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Abstract: We propose a method for controlling modal gain in a multimode 

Erbium-doped fiber amplifier (MM-EDFA) by tuning the mode content of a 

multimode pump. By adjusting the powers and orientation of input pump 

modes, modal dependent gain can be tuned over a large dynamic range. 

Performance impacts due to excitation of undesired pump modes, mode 

coupling and macro-bending loss within the erbium-doped fiber are also 

investigated. The MM-EDFA may potentially be a key element for long 

haul mode-division multiplexed transmission. 
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1. Introduction 

Over the past years, advances in optical coherent detection and signal processing have led to 

tremendous growth in the spectral efficiency achieved in optical fiber. Recently, 100-Tb/s 

transmission at a spectral efficiency of 11 b/s/Hz was reported in a single-mode fiber [1]. 

Owing to the nonlinear refractive index of silica, it is impossible to continue increasing 

spectral efficiency indefinitely by merely increasing the launched power. One method to 

reduce fiber nonlinearity is to increase the effective area of the propagating mode, thus 

reducing the optical intensity and the resulting nonlinear effects [2]. However, mode effective 

area is limited by bending loss and by the requirement of the waveguide to be single-mode. It 

is possible to transmit data in the fundamental mode of a “few-mode fiber” (FMF). Provided 

mode coupling is low, the signal will remain single-mode during propagation. The larger 

effective area of the fundamental mode in FMF in comparison with that achievable in SMF 

can further reduce nonlinearity [3]. However, a nonlinear capacity limit will always exist. 

Even if the transmission medium was linear, Shannon‟s capacity  2log 1WC B SNR   b/s 

per channel shows that the capacity scales only logarithmically with signal-to-noise ratio. 

Ultra-high spectral efficiency is therefore very power inefficient. To achieve cost-effective 

scaling in system capacity, new paradigms in optical transmission are required. 

One promising solution is space-division multiplexing, where data is transmitted over 

parallel channels. Indeed, transmission over parallel orthogonal channels has been well 

established in wireless systems, where the achievable capacity using multiple-input multiple-

output (MIMO) antennas increases with the number of independent “eigenchannels,” which 

under the assumption of rich multipath, scales as the minimum of the number of antennae 

deployed at the transmitter and receiver [4]. 

In optical fiber transmission, two space-division multiplexing (SDM) schemes have been 

proposed. These are (i) multicore fibers (MCF), where a single strand of glass fiber contains a 

number of independent single- (or multi-) mode cores each capable of communicating optical 

signals [5,6]; and (ii) multimode fibers (MMF), where a single strand of fiber has one core 

with sufficiently large cross-section area to support a number of independent guiding modes 

[7–9]. SDM transmission experiments have been reported for both types of fibers. Owing to 

the lack of available inline amplifiers, all MCF and MMF experiments to date have been 

single-span, with transmission distances up to 76.8 km [6] for MCF and 40km [8] for MMF. 

To enable mode-division multiplexing (MDM) in MMF over long-haul distances, inline 

erbium-doped fiber amplifiers (EDFA) based on MMF are required [10]. The theory of 

multimode EDFAs (MM-EDFA) has been studied in [11]. Applications for MM-EDFAs have 

included high-powered lasers and free-space communications, where the multimode optical 

waveguide is essentially used in a “single-mode” manner, thus mode-dependent gain (MDG) 

is not critical [11,12]. In MDM transmission however, careful control over MDG is necessary 

to overcome mode-dependent loss (MDL) in the transmission fiber, and to ensure all signal 

modes are launched with optimal power maximizing the total system capacity. 

Mode dependent gain (MDG) is mainly determined by three factors: (a) the concentration 

profile of the active dopant ions, (b) the transverse intensity profile of the pump, and (c) the 

transverse intensity profile of the signal. In general, a signal mode whose profile is better 

matched to the pump intensity profile will experience higher gain. Hence, by controlling the 

mode content of the pump, it is possible to control MDG. The organization of this paper is as 

follows. In Section 2, we review the theory of MM-EDFAs. In Section 3, we provide 

simulation results for a step-index “two-mode fiber,” demonstrating the feasibility of MDG 
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control by tuning the mode content of the pump. We also explore the dependence of MDG on 

the excitation of unwanted modes and mode coupling within the EDF. 

2. Theory 
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Fig. 1. Schematic diagram of an MM-EDFA. 

A schematic of a MM-EDFA is shown in Fig. 1. To generate the desired pump intensity 

profile, we split the pump source into N paths, and use mode converters to transform the 

spatial mode of the pump source into the N spatial modes of the MMF. The variable 

attenuators enable N-degree control over the mode content of the pump, and thus the MDG of 

the device. The pump modes are spatially combined with the signal, which are injected into 

the erbium-doped MMF. In the paper, we assume the erbium-doped MMF has the profile 

shown in Fig. 2, where the core has radius 
cr , and a region of the core for which cr a r 

 is 

doped with Erbium atoms at a concentration of 
 0 ,N r 

. 

rc a

r
 

Fig. 2. Multimode Erbium-doped fiber amplifier. 

The operation of a multimode fiber amplifier is described by coupled differential 

equations involving: (i) evolution of the intensities of the various signal and pump modes 

along the amplifying medium, and (ii) population inversion along the amplifying medium 

[11]. In contrast to a single-mode EDFA, the transverse intensity distributions have to be 

taken into account in a multimode EDFA. We assume both signal and pump are co-

propagating. Let  , ,s i r   and 
 , ,p j r 

 be the normalized intensity patterns of the i-th 

signal mode and j-th pump mode of the EDF, respectively; and let ,s iP
 and ,p jP  be their 

respective power. We further assume the erbium-doped fiber (EDF) can be modeled as a 

quasi-three-level system at 980 nm pumping, and let 1( , , )N r z and 
2 ( , , )N r z  with 

1 2 0( , , ) ( , , ) ( , )N r z N r z N r     be the population densities of Erbium atoms in the lower 

and upper levels at position 
( , , )r z

. Loss is assumed negligible in the EDF. It can be shown 
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that the intensity evolution equations for signal and amplified spontaneous emission (ASE) in 

the i-th signal mode at the wavelength 
s  are given by: 

      
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where ,as i
 and 

,es i  are the absorption and emission cross-section areas at the i-th signal 

mode,   is the equivalent amplifying bandwidth, and the ,s i kd  ‟s are coupling coefficients 

between signal modes [13]. In the signal propagation Eq. (1), the first term on the right hand 

side denote net amplification due to stimulated emission, and the second term denote power 

coupling between the signal modes. In the ASE propagation Eq. (2), the second term on the 

right hand side represents spontaneous emission of the excited Erbium ions; the coefficient of 

„2‟ preceding this term corresponds to two degenerate polarizations modes. The intensity 

evolution equation for the power in the j-th pump mode at wavelength p  is: 
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Finally, the population density equations are: 
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 (5) 

where 
s  and 

p  are the signal and pump optical frequencies. Other symbols are listed in 

Table 3. Equations (1)–(5) can be solved by using the standard fourth-order Runge-Kutta 

method given initial conditions for pump and signal power [14]. Gains and noise figures for 

all signal modes may similarly be calculated. 

3. Simulation 

We consider a MM-EDFA where the EDF has step-index refractive profile. The parameters of 

the MM-EDFA are shown in Table 1. We assume the doped region is the same size as the 

core (i.e., a = rc). As the normalized frequency at λs = 1.53 μm lies between 2.405 <Vs< 3.832, 

the EDF supports two degenerate mode groups at this wavelength. We assume a weakly 

guiding MMF where the modes are well approximated by linearly polarized (LP) modes [15]. 
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For the remainder of this paper, we use the notation LPij,s and LPxy,p to denote the LPij mode at 

λs and LPxy mode at λp, respectively. Figure 3 shows the intensity profiles of the modes, and 

their intensities viewed along the x-axis. We note that for 0m , the LPmn,s and LPmn,p have 

two spatially degenerate modes. In one of these modes, referred to as the “even” mode, 

intensity is maximized along the x-axis at (φ = 0); in the other mode, referred to as the “odd 

mode”, intensity is minimized along the x-axis. All spatial modes, degenerate and non-

degenerate, come with two degenerate polarization modes. 

Table 1. Parameters of a MM-EDFA 

Parameter Value Parameter Value 

cr  ( m ) 
8 2

,  ( )as i m
 

5.64 × 1025 

NA 0.1 2

,  ( )es i m
 

5.71 × 1025 

0N  (
3m

) 
1 × 1024 2

,  ( )ap i m
 

2.86 × 1025 

  ( ms ) 10 2

,  ( )ep i m  
0 

s  (
m

) 

L (m) 

1.53 

30 p  (
m

) 
0.98 

3.1 Modal Gain Control for Non-Degenerate Signal Modes 
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Fig. 3. (a) Intensity profile of pump and signal modes, (b) normalized intensity profiles viewed 
along x-axis. 

We first consider MDG using a single-mode pump. For the spatially degenerate LP11,p and 

LP21,p modes, we assume equal power in the even (LP11e,p or LP21e,p) and odd modes (LP11o,p or 

LP21o,p) so that the resulting intensity (power) patterns (e.g., 
 1

11, 11 , 11 ,2
LP LP LPp e p o p 

) have 

no azimuthal dependence (Fig. 3(a)), and hence no MDG between spatially degenerate signal 

modes. Figure 4 shows the gain experienced by each signal mode group when pumping in the 

LP01,p, LP11,p and LP21,p modes. It is assumed that the input signal to the EDF has equal power 

(0.05 mW) in each of its six (two LP01,s and four LP11,s) spatial and polarization degenerate 

modes, or 0.3 mW in total. Since the intensity profile of LP01,p is better matched to LP01,s than 

LP11,s, Fig. 4(a) shows higher gain for LP01,s. Conversely, pumping in LP21,p results in higher 

gain for LP11,s. 
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Fig. 4. Modal gain of signal at 1530 nm assuming 0.05 mW power in each degenerate modes of 

LP01,s and LP11,s, when 980-nm pump is entirely confined in (a) LP01,p, (b) LP11,p and (c) LP21,p. 

The quality of the match between signal and pump intensity profiles can be evaluated by 

the overlap integral: 

    
2

, , ,

0 0

, ,

a

pj si p j s irdrd r r



         (6) 

Table 2 shows ,pj si for different pump and signal mode pairs. 

Table 2. Overlap Integrals of Normalized Intensity Profile 

(m-2) LP01,s LP11,s 

LP01,p 6.2449 × 109 3.2848 × 109 
LP11,p 4.4242 × 109 3.7472 × 109 

LP21,p 3.2498 × 109 3.4857 × 109 

It is observed that 
01, 01p s  and 

11, 01p s are both larger than 01, 11p s and 11, 11p s . Hence, higher 

gain is observed for LP01,s when these pump modes are used. Conversely, as 
21, 11p s  is larger 

than 
21, 01p s , pumping in LP21,p gives higher gain for LP11,s. It is possible to control MDG by 

varying the relative powers of LP01,p and LP21,p. In transmission, the higher-order LP11,s mode 

is less confined by the core, and will experience higher bending loss than the fundamental 

LP01,s mode. Furthermore, the LP11,s mode has larger effective area, making the optimum 

power for this mode higher than the fundamental mode. Consequently, a practical MM-EDFA 

will pump primarily in the LP21,p. The addition of a small amount of LP01,p enables adjustment 

of MDG. Figure 5(a) shows modal gain versus LP21,p pump power, where the power of LP01,p 

was continually adjusted to maintain a 1 dB difference between the gains of LP01,s and LP11,s, 

which we denoted as ΔG11s01s. Figure 5(b) shows the same results for ΔG11s01s = 2 dB. It is 

observed that modal gain can be continually adjusted to values greater than 22 dB, which is 

sufficient to compensate the loss of a single fiber span at typical span distances. Figure 5(c) 

shows the sensitivity of modal gain to LP01,p power when LP21,p power is fixed at 150 mW. 

While the modal gain at LP11,s remain nearly constant, ΔG11s01s varies by more than 4 dB as 

LP01,p power is changed from only 0 to 20 mW, demonstrating wide tunability of MDG in 

dynamic range. Thus, to establish the desired modal gain in an MM-EDFA, we first tune the 

power of the LP21,p pump to give the desired power for the LP11,s mode, after which, the power 

of LP01,p is adjusted to obtain the desired ΔG11s01s. 
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Fig. 5. Modal gain and required LP01,p power vs. LP21,p power, to maintain MDG (ΔG11s01s) at 

(a) 1 dB and (b) 2 dB; (c) Modal gain and MDG vs. LP01,p power for fixed LP21,p power at 150 

mW. 

MDG depends not only on pump power, but also the length of the EDF. Figure 6 shows 

modal gain vs. EDF length for two pump configurations. At short fiber lengths, modal gain 

increases with increasing EDF length. Eventually, pump depletion and high signal power 

depletes population inversion, so modal gain decreases for further increases in EDF length. 

For any given EDF length, ΔG11s01s is maximized when only the LP21,p mode is pumped. 

Figure 6(a) shows that a longer EDF gives larger ΔG11s01s, and thus larger range of achievable 

MDG. We can select an EDF length which approximately maximizes modal gain, while 

ensuring relatively large difference between the gains of LP11,s and LP01,s. In Fig. 6(b), it is 

observed that adding only 8 mW of pump power in LP01,p enables flattening of the modal 

gains responses. Even as device length is swept from 20 to 40 meters, less than ± 1 dB change 

in the modal gains of LP11,s and LP01,s, and less than ± 0.5 dB variation in MDG are observed. 
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Fig. 6. Modal gain and MDG difference vs. EDF length, when LP01,p and LP21,p have powers of: 

(a) Pp,21 = 150 mW, Pp,01 = 0 mW,and (b) Pp,21 = 150 mW, Pp,01 = 8 mW. 

3.2 Modal Gain Control for Spatially Degenerate Signal Modes 

In 3.1 section, it was assumed that odd and even modes of the spatially degenerate LP11,p and 

LP21,p modes are pumped with equal power, resulting in no MDG between spatially 

degenerate signal modes such as LP11,s. In practical MDM systems, however, spatially 

degenerate signal modes may have different losses. One mechanism for MDL is fiber 

bending, where the loss experienced by each spatially degenerate mode depends on its 

orientation relative to the plane containing the bend [16]. For our MM-EDFA to overcome 

MDL, the gains for LP11e,s and LP11o,s need to be adjustable. It was previously observed in Fig. 

4 that modal gain is related to the intensity overlap between the pump mode and the signal 

mode in question. The assumption of equal pump power in even & odd modes for LP11,p or 

LP21,p caused the overlap integral to be independent of azimuthal angle. We now consider a 

pump with azimuthal intensity dependence. Consider a rotated LP11e,p pump as shown in Fig. 

7, which we denote as LP11θ,p. It can be shown that the overlap intensity integral between a 

rotated pump mode LPmkθ,p (with m azimuthal nulls) and an even signal mode LPnje,s with n 

azimuthal nulls is proportional to: 
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where φ is the azimuthal angle, δ(·) is the Kronecker delta function, and θ is the angular 

offset. It is observed that if pump and signal has different azimuthal mode number (i.e., mn), 

the overlap integral is independent of θ. Otherwise, the overlap integral – and hence MDG – 

will have θ dependence. Figure 8(a) shows the θ dependence of modal gain assuming we 

pump only in the LP11θ,p mode. As the rotation angle θ is scanned from 0 to 2π, the modal 

gains for LP11e,s and LP11o,s oscillates with a period of π, reflecting the rotational symmetry of 

the LP11θ,p mode. When the intensity peaks of the LP11θ,p pump align with LP11e,s, its gain is 

maximized while the gain of LP11o,s is minimized, and vice-versa. We observed that MDG 

between these modes can be as much as 20 dB. Meanwhile, the fluctuation in gain for the 

LP01,s mode is a second order effect caused by gain competition between the signal modes; 

when the pump is at 45° relative to both the LP11e,s and LP11o,s modes, maximum gain occurs 

for LP01,s. In Fig. 8(b), we assume pumping in only LP21θ,p. In this pumping regime, the 

rotation angle θ has no impact on MDG, as expected from the overlap integral in Eq. (7), 

which is constant when m n . Finally, Fig. 8(c) shows MDG for a pump regime similar to 

one in a real implementation, where the pump is mostly in LP21,p (as defined in Fig. 3(a)), with 

small amounts of LP01,p and LP11e,p added to adjust the MDG between the three modes. The 

results show that the gain difference between LP11e,s and LP11o,s can be tuned by proper 

rotation of the LP11θ,p, while the variation in gain for LP01,s is as small as ± 0.05dB. 
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Fig. 7. Rotated pump modes. 
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Fig. 8. Modal gain vs. relative rotation angle (θ) of the pump mode when pump powers are: (a) 
Pp,11θ = 150 mW, (b) Pp,21θ = 150 mW, and (c) Pp,21 = 150 mW, Pp,01 = 2 mW, Pp,11θ = 15 mW. 

3.3 Impact on Performance Due to Inexact Excitation and Mode Coupling 

Previously, it was assumed that (a) the pump can be excited in particular modes of the EDF 

without leakage into undesired mode, and (b) no mode-coupling between different pump 

modes during propagation inside the EDF. In practice, either of these assumptions may be 

difficult to satisfy. Firstly, to generate the desired pump mode (Fig. 1), phase plates are likely 

to be used – as was demonstrated in an MDM transmission experiment in [9]. A phase plate 

alone (without modulation of transverse amplitude) will result in excitation of other unwanted 

pump modes. Additionally, spatial misalignment between pump and signal at the beam 

combiner (shown as the dichroic mirror in Fig. 1) will cause further energy leakage into 
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unwanted modes and excess loss, leading to performance degradation. We consider only 

leakage from LP21,p to the other modes, as LP21,p has the most power. Figure 9 shows the 

modal gains in LP01,s and LP11,s versus the percentage of LP21,p power leaked into the 

unwanted modes. Note the power in LP01,p is chosen to give an MDG of ΔG11s01s = 2dB when 

0% of LP21,p is coupled to unwanted modes. As previously shown in Fig. 4, pumping in the 

other modes gives higher gain for LP01,s than LP11,s. Hence we observe a reduction in ΔG11s01s 

that as leakage increases. At sufficiently high leakage, ΔG11s01s become negative, indicating 

higher modal gain for LP01,s. It is also observed that ΔG11s01s has greater sensitivity to leakage 

into LP01,p and LP02,p, as these modes have larger overlap integrals with LP01,s than LP11,p 

(Table 2). Hence, the pump generation mechanism should minimize leakage into these modes. 
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Fig. 9. Modal gain vs. power leakage, (a) LP21,p to LP01,p, (b) LP21,p to LP11,p, (c) LP21,p to LP02,p. 
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Fig. 10. Modal gain vs. mode coupling strength from LP21,p to LP01,p (
,21 02pd 

). 

Mode coupling during propagation inside the EDF will have similar impact as excitation 

of unwanted modes, since both result in power transferred into undesired modes. The strength 

of mode coupling is inversely proportional to the difference in effective refractive index 

between the modes (Δneff). Hence, we focus on coupling between LP21,p and LP02,p, as the 

effective refractive index difference Δneff,(21p02p) between this pair of modes is the smallest 

among all the mode pairs in our FMF-based EDF. Assuming the power coupling coefficient 

between LP21,p and LP02,p, which was defined as ,21 02pd   in Eq. (3), is constant throughout the 

EDF, Fig. 10 shows MDG as a function of ,21 02pd  . The value of coupling coefficient refers 

to [13]. As expected, ΔG11s–01s decreases with increasing strength of mode coupling. This 

favors using a shorter length EDF, and a refractive index profile that maximizes effective 

refractive index difference between the modes to reduce mode coupling. 

3.4 Impact on Performance Due to Macro-Bending Loss 

In the results thus far, the loss of EDF is assumed to be negligible. In practice, however, the 

EDF has to be spooled to create a module, which may introduce macro-bending loss. As the 

higher order LP11,s and LP21,p modes are less confined, they are more likely to couple into 

cladding modes when the fiber is bent, resulting in higher macro-bending loss than the 

fundamental modes LP01,s and LP01,p. This must either be taken into account by increasing the 

power of the higher order pump, or the bending radius has to be large enough to render 
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bending loss negligible. The theoretical macro-bending loss can be calculated using 

Marcuse‟s curvature loss formula [17]. Figure 11 shows the macro-bending losses for the 

various signal and pump modes as functions of bend radius. 
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Fig. 11. Macro-bending loss vs. bending radius. 
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Fig. 12. Modal gain vs. mode dependent loss of LP11s. 

It is observed that macro-bending loss of all modes grows exponentially as bending radius 

decreases. In particular, the LP11,s mode is the least spatially confined. To reduce its macro-

bending loss to less than 0.01 dB/m, the bending radius must be at least 9.46 cm. Figure 12 

shows modal gain as a function of bend radius assuming only LP21p is pumped at a power of 

150 mW. It is observed that the gain of LP11,s is reduced significantly as bend radius falls 

below 9 cm. In particular, MDG between the modes is reduced to zero at a bend radius of 8 

cm, making it impossible to equalize MDL in the transmission by pumping in LP01p as 

outlined in Section 3.1. It is observed that at low bend radius, the gain of LP01,s is increased 

due to reduced mode competition. However, the increase in gain saturates when LP11,s is 

completely stripped out. At very small bend radius, macro-bending loss will again reduce the 

gain of LP01,s. The results indicate that a practical EDF should be spooled with a bend radius 

greater than 9 cm for a step-index fiber design. If device size is an issue, it is also possible to 

create fibers more complex refractive index profiles, such as using refractive index trenches, 

to better confine all signal and pump modes. 

4. Conclusion 

A multimode EDFA with modal gain control is proposed. By adjusting relative amount of 

LP01,p and LP21,p, the gains of the LP01,s and LP11,s signal modes can be tuned over a wide 

dynamic range. The relative gain between the two spatially degenerate LP11,s signal modes can 

also be adjusted by adding a small amount of LP11θ,p which is the even LP11e,p mode rotated by 

angle θ. Performance impact due to excitation of unwanted pump modes at the input of the 
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EDF, mode coupling and macro-bending loss in the fiber was also investigated. The proposed 

modal gain control scheme can be generalized for an N-mode MM-EDFA by varying the 

powers of N well-chosen pump modes. 

Appendix 

Table 3. List of Variables Used in the Coupled Eqs. (1)–(5) 

Symbol Definition Symbol Definition 

 , ,s i r   

Normalized intensity 

profile for i-th mode at 

s  
 , ,p j r   

Normalized intensity 

profile for j-th mode at 

p  

 1 , ,N r z
 

Erbium ion population 

density of lower level 
 2 , ,N r z

 
Erbium ion population 

density of upper level 

 0 ,N r 
 

Erbium ion doping 

density h
 

Planck constant 

,as i  

Absorption cross-
section for i-th mode at 

s  
,ap j  

Absorption cross-
section for j-th mode at 

p  

,es i  
Emission cross-section 

for i-th mode at 
s  

  
Spontaneous emission 
lifetime for the excited 

state 

sm
 

Total number of guided 

modes at 
s  pm  

Total number of guided 

modes at p  

s  
Optical frequency of 

the signal at 
s  p  

Optical frequency of 

the pump at p  


 

Equivalent amplifying 
bandwidth ,s iP

 

Power of the signal for 

i-th mode at 
s  

,p jP
 

Power of the pump for 

j-th mode at p  ,ASE iP
 

Power of ASE for i-th 

mode 

,s i kd   

Mode coupling 

coefficient between i-th 
and k-th mode of the 

signal at 
s  

,p j kd   

Mode coupling 

coefficient between j-th 
and k-th mode of the 

pump at p  

cr  
Core radius of Erbium-

doped fiber 
a

 
Radius of uniform 

doping region 

ΔG11s01s 
Mode-dependent gain 
(MDG): Gain of LP11,s 

minus gain of LP01,s 
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