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Abstract: We report on the observation of Anderson wave localization
in one-dimensional waveguide arrays with off-diagonal disorder. The
waveguide elements are inscribed in silica glass, and a uniform random
distribution of coupling parameters is achieved by a precise variation of the
relative waveguide positions. In the absence of disorder we observe ballistic
transport as expected from discrete diffraction in periodic arrays. When
off-diagonal disorder is deliberately introduced into the array we observe
Anderson localization. The strength of the localization signature increases
with higher levels of disorder.
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1. Introduction

Anderson localization is ubiquitous in wave physics. This process naturally arises in any ran-
dom lattice system and is known to result from the interference between multiple scattering
events. Under strong disorder conditions this interference can become so severe that it entirely
holds the transport of a quantum mechanical wave-packet. In this regime, Anderson localiza-
tion occurs. While in higher dimensions the transition from ballistic to Anderson localization is
preceded by diffusion, in 1D-systems this effect can be directly induced even in the presence of
weak disorder [1, 2]. Over the years Anderson localization has been analyzed in the literature
under both diagonal [1] and off-diagonal disorder conditions [3, 4].

Lattices of coupled optical waveguides provide a versatile platform for manipulating the flow
of light [5]. In recent years such arrays have been used to directly observe and study optical
analogs of many fundamental quantum mechanical effects like Bloch oscillations [6,7] , Zener
tunneling [8], continuous-time quantum random walks [9], and other processes [10–12]. An-
other example is Anderson localization that has been directly observed for light propagating in
one- (1D) and two-dimensional (2D) arrays of coupled waveguides [13,14]. These observations
have been demonstrated for the case of diagonal disorder, i.e., the waveguide propagation con-
stants are randomized (by randomizing the sizes of the waveguides), while keeping the coupling
coefficients between adjacent waveguides approximately constant (by keeping the waveguide
separations constant). Anderson localization for off-diagonal disordered waveguide arrays has
been reported for the first time in Ref. [15]. In such an array, the waveguide elements are all
identical (i.e. have the same propagation constant) while the coupling coefficients are varied
by changing their relative positions. In Ref. [15], disorder-induced localization by averaging
over many array samples having the same degree of disorder was observed in 1D photonic lat-
tices. We report here the observation of Anderson localization in a 1D optical waveguide array
with off-diagonal disorder having a uniform random distribution of coupling coefficients. We
prove through experimental observation and calculation that the shift invariance of the statis-
tical characteristics of the waveguide disorder allows one to replace statistical averaging over
multiple sample realizations with shifting the input waveguide excited in the same sample real-
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ization. Furthermore, we examine the effect of the waveguide array length on the propagation
dynamics in both the periodic and the disordered arrays. We would like to emphasize that while
both diagonal and off-diagonal disorder can lead to Anderson localization, there are still qual-
itative differences between them [16]. One such aspect manifests itself in the level of disorder
needed to accomplish 1D localization. In general, for off-diagonal disorder, stronger level of
randomness is necessary compared to that required for diagonal disorder if the same localiza-
tion length is to be attained. Reference [17] highlights this issue among other distinguishing
traits of off-diagonal disorder.

The waveguides used here are fabricated by use of intense infrared femtosecond laser pulses
focused inside transparent silica [18, 19]. The utilized glass allows us to use light of wave-
lengths shorter than those used in AlGaAs waveguides in previous demonstrations of Anderson
localization of light in arrays with diagonal disorder. Glass waveguides also mitigate the low
coupling efficiency of light into high-refractive-index (nAlGaAs ≈ 3.3) waveguides. In our ar-
rays, the waveguides are all identical, i.e. they all have the same propagation constant, while
the coupling coefficients are randomized by changing the relative positions of the waveguides.
We observe that extended states in a periodic waveguide array become exponentially localized
states when the localization length is shorted [20] by increasing the amount of waveguide po-
sitional disorder. The excellent agreement between experimental observations and theoretical
calculations is a testament to the accuracy of the waveguide fabrication technique.

2. Random walk in waveguide arrays

The propagation of an optical field along a lossless waveguide array with nearest-neighbor
evanescent coupling can be described, in general, by the equation

i
dEn

dz
+βnEn +Cn,n+1En+1 +Cn,n−1En−1 = 0 , (1)

where En is the electric field amplitude at the nth waveguide (n = 1,2, · · · ,N), βn is the prop-
agation constant of the nth waveguide, and Cn,n±1 is the coupling coefficient between adjacent
waveguide elements. We assume lossless propagation and set Cn,n±1 = Cn±1,n . The magnitude
of the coupling coefficients depends exponentially on the separation between adjacent waveg-
uides [19].

We begin by considering a periodic array (Cn,n±1 = Co) of identical (βn = βo) waveguides,
whereupon Eq. (1) simplifies to

i
dEn

dz
+Co(En+1 +En−1) = 0 . (2)

For single-input-site excitation Eno = A0δn,no at z = 0, the field in the nth waveguide is given by

En,no(z) = A0 in−no Jn−no(2Coz) , (3)

where Jn(x) represents a Bessel function of order n, and the output intensity distribution is

In,no(z) ∝ |Jn−no(2Coz)|2 . (4)

This output distribution exhibits two off-center lobes where most of the optical energy is con-
centrated, and whose distance from the transverse location of the excitation site increases lin-
early with the propagation length along the array (see Fig. 1a). This is characteristic of discrete
diffraction [5], which is in stark contrast to free-space diffraction where most of the light is
concentrated in a central lobe.
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Disorder can be introduced into a waveguide array by one of two strategies. In the first, one
randomly changes the waveguide width, while keeping the distance between waveguide centers
constant. As a result, the propagation constants βn vary from one waveguide to another in the
range βo ±Δ, while the coupling coefficients are approximately constant, Cn,n±1 = Co [13,
14]. This disordered array corresponds to the diagonal-disorder model in Anderson’s original
formulation. In the second strategy, the waveguides are all identical, but the separation between
adjacent waveguides is randomized. The propagation constant is the same for all the waveguides
βn = βo, while the coupling coefficients become random in the range Co ±Δ. Such an array
corresponds to the off-diagonal-disorder model. In this paper, we focus on waveguide arrays
involving off-diagonal disorder. Propagation in such an array is described by the following

Fig. 1. Numerical simulation of optical field propagation when light is injected into the
51st waveguide in a 101–waveguide array. The arrays used in (a) to (d) have an increasing
degree of disorder. Each plot results from averaging the intensities of 41 realizations of
random disordered arrays described by a uniform probability distribution function having
a mean value C0 = 1.8 cm−1 and width 2Δ, for disorder parameters Δ/C0 = 0, 0.4, 0.55,
and 0.70, respectively. The average output intensity distributions for propagation lengths
35 mm (blue) and 49 mm (green), respectively, corresponding to the lengths of the two
samples used, are shown on the right.

equation,

i
dEn

dz
+Cn,n+1En+1 +Cn,n−1En−1 = 0 . (5)
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Fig. 2. (a) Experimental setup. LD: laser diode (780 nm); PBS: polarizing beam splitter;
OA: optical attenuator; 5× (NA = 0.1) and 10× (NA = 0.25) microscope objectives; S:
waveguide array sample. (b) CCD image of the periodic waveguide array output (period
= 17 μm, and distance from the top of fused silica slab ≈ 250 μm) when a single waveg-
uide is excited at the input. (c) Measured dependence of the coupling coefficient C on the
waveguide separation for directional couplers fabricated with the same parameters as the
arrays.

In Figs. 1b-d we present numerical simulations of the intensity of a field propagating along
such an array averaged over 41 realizations of the random disordered parameters Cn,n±1, cho-
sen according to a uniform probability distribution with a mean value Co and width 2Δ, for
disorder parameters Δ/Co = 0, 0.4, 0.55, and 0.70. Note the transition from extended (Fig. 1a)
to exponentially localized (Fig. 1d) optical states with increasing disorder.

3. The waveguide array

The waveguides used in this study were fabricated using 800-nm-wavelength femtosecond-
laser pulses focused at a depth of ≈ 250 microns below the surface of polished bulk fused-silica
glass [18, 19], inducing permanent refractive index changes.

A computer-controlled positioning system allows one to write waveguides [18] of transverse
size 4× 12 μm. At a wavelength of 800 nm, these are single-mode waveguides with NA =
0.06 [19]. We prepared two identical samples each consisting of four waveguide arrays, but
having different lengths, 35 mm and 49 mm, referred to hereon as short and long samples, re-
spectively. The waveguides in all of the arrays in both samples are identical. Each array consists
of 101 waveguides with nearest-neighbor evanescent coupling. The first array in each sample
is periodic with inter-waveguide separation of 17 μm (numerical simulation of optical field
propagation when light is injected into a single waveguide of the periodic array is shown in
Fig. 1a), corresponding to a coupling coefficient Co � 1.8 cm−1 (Fig. 2c). The other arrays
are disordered with random (off-diagonal) coupling coefficients. The values of the coupling
coefficients in each array are described by uniform probability distribution functions all having
the same mean value Co, but with increasingly larger width 2Δ (Fig. 1b-d). According to the
exponential dependence of Co on the waveguide separation (Fig. 2c), such a uniform distribu-
tion of coupling coefficients can be generated by imposing an exponential distribution on the
separation [19].
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Fig. 3. Data acquisition and analysis. Panel (a) presents data for light injected into the
50th waveguide (no = 50) of the long periodic array. The intensity at the output of the
waveguide array is captured with a CCD camera (shown in the middle). The image is
then post-processed to extract the discrete intensity distribution (In,50) by integrating over
rectangular areas 10×30 pixel each centered on the center of each waveguide (n) shown as
the black rectangle. The central red rectangle on the CCD image in panel (a) indicates
the location of the excitation site. The discrete intensity distribution, In,50 is shown as
the red bar-plot. The brightness image in panel (b) displays the distribution, In,no of the
intensity of the light measured at the output of the waveguides (n) when only waveguide
no is illuminated. The red rectangle on panel (b) indicates the output distribution for light
injected into the 50th waveguide. In panel (c) the displaced distribution, In+no,no is shown.
Each distribution of the measured intensity is displaced such that it is centered about the
illuminated waveguide. Only the middle 41 waveguides are illuminated (one at a time) with
the ordinate marking the illuminated waveguide.
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4. Optical measurement system

The experimental setup used to observe the transition to Anderson localization in the above-
described optical waveguide arrays is shown in Fig. 2. A horizontally polarized beam from a
diode laser at 780 nm is attenuated and focused by a 10× microscope objective (NA= 0.25) into
a single waveguide in the array (see Fig. 2a). The waveguide array output is imaged on a CCD
camera using a 5× microscope objective (NA= 0.1). A typical output intensity distribution for
single-site excitation in the periodic array in the long sample is shown in Fig. 2b, demonstrating
clearly the expected discrete diffraction pattern.

The data recording and analysis procedure is sketched in Fig. 3. A single waveguide is illu-
minated and the intensity of the light at the output of the waveguide array is captured by the
CCD camera. The realization shown in Fig. 3a was obtained by injecting light into the 50th

waveguide in the long-sample periodic array. The 2D image was post-processed to extract a
discretized 1D intensity distribution. A rectangle of size 10× 30 pixels that covers the image
of a waveguide was integrated and a background term was subtracted. The resulting discrete
intensity distribution In,50 is shown as the red-bar plot.

Fig. 4. Average displaced distribution I n for long (a) and short (b) periodic waveguide ar-
rays. The black squares represent a theoretical best-fit with Co ≈ 1.79 cm−1 and 1.80 cm−1

for the short and long arrays, respectively. The root-mean-square (RMS) width of the exper-
imental distributions (≈ 18.0 and ≈ 25.4) are shown in (c) as function of the array length.
The line represents the best-fit to the linear ballistic expansion as a function of the array
length with Co ≈ 1.81 cm−1.

The uniformity of the waveguide losses is attested by the fact that the total output power
Pno = ∑n In,no = P is constant ∀no (for fixed input power). We normalized the output inten-
sity with respect to P, In,no = In,no/P and then averaged the output distributions for different
excitation sites after shifting them by the index of that excitation site (see Fig. 3c),

I n = ∑
n0

In+n0,n0 . (6)

The resulting averages are shown in Fig. 4 for the short and long periodic arrays. This pro-
cedure is justified since the characteristics of the array are shift invariant. This necessitates
excluding edge effects which occur if the ends of the array are excited, as investigated by Sza-
meit et al. [15]. Therefore, we excite the input waveguides no = 31 . . .71, which guarantee that
the output intensity distribution does not extend to the edges of the arrays. A best-fit for these
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Fig. 5. Effect of disorder on the propagation of light through 101-waveguide arrays in
the short (first row, a-c) and long (second row, d-f) samples. The two rows correspond to
disorder parameters Δ/Co ≈ 0.44,0.69 and 0.91 for the short sample, and 0.51,0.70 and
0.87 for the long sample. The color plot in each panel shows the displaced distributions
In+no,no at the output. Each row in the plot corresponds to the output intensity distribution
for a single point excitation at no after shifting it by no. Only the middle 41 waveguides
are illuminated (one at a time) with the ordinate marking the illuminated waveguide. The
average of the displaced distributions, I n, for all 41 waveguides is plotted at the bottom of
each panel with the red line showing the result of a numerical simulation with Co and Δ as
fitting parameters.

distributions to the theoretical expectation |Jn(2C0z)|2 allows us to evaluate the coupling coef-
ficient to be C0 ≈ 1.79 cm−1 and 1.80 cm−1 for the short and long arrays, respectively, defined
by numerical simulation fittings. Further confirmation of our results comes from verifying that
the separation of the lobes in the ballistic expansion increases linearly with sample length. We
have evaluated the root-mean-square (RMS) width of the experimental distributions I n, and
fitted them with the coupling coefficient C0 as the only free parameter, as shown in Fig. 4.

5. Anderson localization in waveguide arrays with off-diagonal disorder

We next proceed to examine wave propagation through waveguide arrays with off-diagonal
disorder. The coupling coefficients between adjacent waveguides in a single array were chosen
such that they belong to a uniform probability distribution function having mean value Co. The
width of the distribution 2Δ increases from one array to the next, corresponding to increasing
disorder. The values of Co and Δ have been determined by fitting the experimental data with
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numerical simulations: Co (≈ 1.79 cm−1 and 1.50 cm−1 for the short and long arrays, respec-
tively) defines the distance between the lobes of the ballistic expansion, which is still visible
in Fig. 5a and 5d, while Δ defines the central exponential peak. The disorder parameters for
our arrays are found to be Δ/Co ≈ 0.44,0.69 and 0.91 for the short sample, and 0.51,0.70 and
0.87 for the long sample. The experimental setup and data analysis procedure used with the
disordered arrays were identical to those described above for the periodic arrays (see Fig. 2)
after accounting for the random locations of the waveguides in these off-diagonal disordered
arrays. We have also used here the same post-processing data analysis to obtain the displaced
distributions In+no,no and the average displaced distribution I n for each array.

Fig. 6. Single-frame excerpts from video recordings. On the left we display the recorded
intensity distribution at the output of the short waveguide array when the middle 41 input
waveguides are illuminated one at a time, while on the right the cumulative averaged dis-
crete intensity distribution is updated. (a) Periodic array (Media 1); (b) array with disorder
parameter Δ/Co ≈ 0.44 (Media 2); (c) array with Δ/Co ≈ 0.69 (Media 3); (c) array with
Δ/Co ≈ 0.91 (Media 4).

As we repeat the experiment in arrays with progressively larger off-diagonal coupling disor-
der, shortening the localization length with respect to the ballistic spreading, we observe at the
array outputs a clear enhancement of the exponentially localized (Anderson-localized) optical
states for both samples [20]. As shown in Fig. 5, we observe that the ballistic expansion in
the periodic array evolves, with increasing disorder, into an intermediate regime at Δ/Co ∼ 0.5
that exhibits characteristics of both extended and localized states (Fig. 5a,d). Finally Anderson
localization is clearly evident at Δ/Co ∼ 0.9 (Fig. 5c,f).

It is worth noting that as we scan the beam injected into individual waveguides across a
disordered array, besides the shift due to the scanned input, the output intensity distribution
changes. This results from the fact that the spreading optical field encounters a random coupling
environment as we move across the array. In contrast, the individual realizations at the output
of the periodic array are almost all identical (modulo the shift). Anderson localization is then
established for the disordered array by averaging the different realizations resulting from spatial
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scanning the input beam. These features are brought together in the movies in Fig. 6. On the
left we depict the individual output intensity distributions resulting from scanning the excited
waveguides at the input, and in the right we display an updated cumulative average. In the case
of the periodic array, averaging has little effect.

The localized states observed by averaging over multiple realizations of the gradually in-
creased disorder is demonstrated in Fig. 7. The RMS-widths of the output intensity distribution
measured for the two arrays with different length are compared to numerical simulations for two
methods of statistical averaging over the waveguide disorder. We note that our results demon-
strate that ensemble statistical averaging, achieved by coupling into a single waveguide in a set
of independent disordered arrays (sampling average) is equivalent to spatial scanning through
multiple waveguides in the same off-diagonally disordered array (shifted average). Finally to
highlight the exponential decay of the Anderson-localized state away from its center, we plot
in log-scale the average displaced distribution I n for short and long samples in the inset of
Fig. 7. The exponential decay fits until we reach the noise level of the data.

Fig. 7. RMS width as function of the disorder parameter Δ/Co for the short (red-circle
symbols) and long array (blue-square symbols). The colored bands represent the range
of values of the RMS-width a standard deviation around the mean value. For each value
of the disorder parameter, RMS-width and its standard deviation have been evaluated by
averaging over 21×40 disorder realizations for the sampling average approach (dashed
lines), while 21 disorder realizations and 40 shifted input waveguides have been considered
for the shifting average approach (solid lines). Inset: average displaced distribution, I n for
short and long arrays with disorder parameter Δ/Co ∼ 0.9. The log-scale plot highlights
the exponential decay of the Anderson-localized states. The dotted-lines are a guide for the
eye.

6. Conclusion

We have observed the gradual passage from extended to Anderson-localized states in near-
infrared light propagation through waveguide arrays of different lengths having a uniformly
distributed off-diagonal coupling disorder. Precise fabrication techniques have allowed us to
control the disorder parameter and enabled us to obtain experimental measurements confirming
theoretical predictions with good accuracy, including the exponential behavior of the Anderson-
localized state. We have supported the experimental results with numerical simulations for both
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shifting and sampling statistical averaging methods and shown that both methods yield equiva-
lent results of the same precision.
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