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We demonstrate the generation of a nondiffracting double helical beam using axicons and +1 vortex phase
plates in a common-path interferometric system. Using linear diffraction theory, a simple analytical expression
describing beam propagation is shown to agree with both experiments and Fresnel-diffraction-based simulations.
Experiments are performed using continuous laser light in addition to ultrafast pulses, demonstrating that the
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common-path arrangement and the diffraction theory work equally well for both cases. © 2011 Optical Society

of America
OCIS codes:

1. INTRODUCTION

Nondiffracting beams, a class of optical waves that are exact
solutions to the Helmholtz equations and can propagate in free
space without undergoing diffraction, have been a topic of in-
terest for more than 20 years [1]. Perhaps the most extensively
investigated nondiffracting beam geometry is the Bessel beam
[1], a solution to the Helmholtz equation when expanded in
cylindrical coordinates. Bessel-Gauss beams [2], which are
aperture-limited versions of ideal Bessel beams, can be ob-
tained in the laboratory through the use of an axicon [3,4],
a circular slit and a lens in series [5], holographic plates [6,7],
or a system of diffractive optical elements [8]. These techni-
ques typically yield zeroth-order Bessel beams. Higher-order
Bessel beams can be obtained using these techniques in
conjunction with either azimuthal phase elements that intro-
duce integer topological charge [9,10] or a Laguerre—Gauss
beam [11,12].

More complicated beam geometries can be obtained
through the superposition of multiple Bessel beams [9,13—
16]. They exhibit transverse irradiance profiles that are
periodic with propagation distance [17]. These beam super-
position techniques have enabled the synthesis of a variety
of beam structures that can be observed to rotate either as
a function of propagation distance [5,17-20] or as a function
of optical system parameters [21,22]. Rotating beam geome-
tries have a wide variety of applications, including optical
micromanipulation [15,16,22-24], vortex motion in Bose—
Einstein condensates [25], high-resolution imaging [26-28],
complex optofluidity [29], and propeller solitons [30-32].

An optical double helix can be obtained from the superpo-
sition of first-order Bessel beams, as described by Bekshaev
et al. [33]. In this study, linear diffraction theory is used to
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devise a new system to generate double helical beams from
Gaussian continuous beams and then demonstrated in the
laboratory. Experimental extension to the pulse regime is de-
monstrated and shows agreement with the continuous case.

2. HELICAL BEAM GENERATION

Double helical beams were generated by superimposing J
and J_; beams in a linear interferometer (Fig. 1) with a long-
itudinal wavenumber difference inducing a pair of rotating
irradiance peaks. Each first-order Bessel beam was obtained
by transmitting a Gaussian beam through an axicon to gener-
ate a J, beam. The axicons were preceded by vortex plates to
induce a +1 topological charge.

For this configuration, the system throughput is only lim-
ited by Fresnel reflections that occur at the surface of each
optical element, beam clipping at the aperture stop, and
absorption within the optical elements themselves. The main
advantage of employing such a configuration over the conven-
tional Mach—Zender layout is the simplified alignment, in par-
ticular when optimal system throughput is required. With the
use of antireflective coatings and proper apertures, system
power throughput of nearly 100% can be achieved with the
serial configuration, with no need to modify system alignment
beyond what is necessary to achieve operation.

3. THEORETICAL DESCRIPTION

Helical beam generation can be described by using the scalar
diffraction theory. Starting with the Fresnel diffraction inte-
gral in cylindrical-polar coordinates,

© 2011 Optical Society of America
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Fig. 1. Serial optical configuration for helical beam synthesis.
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where U is the incident scalar field, 7, ¢; are the polar co-
ordinates of the incident scalar field, k, is the free space
wavenumber, U, is the diffracted scalar field, 75, ¢y are the
polar coordinates of the diffracted scalar field, and z is the
propagation distance between the incident and diffracted
fields.

Solving the diffraction integral requires an expression for
U,(ry, ¢1) obtained after transmission through a pair of coax-
ial vortex phase plates, and two axicons, the first of which was
custom made so as to have two discrete refraction angles.
This field can be obtained by evaluating the phase lag asso-
ciated with the axicons and vortex plates in two radially
separated regions. For the inner region, the coaxial vortex
plates possess a negative unit topological charge and the first
axicon possesses a 0.10° refraction angle. For the outer
region, the phase plates possess a positive unit topological
charge and the first axicon possesses a 0.28° refraction angle.
Denote the radius separating these regions as 7;. Note that the
second axicon is of conventional design and retains a constant
0.15° refraction angle throughout both regions.

Solving for the scalar field in both of these regions by taking
the product of the phase lags associated with each optical
element yields, for r < r;,

Uinner(/r? (/’) = exp(—i(p) X eXp(—ikoﬁf,IT) X eXp(—ikoﬁs)
= exp(~ip) exp(~ikop_17). 2)

and for r > 7;,

Uouter(rs qﬂ) = exp(i(p) X exp(_ikOﬁflr) X eXp(—ikoﬁST’)
= exp(ip) exp(~ikop17). ®3)

where exp(=+ig) is the vortex phase induced by the positive
(outer) and negative (inner) phase plates, respectively, 7; is
the radial threshold separating the topological charges on
the vortex plate and the apex angles of the first axicon,
Pr,» By, are the outer and inner refraction angles associated
with the first axicon, g, is the refraction angle associated
with the second axicon, and B, =p; +p5; and B =
Br_, + Bs are the cumulative axicon refraction angles. By com-
bining these expressions with an incident Gaussian beam, and

incorporating the effect of a thin lens of focal length f for gen-
erality, the field immediately following transmission through
the optical apparatus is obtained and given by
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where w, is the Gaussian beam waist of the incident beam,
u(r) is the step function establishing the radial separation
at r = r; between the two topological charges on the phase
plates, and [ is the peak irradiance of the incident Gaussian
beam.

The Fresnel diffraction integral can be evaluated by substi-
tuting U(r) and using the Jacobi-Anger expansion:
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and by observing that
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This results in the new integral

21 x exp(ikyz k2] [
Us (75, 93) :—\/I—OMexp{zﬁ}/o dryry

A02 2z
2
72 Kor? (11
- ™)
xexp( wé) exp{@ 5 \27F (11,72, @2)

kor v . .
G=u(r -r)J, (%) exp(—ikof171) exp(igs)

k
X —u(”ri -1 )J—l (@)

x exp(-ikof_171) exp(~igy). (7)



1464 J. Opt. Soc. Am. A / Vol. 28, No. 7/ July 2011

The stationary phase approximation may be applied in Eq. (7).
Evaluate the phase term that appears in both integrals:

exo (% (1-2) -k )| = expliotr). @

Choose r; such that the phase remains constant:
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where
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is the compression factor, resulting from the longitudinal com-
pression of the diffracted field caused by the thin lens moving
the Fraunhofer plane from infinity to a distance f from the
diffracting elements.

Evaluating at r; = F g,z gives
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Substituting the integral back into Eq. (11) gives
U(r.g) = Uy(r) exp(ip) + U_(r) exp(=ip).  (13)

where
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where 7 is the radial coordinate of the diffracted field, k, = ==
is the free space wavenumber, 4, is the wavelength of the
incident beam, k; = Sk, and k_i = p_1ky are the transverse
wavenumbers, and Iy, = Fﬁ (x = 1,-1) is the diffraction-free
length for the respective fields. The limited aperture of the
optical setup limits the longitudinal extent of the two super-
imposed Bessel beams, as dictated by

r; P T
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which, after algebraic manipulation, can be expressed as
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For z; <z < z_;, which is valid only for f; > f_;, the two
azimuthal components of the beam overlap on the optical
axis. Making the substitution
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and observing that
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the expression for the field within this region can be reduced
to
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which has the corresponding irradiance
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The first term in this analytical expression for the beam ir-
radiance describes a double helix resulting from the product
of the innermost ring of the first-order Bessel function and the
azimuthally dependent cosine function, which results in two
distinct, isolated beam irradiance peaks. The argument of the
cosine function is z dependent, and varies linearly with
propagation distance, giving rise to beam rotation with propa-
gation distance. The two irradiance peaks rotate about the
optical axis at a rate given by the following relation:

00 2 \KE-k] = 2 5 - B
(e 5e) e =ar () (P55

(22)

This beam profile is illustrated in Fig. 2.

Each irradiance peak is bounded by the first and second
zero of J;(Fkr), placing strict upper limits on their diameter.
Thus, the diameter of the irradiance peaks will not exceed

Q. = 3.8317 _ 1.22 @ (23)
Ft  pr+paF

From these equations it is apparent that both the helical beam
size and the rotation rate can be changed by the choice of
the axicon apex angles, f; and $_;, used in the experimental
setup. This allows scaling of the helical beam rotation rate at
the cost of helical beam size.
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Fig. 2. (Color online) Beam profile generated from the superposition
of two first-order Bessel beams.

4. NUMERICAL MODEL

A Fresnel diffraction wave solver was written in MATLAB
(R2008a version 7.6.0.324) to describe two-dimensional
images of the field irradiance, and to compare with experi-
ments (Fig. 3). This numerical solver analyzed the diffraction
of a scalar optical field as it propagated over a finite distance
by solving the Fresnel diffraction integral. A two-dimensional
fast-Fourier-transform algorithm was used to evaluate the dif-
fraction integral. Spatially resolved phase delays were used to
simulate all the optical elements in the experimental system,
which were then applied to a two-dimensional representation
of a Gaussian beam immediately before the MATLAB program
evaluated the diffraction integral. The distance from the opti-
cal system to the output field was incorporated as a variable
argument in the Fresnel diffraction integral. The initial input
was a 800nm, continuous Gaussian beam with a 12.5mm
beam waist. The optical elements used in the experimental
system were modeled within the diffraction solver, which
included the telescope, vortex phase plates, and both axicons.

To avoid solving the Fresnel diffraction integral several
times, both the telescope and the vortex phase plates were
reduced to equivalent elements. The telescope was modeled
as the paraxial phase delay associated with a 2.1m focal
length thin lens, a value obtained experimentally by transmit-
ting collimated light through the telescope and measuring the
position of the resulting focal spot. The transverse scale of the
vortex phase plates was rescaled based on the magnification
of the phase pattern obtained using the telescope, enlarging its
transverse dimensions by a factor of 5. With this modification,
the vortex plate induced a unit azimuthal phase delay on in-
cident light within a 6.25 mm diameter, and the opposite unit
azimuthal phase delay outside of that diameter. The vortex
plates were incorporated as unit azimuthal phase delays ob-
tained using 16 discrete sections of constant thickness, as per
the specifications of the physical element.

The thickness of both axicons were resolved in two di-
mensions using the three-dimensional profiler and converted
to matrix format for evaluation within the diffraction solver.
Using the refractive index of BK-7 glass at 800 nm, » = 1.51,
the phase lag associated with these elements were obtained
directly from the thickness matrices. The spacing between
the axicons and the two equivalent elements was considered
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Fig. 3. (Color online) Simulation flowchart.

sufficiently small to be neglected. Thus the phase delays as-
sociated with each element were applied to the same point
on the optical axis.

5. EXPERIMENTAL SETUP

The experimental setup consist of a Ti:sapphire laser, tele-
scope, coaxial vortex plate pair, vacuum chamber, and axicon
pair. Collimated light from the Ti:sapphire laser is transmitted
through a telescope composed of 20 (TL1) and 60 cm (TL2)
converging lenses separated by 80 cm. The vortex plate pair
was placed 4 cm beyond the internal focus of telescope. Both
the vortex plates and the internal focus were located within a
28 cm diameter cylindrical vacuum chamber kept at 54 mTorr
to prevent plasma formation during experiments using ultra-
fast pulses. The axicons (Al, A2) were located 4.5 cm beyond
the telescope and aligned with the optical axis.

The Ti:sapphire laser had a 290 mW output power and was
used to generate both continuous and pulsed helical beams.
The laser spectrum was centered at 785nm with a FWHM
spectral width of ~75nm when mode locked that reduced
to ~1nm when operated cw. The 75 MHz pulse train from
the mode-locked laser was not compensated for chirp and
therefore provided pulses ~100fs in duration as seen with
intensity autocorrelation.

Fused silica vortex phase plates were fabricated using an
additive microlithographic technique [34]. The vortex plates
consisted of 16 azimuthal segments of constant thickness ar-
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ranged to form a unit topological vortex at 800 nm. Discrete
levels were first created in photoresist and then transferred to
fused silica using CHF5:0, inductively coupled plasma etch-
ing. The diameter of the vortex plates was limited to 5mm;
therefore, the vortex plates were positioned 4 cm behind
the telescope internal focus to enable its use with beam
diameters exceeding 5mm (Fig. 4).

The vortex phase was expanded and projected onto two
larger diameter axicons arranged in series (Fig. 1). The BK7
glass axicons were intentionally overfilled using a 33.5mm
beam waist Gaussian. The beam clipping on the 25 mm diam-
eter axicons resulted in a 76% power loss. Distinct refraction
angles for paraxial and marginal rays of #; = 0.43° and f_; =
0.25° were created using a specially fabricated axicon with
179.7° apex angle within a 12.5 mm diameter and an equiva-
lent apex angle of 178.6° beyond this diameter arranged in
series with a 25mm diameter axicon with 179.4° apex
angle (Fig. 1). These commercially manufactured axicons
were characterized using an optical surface profiler (Zygo
NewView 6300).

These system parameters can be substituted into the pre-
viously derived theoretical expressions to predict the charac-
teristics of the helical beam generated using the optical setup.
Incorporating the effects of the 2.1 m beam expander focal
length and using Eq. (16), the helical beam was expected to
persist from 2; = 54 cm to z_; = 85 cm. From Eq. (22) and the
cumulative axicon refraction angles used in the experiment,
the resulting helical beam should make one complete rotation
every 4.7 cm initially with the rotation accelerating until it
makes a complete rotation of 3.0cm at 85cm. Evaluating
Eq. (23) at z = 54 cm, maximum spot size of each irradiance
peak should not exceed 54 ym.

The transverse irradiance profiles of the helical beams were
evaluated using a specialized optical system. The system was
comprised of two glass wedges, several neutral density filters,
a single 15 mm focal length lens, and a 10x microscope objec-
tive. The system was used to attenuate and magnify the beam
pattern, and to protect electronic instrumentation from
damage. Incident light was reflected sequentially from both
glass wedges (W1, W2), which were oriented at a 45° angle
relative to the incident light, reducing power by several orders
of magnitude. Attenuated light was then transmitted through
the lens (L), neutral density filters (FW), and microscope ob-
jective (MO), which were arranged in series and spaced such
that the optics formed an image of the first glass wedge on an
ICCD camera (PI-Max 2 Model 7489 1024 x 1024 ICCD camera
with a PI-ST133 controller). The imaging setup was translated
along the beam to map the propagation of the double helical
beam. At each position, 30 beam profiles were recorded for
evaluation of the experimental fluctuations.

6. RESULTS AND DISCUSSION

Experiments were initially conducted using the 785 nm contin-
uous laser beam. The double helical beams were observed at a
distance of 60 + 0.5cm from the axicon pair on the optical
axis, and persisted for 20 £ 0.5 cm, falling within the theore-
tically predicted longitudinal range.

Beam profile measurements were taken along the optical
axis along the range for which the double helical beam was
observed, using the imaging system. Beam transverse irra-
diance profiles of the helical beam were recorded along the



Vol. 28, No. 7/ July 2011 / J. Opt. Soc. Am. A 1467

Laser parameters:
Wavelength: 800 nm \
Laser

Barbieri et al.

Pulse energy: 11.8 mJ
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Fig. 4. (Color online) Experimental setup for the generation of helical beams.
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Fig. 5. (Color online) Transverse beam profiles of a helical beam at various points along the optical axis. The dot indicates rotation angle. Top,
obtained from MATLAB simulation. Middle, obtained from experiments using continuous light. Bottom, obtained from experiments using pulses.
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optical axis in 5mm intervals. Measurements taken for the
first 10 cm were analyzed in greater detail. Experimental re-
sults were compared against the numerical model.

Figure 5 shows the comparison between simulation and
experimental results (continuous and pulsed) along one full
rotation of the double helical beam. At each point along
the optical axis, a double helical beam irradiance profile is
observed. Sideband flares resulting from irradiance peaks pre-
sent in the second ring associated with J%(r) are also present
in many of the observed irradiance profiles. The helical beams
are 125 ym in diameter, containing two 50 ym diameter irradi-
ance peaks separated by a 25 ym null, falling within the 54 ym
maximum size predicted by Eq. (23) for our experimental
setup.

The experimental profiles have three key features in com-
mon with the simulation. Each experimental profile contains
two identifiable irradiance peaks, although almost equally in-
tense sidebands are present in some profiles. A clear null is
present in the center of each beam. Also, the experimental
profiles rotate in agreement with the images generated from
simulation.

The rotation angle for both the simulation and experiment
were obtained from the transverse irradiance profiles and are
plotted in Fig. 6 as a function of propagation distance. Agree-
ment between experiment and simulation can be observed di-
rectly from the plot. The plot indicates that the helical beam
makes a complete rotation approximately every 4 cm. A simi-
lar conclusion can be drawn upon careful analysis of Fig. 5.
This is consistent with Eq. (22), which predicts that, at a dis-
tance of 65 cm from the optical setup, the helical beam will
make one complete rotation every 4.1 cm. However, varia-
tions in the rate of rotation as a consequence of the 2.1 m
system focal length are not observed.

The experiment was repeated using ultrafast pulses. Helical
beams were again observed between 60 and 80 cm from the
second axicon. The transverse profiles of the pulsed helical
beams obtained in our experiments are nearly identical to
those obtained for the continuous case, as can be seen in
Fig. 5, and exhibit the same rotation angle and rate, as can
be seen in Fig. 6. The beam profiles obtained for the pulsed
case exhibit a clearer pair of irradiance peaks and fewer irre-
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Fig. 6. (Color online) Rotation of the irradiance peaks of the double
helical beam (see Fig. b) as a function of propagation distance.
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gularities than the continuous case. In effect, an improvement
in irradiance profile of the structure is obtained by using
pulsed beams in place of a continuous beam. This may be the
a consequence of the Ti:sapphire laser used for both experi-
ments, which is optimized for pulsed operation.

7. CONCLUSION

A serial arrangement for generating double helical beams
through the interference of two first-order Bessel beams
has been successfully demonstrated. Although this arrange-
ment was devised through the application of linear diffraction
theory to a continuous Gaussian beam, the configuration has
also been demonstrated to operate with ultrafast pulses. A
diffraction model was able to provide an adequate description
of the double helical beam dimensions and rotation rate. The
transverse beam profiles obtained through the simulation
reproduced the basic structural features of the helical beam
profiles obtained in the laboratory. These models can be ex-
tended to pulsed beams on a limited basis.

Experimentally obtained double helical beams produced
rapid, consistent, and controlled rotations dictated by the op-
tical setup in a manner consistent with analytical and numer-
ical models. Double helical beam dimensions, rotation rate,
and propagation distance can be readily altered by appropri-
ate selection of optical elements.
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