for almost three decades in the regime where 
the wavevector mismatch is large so that the wave interaction yields an effective third order 
nonlinearity for the fundamental waves, as discussed in previous sections. This possibility 
was discussed by Ostrovskii in 1967 [6]. However, the extent of the self-focusing and its impli- 
cations were not fully appreciated until recently. 

The remarkable exception is the work of Karamzin and Sukhorukov in the 1970s. They 
recognized the potential of X (2) processes for supporting solitons under general phase-matching 
conditions, and performed analytical and numerical investigations to explore this possibility [9, 
12]�9 Their work was not unnoticed and reappeared after the 'wave' of cascading in the 1990s 
reached the soliton area [140, 141]. The self-focusing potential of X (2) interactions was redis- 
covered a few years ago by a number of authors, not only in the regime where cascading 
mimics a cubic Kerr effect, but also near phase-matching [43, 142-145]. It is now known 
that solitons can exist in a wide variety of situations in terms of material and input light condi- 
tions: they form far from, near and at phase-matching, and in the presence of linear walk-off 
between the interacting waves�9 As discussed later, spatial solitons have been observed experi- 
mentally by Torruellas and coworkers, and by Schiek et al. [35, 146]. 

Self-trapping of light occurs when all the distances that govern the light evolution in the 
material are comparable, namely the diffraction or dispersion length, the walkoff length, and 
the nonlinear interaction length�9 To emphasize this point, it is useful to write the governing 
equations in normalized units scaled to these characteristic lengths�9 For the simplest case of 
Type I phase-matching SHG with diffraction allowed in 1-D (slab waveguide case), one gets 

�9 O a  I r 02al 
1 0 ~  2 0 s  2 ~ a*la3 exp(--iflr = 0 

(2o) 
�9 Oa 3 a 02a3 .~ Oa 3 
1 --0~ 2 0 s  2 -- l~ + a2 exp(i/3~) = 0 

The details of the normalization, the meaning of the various parameters involved and their 
typical values in experimentally relevant situations are discussed in a number of papers 
[147-149]�9 To make contact with the preceding notation, the normalized wavevector mismatch 
fl = sgn(Ak)27rldl/lc where/dl (ld2) and lc are the fundamental (second harmonic) diffraction 
length and the SHG coherence length respectively. The normalized coordinate along the propa- 
gation direction is ~ = 2Z/Idl while the normalized transverse coordinate s -- y[k 1/21a1] 1/2. For 
spatial solitons r = - 1. The parameter a = - Idt/la2 and 6 = + 2/dl/lw is a measure of the 
walk-off between the fundamental and harmonic beams where lw is the walk-off length. 
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Note that walk-off is absent for propagation along the principal optical axes of the crystal. 
Similar but more complicated equations are obtained for Type II geometries, and for light 
propagation in bulk media [150]. The above equations also hold when pulsed light is injected 
into a channel waveguide or a fibre. Then the parameters r and a are given by the group-velo- 
city dispersion at the fundamental and second harmonic frequencies, and 6 stands for temporal 
pulse walk-off. Direct observation of temporal solitons in single-pass geometries appears to be 
difficult to achieve at present due to the lack of suitable materials that combine sufficiently high 
chromatic dispersion with low losses. Thus here we concentrate on spatial solitons. 

The interacting waves exchange both energy and transverse phase-front information. When 
the material and input light conditions are chosen so that all of the characteristic lengths of the 
wave evolution are comparable, the precise form of the exchanged transverse phase-fronts 
becomes relevant. A soliton is formed when the mutually exchanged transverse phase-front 
shifts compensate for the linear spreading of the beams. 

Significant simplification of the properties of the X (2) solitons can be made under certain 
conditions. The self-focusing nature of the wave mixing process in the limit of large phase- 
mismatch between the fundamental and harmonic waves (fl >> 1) and small conversion to 
the second harmonic results in governing equations which reduce approximately to the well- 
known nonlinear Schr6dinger equation (NLSE) 

�9 O a  1 , 1 02al 1 
~ys2 + ~ lallZa, _~ 0 (21) 1~- ~- ~ 

In particular, for the case of 1-D self-trapping with a positive phase-mismatch, the X (2) solitons 
are similar to the NLSE solitons, and their dynamics resemble those of a perturbed NLSE in 
several ways [147]. However, the NLSE does not allow stable solitons for 2-D beams in 
bulk media and the implications of this fact to X (2) trapping in 2-D raise interesting questions. 
In fact the beam evolution in the X (2) medium quickly violates the approximations required to 
derive the NLSE, and X (z) stable soliton solutions exist even in the regime of large wavevector- 
mismatch. The limiting situation given by Equation 21 was noticed by a number of authors [43, 
142, 143]. A significant contribution was made by Schiek who performed full numerical simu- 
lations for realistic waveguides and showed that Equation 21 was not just an elegant mathe- 
matical result but that solitons in that regime could indeed be observed experimentally [43]. 

However, an important point must be emphasized. Most of the solitons relevant to experimental 
study in quadratic media occur for small phase-mismatches, at exact phase-matching, and under 
other conditions where Equation 21 does not hold. Those solitons exhibit new properties, dynamics 
and other specific features. They have to be treated accordingly. In the last few years much progress 
has been made in the understanding of soliton formation and the main points will be reviewed in the 
following sections. To date, the efforts have been concentrated on second harmonic generation 
configurations and the extension to general three wave mixing interactions still remains to be done. 

4.2.2. Families of solitons 
The goveming Equations 20 allow a variety of solitary wave solutions with bright, dark, 
bright-dark and exotic shapes. Owing to the space-time analogy of the equations, some results 
apply to both spatial and temporal solitons. The initial discussions will consider first the generic 
case of either spatial or temporal solitons and later the focus will be on spatial solitons. 

A zero-parameter bright soliton solution, i.e., one that occurs for fixed values of all of the 
parameters involved, was found first by Karamzin and Sukhorukov [9]. It was rediscovered 
later by Hayata and Koshiba, Werner and Drummond, and Karpierz and Sypek [144, 145, 
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151]. In the normalized units of Equations 20, the solutions for the field amplitudes are given by 

al = 3#v/-~ sech 2 (x/-fis) a3 = - 3r# sech 2 (x/-~s) (22) 

and occur at the specific value of the phase-mismatch given by fl = - 2#(c~ - 2r) # > 0 being 
a free scaling parameter. Analytical, zero-parameter solutions for dark and exotically shaped 
solitons were also found by a number of authors who have to date presented the whole set 
of solitary waves having a reasonably simple shape [147, 151-154]. Several of these solutions 
only exist for the parameters appropriate to temporal solitons, but dark-like solutions also exist 
in the spatial case. However, as discussed later, they are unstable. 

One-parameter families of stationary, bright soliton solutions with the soliton amplitude as the 
free parameter were found numerically for both 1-D and 2-D solitons [155-158]. Buryak and 
Kivshar have presented a comprehensive study and classification of 1-D solutions, including bright, 
dark and higher order solutions [155]. The set of solutions available for temporal solitons is in prin- 
ciple richer than for spatial solitons because of the variety of absolute values and signs of the GVD 
possible for the fundamental and second harmonic waves. Although dark spatial solitons even in an 
ideal flat background were found to be unstable due to the modulational instability of the back- 
ground, Buryak and Kivshar discovered the existence of stable dark and twin-hole temporal soft- 
tons [54, 140, 159-161]. Higher-order, i.e., multiple-peaked solutions have been also investigated 
by Buryak and Kivshar, Mihalache and coworkers, and He and coworkers [155, 162, 163]. The 
solutions reported to date have been found to be unstable, even though some of them can exhibit 
weak instabilities, as discussed by Buryak [164]. Gap solitons which can exist in periodic structures 
under well-specified conditions have been also studied by Kivshar [165]. 

The families of bright spatial solitons in propagation geometries without walk-off exhibit 
important features. First, at phase-matching, the solutions exist for any value of the total 
power for both the 1-D and 2-D geometries, and all of the solitons are self-similar. In the 
case of 1-D solitons, they exist for any value of the wave power at positive phase-mismatch 
and exist above a threshold power at negative phase-mismatch [155-158]. Because low 
peak power solitons have a correspondingly large width, for a fixed input beam width there 
is always a threshold power for soliton formation. In the case of 2-D solitons in bulk media, 
they exist above a threshold power at both signs of the phase-mismatch. The threshold 
power required for trapping at negative phase-mismatch is larger than at positive phase- 
mismatch, consistent with the self-defocusing or self-focusing character of the wave interaction 
at very large phase-mismatch. At positive phase-mismatch, one finds that the threshold irradi- 
ance is given by Ithr ---- films, where Inls is the critical power for collapse in the 2-D nonlinear 
SchrOdinger equation. Figure 33 shows typical shapes of the 1-D spatial solitons for different 
values of the wavevector-mismatch [156]. Similar features are obtained for 2-D solitons. The 
partition of the total power between the fundamental and the second harmonic beams forming a 
soliton depends on the value of the wavevector-mismatch. This dependence is shown in Fig. 34 
for a representative value of the total power, again for 1-D solitons [156]. More details about 
the properties of the bright spatial solitons can be found in references [155-158]. 

With the exception of special cases, linear walk-off between the waves that form a soliton 
introduces new physics into the process and modifies the families of solutions obtained in 
the absence of walk-off. Two-parameter families of solitons have been found under these 
conditions, and we shall return to this point below [166]. 

The excitation of bright solitons has been examined numerically for a wide variety of condi- 
tions [148-150]. One salient point that was found is that the excitation of solitons with arbitrary 
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Figure 33 Typical field distributions for families of 
1-D spatial solitons for different values of the linear 
wavevector mismatch/3' for a representative value 
of the soliton power. The plots show soliton fields 
for fi = 5, 3, O, -3 .  Similar shapes are obtained 
for 2-D solitons. (From [156].) 

input beams always leads to oscillating states which consist of solitons and linear dispersive 
waves. The amplitude of the oscillations decreases as the waves propagate and shed power 
via dispersive waves. However, the rate of energy leakage is very small. Recently, Etrich 
and coworkers have studied this issue and have shown how the dispersive waves attached to 
the solitons and the internal dynamics of the solitons produce the oscillation process [167]. 

4.2.3. Stability 
The stability on propagation of X (z) solitons has been studied by several authors and the 
stability issue seems to be well understood. Furthermore, important results about the effects 
that small perturbations have on the solitons are also being currently reported, even though 
the results reported to date cover only a small fraction of the issue. 

An indication that stable X (2) solitons existed was given mathematically by Karamzin and 
coworkers and Kanashov and Rubenchik [9, 12, 140]. They showed that the Hamiltonian of 
the wave interaction is bounded from below and this result has implications to the existence 
of stable solutions [141]. More detailed studies along the same lines have been performed 
recently by Berge and coworkers and by Turitsyn [168, 169]. The existence of stable solitons 
under a wide variety of conditions is indeed supported by the results of a comprehensive series 
of numerical experiments of the soliton excitation problem [148-150]. 
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Figure 34 Distribution of the total soliton power between 
the fundamental and harmonic waves for a 1-D spatial soil- 
ton as a function of wavevector mismatch fl for a fixed 
value of the total soliton power. (From [156].) 
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Once the families of the lowest-order stationary solutions are known in both 1-D and 2-D 
geometries, the question arises whether all members of the families are stable or not. This 
issue has been investigated by a number of authors for both the 1-D and 2-D cases [157, 
158, 170-172]. In the absence of walk-off, all solutions at positive phase-mismatch and at 
exact phase-matching have been found to be stable. Some solutions which would be unstable 
have been found at negative phase-mismatch near the cutoff conditions for soliton existence, 
but above the threshold power for mutual trapping there is always a stable solution. A 
useful way to represent the soliton families is the Power-Hamiltonian diagrams employed 
by Akhmediev and coworkers for similar problems [173]. Figure 35 shows such a diagram 
for 1-D solitons at different values of the wavevector mismatch parameter/3 [171]. Dotted 
lines show unstable solutions, while continuous lines correspond to stable solitons [171]. 
The stable solutions occur at the absolute minimum of the Hamiltonian, hence they are stable 
in the Lyapunov sense [141]. In the presence of walk-off the families of solitons are modified 
and their stability has to be re-examined. 

The effects of small losses on the solitons have been analysed by several authors [171, 174, 
175]. When the losses are small over a diffraction length, the solitons evolve adiabatically 
following the amplitude-width relation of the family of solutions under investigation. At exact 
phase-matching, the relation (amplitude) x (beam width)2= constant can be derived. Away 
from phase-matching the corresponding relation has been found numerically. Figure 36 shows 
this relation for the fundamental and harmonic associated with 2-D solitons [158]. The spatial 
width was found to be a smooth function of the amplitude. This means that the solitons broaden 
slowly as they lose total power, as was observed numerically by Hayata and Koshiba and studied 
analytically by Malomed and coworkers [174, 175]. When solitons are excited with arbitrary 
inputs, the radiative and reshaping and rephasing effects can dominate over the adiabatic effects 
due to losses. 

The modulational instabilities of parametric processes in diffractive and dispersive scenarios 
have also been studied [54, 140, 159, 176]. In particular, Kanashov and Rubenchick found that 
the flat background of 1-D and 2-D spatial solitons is modulationally unstable in bulk, disper- 
sive media, and that 3-D solitons (commonly referred to as light bullets) would be stable [140]. 
Trillo and coworkers investigated the modulational instabilities of both X (2) and X (3) solitons 
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Figure 35 Hamiltonian versus power (energy flow) for families of 1-D spatial solitons. (a) For phase-matching 
(fl = 0) and fl > 0. (b) For fl < 0. Continuous lines: stable solitons. Dashed lines: unstable solitons. Similar 
results are obtained for the 2-D case. (From [171].) 
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Figure 36 Width of the 2-D spatial solitons as a function of their amplitude, for both /3 > 0 and /3' < 0. 
1-D spatial solitons exhibit similar trends (from [158]). 

due to the competition of quadratic and cubic nonlinearities [177]. The effects introduced in the 
X (2) solitons by the presence of X (3) nonlinearities have also been studied by other authors and 
analytical solitary wave solutions in the presence of both quadratic and cubic nonlinearities 
have been found [155, 178, 179]. 

4.2.4�9 Walking sofitons 
By their very nature, solitons in quadratic nonlinear media exist by virtue of the mutual 
trapping of several waves, namely the fundamental and second harmonic waves in the case 
of SHG solitons. Generally speaking, at low irradiances the waves that constitute the soliton 
propagate at different velocities/directions, and hence they walk off from each other. This 
feature has important experimental implications when it comes to the actual excitation of soli- 
tons. It not only offers possibilities for novel applications, it also poses new challenges to the 
theoretical understanding of soliton formation. 

When a soliton is formed, the waves mutually trap and drag each other, and therefore propagate 
as a single entity, i.e. bound together. These are 'walking' solitons. This phenomenon is somewhat 
analogous to Vector or Manakov spatial solitons, or temporal solitons in fibres in which two ortho- 
gonal polarizations in cubic nonlinear media are mutually trapped and co-propagate [37, 38, 180, 
181]. However in those cases solitons with a single polarization do exist, whereas in the case 
of X (2/ solitons all of the interacting waves are needed to form a soliton. Figure 37 shows the 

& A 

W A L K - O F F  IS OFF  WALK*OFF IS ON 

Figure 37 The propagation of the fundamental beam component of a 1-D spatial soliton with and without 
Poynting vector beam walk-off by the second harmonic beam (not shown here). Without walk-off, both 
beams propagate normal to the entrance face. With walk-off, the fundamental beam is bound to the harmonic 
and is deflected to the left, i.e. it is dragged by the harmonic into a new propagation direction. 
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representative effects of walk-off on the trapping process. Detailed studies of the dynamics of 
soliton formation in the presence of walk-off in both planar waveguides and bulk media have 
been reported [148, 149]. Once again the focus has been on spatial solitons but most issues studied 
have their temporal counterparts. Notice that walk-off is an unavoidable ingredient of X (2) spatial 
solitons in geometries based on birefringent phase-matching. 

Suppression of the linear walk-off by the nonlinear dragging of the interacting beams allows 
the control of the output position of the beams at the end of the X (2) crystal by modifying the 
transverse velocity of the individual constituents of the solitons excited. This can be done in 
different ways by controlling the material and input wave conditions. The process leads to 
beam steering, pointing, scanning and switching, all of which have been investigated both 
theoretically and experimentally [182-185]. Also, as a consequence of the mutual dragging 
of the interacting beams, the effective walk-off experienced by a given soliton depends on 
its amplitude. Under appropriate conditions in planar waveguides, this leads to the controllable 
self-splitting of beams into several solitons, a process that might be referred to as eigenvalue 
switching [186]. 

A good understanding of the process of mutual dragging has been obtained by considering 
the solitons as a single entity, i.e., using their particle-like nature, and analysing their formation 
in terms of the conserved quantities of the beam evolution. In particular, one readily finds that 
the transverse velocity of the 'walking' solitons is given by 

,r3 J 
~ - ~ - + ~  (23) 

where I -- I1 § 13 [182]. The quantity J is the transverse momentum of the soliton parallel to 
the entrance face of the medium and is basically determined by its phase-front [182]. This 
expression shows how the dragging can be controlled by the input light and material conditions, 
in terms of global phases, phase-front and beam shapes, total and relative powers of the input 
waves, wavevector-mismatch and linear walk-off. 

In the presence of walk-off, the walking solitons exhibit specific features different from just a 
phase-front tilt of the nonlinear Schrrdinger equation solitons. This is similar to solitons of 
other non-Galilean invariant equations, such as gap solitons or walking vector solitons in 
birefringent cubic nonlinear media [187, 188]. Families of stationary walking solitons have 
been discovered recently [166]. They have been found to form two-parameter families as 
they exist for different soliton energies and transverse velocities for a given wavevector 
mismatch. Much work remains to be done to understand fully the properties of all the families 
of walking solitons. 

4.2.5. Soliton interactions 
As discussed above, X (2) solitons form two-parameter families of solutions and they are stable 
on propagation in the Lyapunov sense. However, they are not inverse scattering solitons, i.e., 
they are not obtained as the soliton solutions of a so-called completely integrable equation. This 
is in contrast to, e.g., the solitons governed by the nonlinear Schr6dinger equation which, 
under ideal conditions, models the wave propagation in cubic nonlinear media in appropriate 
waveguide geometries. This has the consequence that the interactions between X (2) solitons 
do not enjoy the unique features that only hold for mathematical solitons. Rather, generally 
speaking, in the interaction between X (2) solitons one has to expect behaviour typical of 
non-integrable systems. An example of this case is wave propagation in saturable cubic 
nonlinear media. Also, because parametric interactions in quadratic nonlinear media are highly 
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sensitive to the relative phases between the interacting fields, the phase difference between two 
colliding solitons plays an important role in their interaction. 

The interactions between 1-D solitons have been investigated by Baboiu et al. and Etrich et 

al. by means of numerical experiments [189, 190]. The results, discussed later, confirmed the 
above expectations and showed a rich dynamical behaviour. Buryak et al. have shown some 
results for 2-D soliton interactions [157]. The results reported were qualitatively similar to 
those for 1-D geometries, even though in general different dynamics are expected. Finally, 
Clausen et al. have used a perturbative scheme for the collective coordinates of the solitons 
to gain insight into the dynamics of their collisions [ 191]. The outcome provides a simple quali- 
tative picture of the soliton interaction. 

Although the result of a soliton interaction depends a great deal on the various specific para- 
meters involved, a few general conclusions primarily for 1-D solitons have been reached, as 
follows. (1) In-phase, parallel equal-amplitude solitons attract each other and eventually fuse 
into a single beam. Clausen and coworkers found that the fusion distance increases exponen- 
tially with the initial soliton separation [191]. (2) Baboiu and coworkers found that parallel 
equal-amplitude solitons with a phase difference eventually repel each other above a threshold 
phase difference [189]. The threshold phase difference even vanishes in some cases and in 
general is a function of the various parameters involved, namely the wavevector-mismatch, 
input beam shape and power, radiation present in the input beams, and so on. (3) Solitons 
colliding at large enough angles, i.e., with large transverse velocities, were found to pass 
through each other without significant noticeable changes. (4) Solitons having different ampli- 
tudes have been observed to interact weakly because the nonlinear phase-shift acquired by one 
soliton is different from that of the second soliton. (5) At large wavevector-mismatch the X (el 
solitons resemble perturbed nonlinear Schrrdinger equation solitons and so do their inter- 
actions. This regime was investigated by Etrich and coworkers [190]. 

Some of the above features are summarized in the plots in Fig. 38. The results available to 
date reveal only the surface of the problem and much work needs to be done to understand fully 
the details of the soliton interactions. That is particularly true for 2-D solitons, for which only a 
few results are known. 

4.2.6. Beyond cascading 
Before ending this section, it is worth recalling that the formation of optical solitons in 
quadratic nonlinear media through cascading can potentially have important implications not 
only for nonlinear optics, but also for other branches of nonlinear science. This is possible 
because parametric, resonant three wave mixing processes play an important role in many 
branches of physics and technology, such as plasma physics, fluid dynamics, water and acoustic 
waves, or electronic parametric amplifiers [192]. 

In many situations of interest, dispersive effects take place on a much longer time or space scale 
than the nonlinear effects. In those cases, the corresponding governing equations have a universal 
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Figure 38 Typical interactions between 1-D spatial soli- 
tons under a variety of interesting input conditions. 
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nature, analogous to the nonlinear Schrrdinger equation or the Korteweg-de Vries equation, and 
they have been extensively investigated for more than three decades. Under such conditions, much 
progress can be made by using analytical tools, including the inverse scattering transform method 
[193-195]. However, the formation of stable multidimensional optical solitons through cascading 
shows that in other physical settings, when the dispersive and nonlinear scale lengths are compar- 
able, the parametric interactions of intense waves may exhibit a much richer variety of phenomena 
than previously believed. The potential of cascading to reveal some of those universal features 
needs to be exploited. 

4.3. Exper iments on spatial sol i tary waves 
There have been a limited number of experiments reported on quadratic spatial solitary waves. 
Both the 1-D and 2-D cases have been investigated. 

4.3.1. 1-D spatial solitons 
Spatial solitary waves which are free to diffract in one transverse dimension have been success- 
fully launched in LiNbO3 slab waveguides [ 146]. The same waveguides as described in section 
2.2 were used so that minimal SHG was involved (checked to be less than a few per cent) with 
still a reasonable effective nonlinearity [146]. As a result the solitary wave resembles a Kerr 
spatial soliton to a good approximation. In the experiment, a circular and cylindrical lens 
pair were used to end-fire couple a 70#m wide beam at 1320nm into the slab waveguide. 
The beam irradiance at the output face was imaged on to a camera and the results, as a function 
of input power, r, are shown in Fig. 39. At low powers the beam diffracts considerably in the 
sample which was about 3 diffraction lengths long. With increasing power self-focusing occurs. 
Once a beam width comparable to the input beam width was achieved, a further increase in 
input power has little effect on the output beam width, verifying that a spatial soliton was 
indeed obtained. Furthermore, the agreement with theory was found to be excellent. 

4.3.2. 2-D spatial solitary waves 
The formation of spatial solitary waves with two transverse dimensions has been demonstrated by 
Tormel]as and colleagues in a relatively complicated interaction geometry [35]. Type I I  phase- 
matching in a 0.5cm KTP crystal was used with fundamental radiation at 1064nm. This case 
requires two fundamental input beams, one ordinary and one extraordinary with spatial walk- 
off between them. The two input fundamentals were focused to a radius of 20/zm at the crystal 
entrance face and the beam at the output face, 5 diffraction lengths away, was focused on to a 
vidicon camera. 

The output beam profile of the fundamental is shown in Fig. 40 for three different input 
irradiances [35]. At low irradiances, the beam diffracts in space, as expected. Above a threshold 
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Figure 39 The in-plane spatial irradiance profile of the 
output beam from a slab LiNb03 waveguide for different 
input powers. (From [145].) 
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Figure 40 The fundamental beam profile output from phase-matched KTP for three different input beam irra- 
diances. Below threshold the beam diffracts, and at and above threshold a solitary wave beam is formed in the 
crystal. 1064nm, 30ps pulses were used in a 1 cm KTP crystal. (From [35].) 

of approximately 10GWcm -2, the beam narrows to about 12.5 #m and remains at this value 
for subsequent increase in power up to 100GWcm -2, see Fig. 41. The second harmonic 
beam diameter undergoes the same transformation. Notice that this threshold value corresponds 
to an input beam formed only by the fundamental wave. If both fundamental and second 
harmonic waves would be supplied at the entrance face of the crystal, a significant reduction 
of the power threshold would be obtained. Thus 2-D spatial solitary waves were observed. 

There were other interesting features observed in this experiment. First, above the solitary 
wave locking threshold all three beams, the two fundamentals and the harmonic propagate 
together in space. That is, above the solitary wave locking threshold walk-off is overcome. 
Second, as shown in the inset of Fig. 41, solitary waves are generated even with multi-Tr 
phase-mismatches of either sign. That is, the process 'pulls itself" on to phase-matching by the 
generation of the spatial solitary waves. Note that for positive phase-mismatch, the self-focusing 
action associated with a positive nonlinear phase shift decreases the threshold for solitary wave 
formation, and vice versa for the negative phase-mismatch. This clearly shows that there are two 
distinct mechanisms, one due to the spatial narrowing associated with the power exchange via the 
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Figure 41 The output fundamental 2-D beam width ver- 
sus peak input fundamental irradiance on phase-matching 
(lower curve), a phase mismatch AkL = 37r (insert, solid 
circles) and a phase mismatch AkL = -57r  (inset, solid 
squares). 1064nm, 30ps pulses were used in a l c m  
KTP crystal. (From [35].) 
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coupled mode equations discussed above, and the second due to the curvature of the wavefront 
introduced by the nonlinear phase shift. Third, the fraction of the power in the SHG and funda- 
mental beams in the solitary wave remains approximately constant as the input irradiance is 
increased. 

Further experiments showed that this beam trapping is a rich phenomenon [183, 184]. By 
changing the relative phase between the fundamentals and a seeding second harmonic beam, 
it proved possible to change the trapping direction in space [183]. The extrema are defined 
by the directions which one of the beams would follow when excited singly. It has also 
been demonstrated that the direction of the trapped beam can be controlled by varying the rela- 
tive irradiance of the two fundamental beams, more useful than varying the phase which is a 
difficult variable to control [184]. An example is shown in Fig. 42 where the trapped output 
beam for three different irradiance ratios between the two fundamentals is plotted. By placing 
apertures to intercept the different extreme beam positions, an all-optical switch can be imple- 
mented and indeed switching action was demonstrated. The beauty of this scheme is that the 
relative phase does not need to be changed. 

The research into spatial solitary waves has continued at CREOL and here we give some 
new results which will be reported in detail elsewhere [196]. An example, shown in Fig. 43, 
is the beam transformation which occurs for elliptical input beams. Two different kinds of 
phenomena are observed. At low enough input powers, but above a well-defined threshold 
(which varies inversely with ellipticity), the beam evolves into a cylindrically symmetric spatial 
solitary wave. The fraction of the input power which is trapped by the solitary wave decreases 
with increasing ellipticity. At very high input irradiances, the input breaks up into a 'string' of 
spatial solitary waves, as seen in Fig. 43d. These phenomena are due to the modulational 
instability of the input beam, and the details of the beam splitting are not fully understood at 
present. 
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Figure 42 The beam profiles output from a 1 cm KTP crystal near Type II phase-matching for three different 
irradiances of the two orthogonally polarized fundamental beams:  circles: /1 >/2; continuous curve: I1 --/2; 
squares:/2 >/1. (From [183].) 
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(a) 

(b) (c) 

(d) 

Figure 43 Solitary wave effects for an elliptical input beam 
(a, top). The middle results (b, c) are for irradiances just 
above the solitary wave threshold which shows a circular 
beam output: left-hand side - right at the output crystal 
face; right-hand side - 0.5 mm from exit face. The bottom 
(d) shows a line of spatial solitary waves generated at high 
input irradiances. (From [196].) 

5. Summary 
We have presented an overview of the field which has taken on the name 'cascading'. It repre- 
sents a rebirth of interest in X (2) phenomena beyond the usual goals of generating new wave- 
lengths as efficiently as possible. In fact this field has proven to be rich in interesting 
phenomena, many of which were initially considered in early days of nonlinear optics, but 
never exploited beyond general theoretical predictions. Some aspects of cascading have 
evolved independently of one another over the last five years and one of our goals was to 
bring together all of the different research directions under one unified discussion. The two 
major themes appear to be the existence of large nonlinear phase shifts in the parametric mixing 
process and their ensuing applications, and the formation of a rich variety of solitary waves. 
Given the rapid growth over the last five years, one can expect many new and exciting develop- 
ments over the next five years. 
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