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ABSTRACT

Although the realisation of femtosecond X-ray free electron laser (FEL) X-ray pulses is still some time away, X-ray
diffraction experiments within the sub-picosecond domain are already being performed using both synchrotron and
laser-plasma based X-ray sources. Within this paper we summarise the current status of some of these experiments
which, to date, have mainly concentrated on observing non-thermal melt and coherent phonons in laser-irradiated
semiconductors. Furthermore, with the advent of FEL sources, X-ray pulse lengths may soon be sufficiently short
that the finite response time of monochromators may themselves place fundamental limits on achievable temporal
resolution. A brief review of time-dependent X-ray diffraction relevant to such effects is presented.
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1. INTRODUCTION

The development of high-brightness sub-picosecond X-ray sources offers the potential for a variety of novel experi-
ments in both the life and physical sciences.!™® Whilst it is clear that several of the intended performance character-
istics of X-ray FELs are far superior to the sources of the present, it should nevertheless be noted that experiments
of significance are already being performed with extant technology. Resolution of, or better than 1-picosecond can
be obtained with both laser-based and synchrotron sources. In the field of material science, emphasis to date has
been made on the study of coherent acoustic phonons,®® and the phenomenon of non-thermal melting.”® Experi-
ments demonstrating diffraction from coherent optical phonons have also been proposed.® In this paper we briefly
summarise the developments in the study of coherent phonons, and note that the novel FEL sources promise the
superior temporal resolution that may well be required to interrogate several relevant effects.

The paper is arranged in the following manner. We first present the underlying theory of time-resolved X-ray
diffraction from coherent phonons, be they acoustic or optical, propagating in otherwise perfect single crystals.
We then describe experiments that have been performed to observe coherent acoustic phonons, and compare the
experimental results with simulations. Preliminary simulations of diffraction from coherent optical phonons are then
presented, and an introduction to the Phonon-Bragg switch® based on optical phonons given. We conclude with a
discussion of the conditions under which full time-dependence needs to be retained within the diffraction simulations,
and prospects for FEL-based experiments in this area.
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2. TIME-DEPENDENT X-RAY DIFFRACTION

The theory of X-ray diffraction from perfect crystals has been developed by a number of authors over several years:
we refer the reader to the classic text by Zachariasen for an elegant treatment of this well-known phenomenon.1®
The description we provide here, developed independently by several authors,'*™4 is identical to the classical theory
save for the fact that we explicitly keep the time-dependence of the incident and diffracted radiation. As such the
theory is still valid in the case where the X-ray properties of the crystal alter on a time-scale less than or comparable
with the time taken for an X-ray to traverse an extinction depth - which could be several tens or even hundreds of

femtoseconds for weak reflections in large perfect crystals.

Following the normal dynamical theory, we take the susceptibility of the crystal to be complex and periodic (we
discuss the specific modifications introduced by coherent phonons at a later stage). However, we also allow the
Fourier components of the susceptibility to be functions of both time and position within the crystal, as we now
assume that the electron density is both time and space dependent. This is a reasonable description of the crystal
if the scalelengths of the susceptibility are long compared with an interatomic spacing. Such an approach can, for
example, deal with a relatively long-wavelength but high frequency optical phonon. Thus the susceptibility can be
represented by a Fourier series:

P(r,t) = Zi/)H (r,t) exp(—iGu - 1) (1)
H

where Gy is the reciprocal lattice vector associated with the planes H, where H = (h, k,l), and h, k,[ are the Miller
indices. We denote the real and imaginary parts of ¥ (r,t) by

Yr(r,t) = vy (r,t) + vy (r,1) (2)

In our analysis we will assume that the timescales of the changes in the susceptibility of the crystal, and the
electric field associated with the X-ray pulse are long compared with the period of the X-ray pulse. That is to say
we take the first order approximation, and assume that the magnitude of terms is such that

0Y(r,t) OE

RAACERDE ) il
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where E is the electric field of the X-ray. This approximation is justified due to the small value of ¢ for X-rays, and
considering that the suspectibility and X-ray amplitude vary on similar timescales. The form given to the incident

wave In the vacuum is
D(r,t) =Do(r,t) exp[i(wot—ko - r)] (4)

where wg remains constant in the vacuum and the crystal. In the vacuum, Do(r,?) is taken to be real but time and
space dependent; within the crystal the incident wave is also given by equation (4), in this case kg is kept constant
and the perturbations to the phase and amplitude of the wave introduced by the crystal are introduced into Do(r, ),
and thus it becomes complex (note that for X-rays ¢ ~ 10=%). The wave is reflected from the H-planes, and within
the crystal is given by

D(r,t) = Y Dx(r,t) expli(wot — (ko+Gn) 1] (5)
H

This equation can be generalised to include the incident wave by allowing H to take the value (0,0,0) with the
convention that Gg - r=0.

With these assumptions we find that the time dependent dynamical diffraction equations reduce to those found
previously in the standard dynamical theory, save that the Fourier components of the susceptibility are now them-
selves functions of both time and position, and the derivative with respect to time of the envelope of the wave field
must be considered explicitly. That is to say that when we equate terms in the incident and diffracted directions
and take the first order approximation we find:

A0Dq .A0Dy

w0xo =%oDo+YuDp —1 cmot (6)

[
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t ® — oDy + YuDo — agDy — i A (7)
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where ag is a quantitity that represents the deviation from the Bragg angle and, for a perfect crystal, is given by

_ Gu*+2GH -ko
= i

aHg = —2(9 — 03) sin(203) (8)
It is the solution to equations (6) and (7) that we seek. Given the boundary conditions that we know the value of
the incident amplitude at the surface of the crystal, we solve for the reflected amplitude (and hence intensity) at the
exit surface. In'the absence of explicit time-dependence, rapid solutions based on analytic solutions in the lamina
approximation exist.!®

As alluded to above, the derivative with respect to time need only be included explicity if the crystal properties
alter on a timescale comparable with the time taken for an X-ray to traverse an extinction depth. Current experiments
observing coherent acoustic phonons have observed changes on the picosecond timescale, and it is the study of optical
phonons (with frequencies of several Terahertz) and non-thermal melting (thought to occur on time-scales less than
100 fs) where such terms may conceivably be important.

Fig. 1. Diffraction of an incident X-ray of wavevector ko into a ray of wavevector k from a plane with reciprocal lattice
vector Gy in the (a) absence and (b) presence of a coherent phonon of wavevector q.

2.1. DIFFRACTION FROM COHERENT PHONONS

Coherent phonons, be they acoustic or optical, introduce an additional periodicity into the crystal. Before outlining
how such phonons can be included in an approximate manner within the dynamical theory, we note that we might
expect to observe diffracted radiation at angles other than the original Bragg angle simply from wavevector matching
considerations. Fig. 1(a) illustrates in schematic form the diffraction of an incident X-ray of wavevector ko into
a wave of wavevector k' from a plane with reciprocal lattice vector Gg. The normal Bragg condition is given by
%o - G = Gu?, ie ko+ Gu = k. However, if we assume coherent phonons of wavevector q exist within the
crystal, then we might expect the Bragg condition to be met when ko + Gy £ q = k' as shown in Fig. 1(b). Thus
diffraction will occur at angles other than the original Bragg angle. We note that in principle modulations in the
susceptibility imply that more than one incident and diffracted ray may exist within the body of the crystal. Such
additional rays will be significant when coherent changes in the susceptibility are large. Whilst such multi-ray effects
may play a réle in the diffraction from strong coherent optical phonons, they are unlikely to play a major part in
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the diffraction from high the frequency low amplitude coherent acoustic phonons considered here, as in this latter
case the changes in the susceptibility of the lattice are small. In the present analysis we continue to assume a single
incident and diffracted ray, and will incorporate multiple rays in a future analysis.

2.1.1. DIFFRACTION FROM COHERENT ACOUSTIC PHONONS

Consider the situation where coherent acoustic phonons are induced within a crystal. For the sake of simplicity,
we initially assume that the crystal is symmetically cut (i.e. the reciprocal lattice vector is parallel to the surface
normal) in Bragg geometry, and the phonons are also propagating parallel to the surface normal. In this case, by the
wavematching considerations we expect significant diffraction to occur at angular deviations of Af from the original

Bragg angle, where
|q| tanfp
Af = ——— 9
|GH] ®)
Thus if the speed of sound within the crystal is v, we would expect an oscillatory signal in the time-resolved diffraction
with an angular frequency w given by
w ~ vAf|Gyg|cot (10)

Long wavelength longitudinal coherent phonons can be incorporated into the dynamical theory by noting that they
alter the local Bragg angle owing to the associated straining of the lattice. If we introduce a local one-dimensional
strain €(r) into the crystal (parallel to the surface normal), then a g (r) is given by

ag(r) = —2A0sin(20p) — Ce(r) (11)

where
C = cos? ¢ tanfp + sin ¢ cos ¢ (12)

where ¢ is the angle between the surface and the reflecting lattice plane, and the upper sign is to be used when the
angle of incidence with respect to the crystal surface is (fp — ¢), and the lower sign when this angle is (0p + ¢) - i.e.
we can take into account asymmetrically cut crystals. An approach such as this to the solution of the equations of
dynamical diffraction in the presence of small strains was first put forward independently by Takagi and by Burgeat
and Taupin.16:17
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Fig. 2. Diffraction of 10 keV X-rays from the (111) plane of a GaAs symmetrically cut crystal within which an acoustic
phonon of wavelength 200 nm is propagating along the direction of the surface normal. The peak strain induced by the phonon
is £107%.
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In order to illustrate the above discussion, in Fig. 2 we show a simulation of the time-dependent diffraction of 10
keV X-rays from a single mode coherent phonon of peak strain amplitude +10~* and wavelength 200 nm propagating
along the surface normal in a GaAs (111) crystal. The diagram shows the logarithm of the reflectivity as a function
of angular deviation from the vacuum Bragg angle. Note the offset of the main Bragg peak due to the finite d.c.
component of the refractive index of the crystal. Either side of the main Bragg peak, at £0.316 mrad from the
main peak, we see the weaker sidebands corresponding to the diffraction from the coherent phonons - this being the
angular deviation predicted by equation (9). These sidebands clearly exhibit a temporal oscillation, as predicted by
equation (10).

3. ACOUSTIC PHONONS: EXPERIMENTS

In real experiments involving such high frequency (~0.1 THz) acoustic phonons, a broad spectrum of coherent
phonons is generated rather than a pure mode.>® We outline here the recent experiments of Lindenberg and co-
workers.® They used a Ti:Al,O3 150 fs, 1 kHz, 800 nm laser, synchronized to the electron bunches within the storage
ring of the ALS synchrotron to irradiate an InSb single crystal. The 150 fs pulse length of the laser is much shorter
than the time taken for a sound wave with speed 3900 ms~! to propagate across the typical laser absorption depth
of 100 nm. The laser energy is absorbed by the electrons which are excited across the band gap and heated. In
the limit of instantaneous transfer of energy from the electrons to the acoustic phonons the lattice is heated at
constant volume, producing an exponentially decaying pressure profile within the crystal. Subsequently the surface
of the crystal starts to expand and by conservation of momentum a compression wave is launched into the bulk of
the crystal. A time-dependent solution to the strain-depth profile (ignoring phonon dispersion) has been found by
Thomsen and co-workers.!® A typical strain-depth profile given such assumptions for the irradiated InSb is shown
in Fig. 3. This strain profile may be thought of as a superposition of coherent phonons, with wavevectors peaked
around an inverse of the laser penetration depth.

1.88-03 ~

Time (picoseconds)

Depth (microns)

-3.0e-04 4.0e-04 1.1e-03 1.8e-03
Strain

Fig. 3. Strain as a function of depth within the InSb crystal assuming instantaneous heating with a 1/e depth of 100 nm.
The lattice temperature at the crystal surface is taken to be just below the melting point. Diffusion, finite electron-phonon
coupling time and phonon dispersion have been ignored. The inset shows a lineout of the strain-depth profile taken at 75 ps.

After the strain pulse was launched into the InSb crystal, X-rays emitted by the synchronised electron bunches
of wavelength 2.4A and spectral bandwidth 1 mA were diffracted from the crystal and recorded on a streak camera.
The streak camera was triggered by the same laser using a photoconducting switch. The data were averaged over
60,000 shots. To better match the penetration depths of the laser and the X-rays the crystal was cut asymmetrically
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such that the X-rays reflecting from the (111) planes left the crystal at a grazing angle of 30, Fig. 4 shows the
computed logarithm of the time-dependent reflectivity assuming the strain profile given in Fig. 3. Note that if we
collect data at a particular angular position away from the original Bragg angle we will once more observe temporal
oscillations in the X-ray reflectivity.

Fig. 5 shows the experimentally observed time-dependent diffracted intensity measure at 440 arc sec from the
Bragg peak. Alongside the data we show the calculated intensity. However, we emphasise that to get a good match
between the experimental and computed profiles it is necessary to modify the analytical solution to the strain-depth
profile given by Thomsen and co-workers.!® In particular the first 10 ps cannot be modelled without inclusion of a
fast term in the strain generation, whilst the long-time behaviour cannot be modelled without a slower developing
term which tends to smooth the interface between the compressed and rarefied regions of the crystal. The physical
mechanisms that give rise to such behaviours may be related to the deformation-potential generated stress and the
finite electron-phonon coupling time. We might also expect similar effects due to phonon dispersion, which has been
ignored in these calculations.
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Fig. 4. Simulated time-dependent X-ray diffraction for 2.4A4 radiation diffracting from the asymmetric InSb crystal de-
scribed in the text, assuming the strain history plotted in Fig. 3.

The simulation presented in Fig. 5 has also taken into account the finite bandwidth of the X-ray source (as
opposed to the simulation shown in Fig. 4 which is a rocking curve - i.e. it assumes perfectly monochromatic
radiation incident upon the source). Such source bandwidth effects reduce the visibility of the temporal oscillations,
as they correspond to a finite angular resolution according to

tan HA/\eff

Abyy, = b\

(13)
where A).;y is the effective bandwidth.

3.1. ACOUSTIC PHONONS: INCREASING THE DISPERSION

As noted above, source bandwidth issues are a potential problem in observing diffraction from coherent phonons.
When using synchrotron sources, which are normally pre-monochromated before the diffracting crystal of interest,
one should ideally operate in the mode where the diffracting planes of the sample crystal are parallel to those of the
final crystal of the monochromator. When the lattice spacings of these two diffracting crystals are well matched the
resultant effective bandwidth is then limited by the rocking curve width of the monochromator. In addition (and
in contrast to the experiment described above) there are certain advantages to diffracting from asymmetrically-cut
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crystals, but with the X-ray beam incident at grazing angles. The reason that this is advantageous can be seen by
considering equations (11) and (12). If the angular resolution of the experiment is limited by the effective bandwidth,
as in equation (13), then it is good practice to make the dispersion of the system as high as possible. That is to say,
it is of benefit to ensure that a given strain within the crystal corresponds to a large angular deflection - i.e. we need
to make the factor C' of equations (11) and (12) as large as possible. For this to occur, we need to add rather than
substract the two terms in equation (12), and thus we need the angle of incidence to be grazing.

12 T T T T T T

= Experimental
Theoretical

Normalized diffracted intensity

0.2 . 1 1 1 L 1 . 1
-20 -10 0 10 20 30 40

time (picoseconds)

Fig. 5. Experimental and simulated time-dependent X-ray diffraction for 2.4A radiation diffracting from the asymmetric
InSb crystal described in the text, at +40 arc sec from the main Bragg peak.

The underlying physics of this increase in dispersion is that when we introduce a one-dimensional strain into the
crystal the planes not only change in spacing, but they also rotate. If the X-rays are incident at grazing angles these
two effects have the same sign, whereas if the X-rays leave at grazing incidence they tend to cancel out, and the
rocking curve of the sample crystal becomes narrow, and there is only a small angular deflection for a given value of
strain within the crystal. Note however that although such approach increases the dispersion, it brings withit the
associated problem that the footprint of the X-ray beam on the crystal surface is increased, and thus the footprint of
the laser irradiating the crystal (which should be as close to co-linear with the X-ray beam as possible to minimise
the temporal smearing) is also increased: thus higher laser energies are required for a given irradiance.

4. OPTICAL PHONONS

Whilst acoustic phonons alter the local Bragg angle, coherent optical phonons alter the local complex susceptibility of
the lattice, as they correspond to a coherent movement of atoms within the unit cell thus changing the local structure
factors. As with acoustic phonons, coherent optical phonons can be generated within a medium by irradiating it with
a femtosecond laser pulse, with the phonons being induced by either the so-called displacive or Raman mechanisms.
Conventionally, such coherent phonons have been diagnosed by registering the effect of the phonon field on the
optical properties of the medium, but in principle they should also be observable in X-ray diffraction. However,
several difficulties remain if they are to be observed experimentally by such means, and perhaps utilised for novel
X-ray optics (see section 5). Firstly, it is necessary to find crystals and reflections for which the atomic motions
associated with the phonons correspond to relatively large changes in structure factors; secondly, it would be useful if
such modes could be induced within the crystal on distances comparable with the X-ray absorption and/or extinction
depth; and finally optical phonons generally have far higher frequencies than their acoustic counterparts, and thus
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significantly improved temporal resolution would aid in their diagnosis. Indeed, it could be in this area where the
ultra-short femtosecond durations of the FEL pulse could be particularly advantageous.

4.1. SIMULATION OF DIFFRACTION FROM OPTICAL MODES IN BISMUTH

To date, to our knowledge no successful X-ray diffraction experiments from coherent optical phonons have been
prosecuted. Thus we restrict ourselves to the results of our initial simulations of such effects. As an example of
the effects of optical phonons on the diffraction signal, we present below a preliminary analysis of the diffraction
of 10 keV X-rays from a single crystal of Bismuth. Bismuth has been chosen for a number of reasons. Firstly,
several experiments have previously been performed on this material, and the effects of the phonons on the optical
reflectivity noted.!® Secondly, a theoretical study of the phonon generation process has given rise to reasonable
estimates of both the nature and amplitude of the excited phonon modes, thus enabling us to make an informed
evaluation of the influence of such modes on the X-ray susceptibilities, and hence diffraction properties. Finally, as
shown below, we find that the physical structure of Bismuth is such that relatively small amplitude phonons can
potentially produce large changes in the X-ray reflectivity for a judicial choice of X-ray reflections, though the short
laser absorption depths present difficulties.

Bismuth possesses a trigonal primitive unit cell, containing two atoms at (Fu, +u,+u), where under ambient
conditions u = 0.237. The conventional unit cell is hexagonal (with unit cell parameters a = 4.5464, ¢ = 11.8624),
containing 3 lattice points and 6 atoms, again with a basis of two atoms at (0,0, +u). Irradiation by the short pulse
laser excites optical phonons via the displacive mechanism, thereby setting up an oscillation of the Al so-called
breathing mode in which the two atoms within the basis oscillate symmetrically - that is to say the coordinate
u becomes time and space dependent and, for a pure phonon travelling in the +z direction with freqency w and
wavevector ¢ can be written

u(t) = ug + Aexp[i(wt — gz)] exp(—rt) (14)

1

where # is related to the damping of the mode. For the Al mode, w is found to be 2.75 THz,'® and 4~ is of order
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Fig. 6. Time-dependent relative structure factor for diffraction from the (0,0,3) plane of Bismuth in the presence of
coherent optical phonons of amplitude 0.00654 and 0.013A.
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It is estimated that the amplitude of the displacement of the atoms within the unit cell can reach of order 0.0134
when approximately 3 x 1029 cm™3 electrons are transferred to an excited band (corresponding to approximately
2% of the electrons).!® Given the length of the ¢ axis, this amplitude then corresponds to a value of A in equation
(14) of only 1.1x1073. Although this is an extremely small displacement, it can have a relatively large effect on
the structure factor of the crystal for certain reflections. For reflections with low values of Miller indices (where
the reflectivity is not greatly compromised by the Debye-Waller effect at room temperature) the influence of the
atomic displacements is greatest for the (0,0, 3) reflection. Note that for this reflection the structure would vanish
(assuming spherically symmetric atomic form factors) if u = £0.25: the ambient position of the atoms at v = +0.237
is sufficiently close to this position to give rise to significant relative changes in the structure factor for the expected
small atomic displacements. For the ¢ = 0 A1 mode, the time-dependent structure factor, S(t), normalised to the
structure factor under ambient conditions for the (0,0,[) reflection is given by

S(t)  cos[2mlu(t)]

S(0) — cos[2mluo) (15)

and we plot this for the (0,0, 3) reflections for two values of the amplitude (neglecting damping) in Fig. 6. Note the
large relative change in the structure factor (£8%) for the small fractional changes in atomic positions.

Pure single mode optical phonons of wavevector q also produce sidebands. However, in practice the observation
of coherent optical phonons in Bismuth is likely to be hampered by the extremely small laser absorption depths.
According to the parameters supplied by Zeiger and co-workers, the absorption depth for the 800 nm laser in Bismuth
is only of order 12.5 nm;'® the X-ray penetration depth is likely to be much larger than this, and thus any modulation
in the X-rays diffracted from the sample is likely to be swamped by the signal from the unperturbed bulk, and indeed
our initial calculations confirm this.

Thin Bi (12.5nm), 10k«
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8 12
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Fig. 7. Time-dependent diffraction of 10 keV X-rays from the (0,0,3) plane of a 12.5 nm thick Bismuth crystal in the
presence of coherent optical phonons of amplitude 0.013A with a decay depth within the crystal of 12.5 nm.

Given the short absorption depth of the laser within Bi, we have simulated the diffraction from a thin single
crystal in order to increase the contrast of the temporal oscillations. Fig. 7 shows the simulated diffraction of 10 keV
X-rays from a 12.5 nm thick single crystal of Bi, assuming that the phonons do not propagate (the group velocity of
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the optical phonons is small). The initial amplitude of the phonons is assumed to decay with the same decay length
as the intensity of the laser. The temporal oscillations in the reflectivity of the peak can clearly be seen, although the
peak reflectivity of the reflection is low, and its overall angular width large, owing to the small and finite thickness
of the crystal. Ideally for the study of optical phonons we need to identify crystals where the absorption of the laser
radiation is relatively low, yet phonons can still be excited which can radically alter the X-ray structure factors.
Crystals with optical modes excited by Raman processes may exhibit such characteristics.

5. THE PHONON-BRAGG SWITCH

Bucksbaum and Merlin have recently suggested that coherent optical phonons may be used to generate a Phonon-
Bragg (PB) switch.® The basic concept is shown in schematic form in Fig. 8. Two femtosecond laser beams with
wavevectors ki and k} are incident upon the crystal from almost opposite directions, with angles of incidence 6;. It is
proposed that these set up a superlattice of optical phonons with a period of 2r/q = A\/(2n), where q = k] —k} and
A is the wavelength of the laser, and n the refractive index of the crystal. Note that the wavevector of the phonons is
perpendicular to the surface normal. Bucksbaum and Merlin show that the coherent phonon superlattice leads to a
new series of Bragg peaks given by the phase matching condition Ak = Gy +q, similar to the manner in which X-ray
diffraction from surface acoustic phonons at MHz frequencies can introduce additional Bragg peaks.?!?? However,
they propose that the duration of this superlattice can be controlled by turning off the oscillation coherently by the
application of a second laser pulse (see Fig. 8) half a phonon period after the first. For a GaAs optical phonon this
would result in an X-ray pulse of order 100 fs duration.

Fig. 8. A schematic diagram of the Phonon-Bragg Switch. Two laser beams of wavevectors k} and k} are incident upon
the crystal from almost opposite directions, with angles of incidence 8;. They set up a superlattice of optical phonons with a
period of 27/q = A/(2n), where q = k] — kb, from which the X-rays scatter into new angles satisfying Ak = G £ q

6. FEMTOSECOND DYNAMICAL DIFFRACTION

In all of the simulations presented thus far we have ignored the derivative with respect to time in equations (6) and
(7): that is to say we have assumed that the X-ray pulse length and/or the changes in crystal properties were long
compared with the time taken for the X-rays to traverse an extinction depth. Such an approximation is likely to
be valid, even for the 300 fs period of the optical phonons in Bismuth, However, as the duration of the X-ray pulse
is reduced still further (i.e. to the femtosecond levels that may be achievable with FELs), the finite duration of
the pulse itself may be of import, as will alterations in the crystal structure on such timescales. To illustrate the
point, we note that the duration of a diffracted X-ray pulse from a thick single crystal is ultimately limited by the
extinction depth traversal time. Fig. 9 shows the time-dependent rocking curve as a function of dimensionless time,
T, and angle, y, for a beam suddenly switched on at time T' = 0. The properties of the crystal are defined in terms
of Zachariasen’s dimensionless units k£ and g where

oo W (r,0)

~ K|Yy(r,0)] 1o
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k= Yu0) (17)

 ¢y(r,o)
where K = 1 for normal polarisation, and K = | cos 20| for parallel polarisation. Zachariasen’s unit of dimensionless
angle is
Y= Yolr,0) + s (18
K |1/)H(r, O)I
We further define units of dimensionless time as
T e K |y (r, o)t (19)

sin® O\

In these units an X-ray traverses an extinction depth in unit dimensionless time. We note that the angularly
integrated reflectivity asymptotes to its steady state value at approximately T = 2, as would be expected by the
time taken for a beam to enter and leave the crystal. That said, narrow angular features within the rocking curve
take longer to reach the steady state.

(a) g=-0.1, k=0.099

v

Dimensionless Time
~

10.0~

12.5~

0

0.2 0.4 0.6 0.8 1.0
Reflectivity
Fig. 9. Rocking curve as a function of time for X-rays switched on at time 7' = 0. The simulated reflectivity is plotted
as a function of dimensionless angle and time, and the characteristics of the crystal are defined in terms of the dimensionless
parameters k = 0.099 and g = —0.1 (see text for definition of dimensionless variables).

7. SUMMARY AND CONCLUSIONS

In summary, the opportunities afforded by the capacity to perform X-ray diffraction experiments on femtosecond
timescales presents new opportunities for experiments in widely ranging fields of science. Whilst femtosecond FEL
based sources may be some time away, many experiments are starting to be performed with existing sources. We
have summarised here several novel experiments and concepts in the field of coherent phonon physics, illustrating
how such phonons may be detected with time-resolved diffraction, and how, in principle, fast X-ray optics such as
the Phonon-Bragg switch may be developed.
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