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We describe an approach to determining both the angular and the radial modal content of a scalar optical beam
in terms of optical angular momentum modes. A modified Mach–Zehnder interferometer that incorporates a
spatial rotator to determine the angular modes and an optical realization of the fractional Hankel transform
(fHT) to determine the radial modes is analyzed. Varying the rotation angle and the order of the fHT produces
a two-dimensional (2D) interferogram from which we extract the modal coefficients by simple 2D Fourier
analysis. © 2011 Optical Society of America
OCIS codes: 260.3160, 120.3180, 030.4070, 050.4865.

The recognition that certain electromagnetic beams have
well-defined orbital angular momentum (OAM) [1] has
led to intense research over the past two decades [2,3].
OAM beams are invariant upon propagation, and are,
hence, useful as optical information carriers. An optical
beam having OAM of ℓℏ per photon takes the form of a
helical angular phase and a Laguerre–Gaussian (LG)
function in the radial direction. Only the angular modes
have been considered extensively heretofore, while the
radial modes have been overlooked, in part due to lack
of approaches to analyzing a beam into radial modes,
while several OAM-mode-analysis schemes exist [4–6].
The ability to manipulate the radial modes in addition to
the angular modes allows for a larger state space for en-
coding information in the beam.
In this Letter we describe an interferometric scheme

that analyzes a scalar optical beam simultaneously in
terms of angular and radial modes and determines the
percentage of the total power contributed by these
modes. The scheme makes use of the fractional Hankel
transform (fHT) whose eigenfunctions are LG functions.
This scheme allows us to distinguish among several
classes of multimode beams, such as beams having
correlated, anticorrelated, or separable OAM and radial
modes.
The field distribution at the waist (z ¼ 0) of a beam

having OAM of ℓℏ per photon and LG-mode radial distri-
bution is

uℓpðρ; θÞ ¼ AℓpρjℓjLjℓj
p ðρ2Þe−ρ2=2eiℓθ; ð1Þ

where θ is the angular coordinate, ρ ¼ ffiffiffi
2

p
r=w is a

normalized radial coordinate, r is the radial coordinate,
w is the beam waist, p is the radial index, Ljℓj

p is
the associated Laguerre polynomial, and Aℓp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p!=ðπðpþ jℓjÞ!Þp

is a normalization constant such that

∬ juℓpðρ; θÞj2ρdρdθ ¼ 1. The set fuℓpðρ; θÞg is complete
over L2,

P
ℓ:puℓpðρ; θÞu�

ℓpðρ0; θ0Þ ¼ δðρ − ρ0Þδðθ − θ0Þ, and

orthonormal,
R
uℓpðρ; θÞu�

ℓ0p0 ðρ; θÞρdρdθ ¼ δp;p0δℓ;ℓ0 . This
allows for a unique decomposition of a scalar beam:

Eðρ; θÞ ¼
X
ℓ;p

cℓpuℓpðρ; θÞ; ð2Þ

where cℓp ¼ ∬ u�
pℓðρ; θÞEðρ; θÞρdρdθ. Normalizing the to-

tal power ∬ jEðρ; θÞj2ρdρdθ ¼ 1 results in
P

ℓpjcℓpj2 ¼ 1.
We start by examining beams restricted to superposi-

tions of OAM states with the radial index p set to 0,
Eðρ; θÞ ¼ P

ℓcℓ0uℓ0ðρ; θÞ, where uℓ0ðρ; θÞ ¼ Aℓ0ρjℓje−ρ
2=2eiℓθ

and Aℓ0 ¼ 1=
ffiffiffiffiffiffiffiffiffi
πjℓj!p

. We may find the weights jcℓ0j2, and,
hence, the angular modal spectrum, by using the arrange-
ment in Fig. 1(a), which consists of a balanced Mach–
Zehnder interferometer (MZI) including a spatial rotator
in one arm. The MZI normalized output power is

PðφÞ ¼ 1þℜ
Z

∞

0

Z
2π

0
Eðρ; θÞE�ðρ; θ − φÞρdρdθ

¼ 1þ
X
ℓ

jcℓ0j2 cosðℓφÞ; ð3Þ

where 0 ≤ φ < 2π is the rotation angle, and ℜ refers to
taking the real part. Note that the angular spectrum is
discrete since φ varies periodically (period 2π). The de-
tector integrates over the area of the beam and spatially
resolved measurements are, thus, not required [7]. The
Fourier transform (FT) of the interferogram PðφÞ with
respect to φ yields the weights jcℓ0j2. The constant term
may also be eliminated by taking the difference between
the signals detected at the two output ports of the MZI.

A corresponding scheme for analyzing the beam into
its radial modes has not been forthcoming. There is an
important feature of the above-described scheme for
OAM analysis that will guide us to constructing a radial

mode analyzer: feiℓθg are eigenmodes of spatial rotation
with eigenvalues e−iℓφ, where φ is the rotation angle.
The completeness of the set feiℓθg allows one to write
the spatial rotation transformation Rðθ; θ0;φÞ,

Fig. 1. (Color online) Optical configurations for (a) an angular
mode analyzer and (b) a joint angular–radial mode analyzer.
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E0ðρ; θ;φÞ ¼
Z

Rðθ; θ0;φÞEðρ; θ0Þdθ ¼ Eðρ; θ − φ; 0Þ; ð4Þ

in dyadic form in terms of feiℓθg as follows:

Rðθ; θ0;φÞ ¼ δðθ − θ0 − φÞ ¼ 1
2π

X
ℓ

e−iℓφeiℓθe−iℓθ
0
: ð5Þ

We use this observation to construct a transformation
that enables radial mode analysis. Consider modes
having no angular variation (zero-OAM states), u0pðρÞ ¼
A0pL

ð0Þ
p ðρ2Þe−1

2ρ2 , A0p ¼ 1ffiffiπp , and beams that are superposi-

tions of these modes, EðρÞ ¼ P
pc0pu0pðρÞ. The question

we pose is the following: how may one determine the
weights jc0pj2, and, hence, the radial mode content?
In analogy with the spatial rotator, we construct an

optical transformation that has the set of LG modes
fu0pðρÞg as eigenmodes and eigenvalues of the form eipα,
where the parameter α is the counterpart to the rotation
angle φ. We expect α to vary periodically since the modal
spectrum is discrete (indexed by p). In other words, we
search for the optical transformation K0ðρ; ρ0; αÞ that has
the property

Z
K0ðρ; ρ0; αÞu0pðρ0Þρ0dρ0 ¼ eipαu0pðρÞ: ð6Þ

In dyadic form, the transformation K0 takes the form

K0ðρ; ρ0; αÞ ¼
X
p

eipαu0pðρÞu�
0pðρ0Þ: ð7Þ

This infinite sum of LG-mode products was identified
by Namias in 1980 [8] as the fHT of fractional-order α
and Bessel-order 0:

K0ðρ; ρ0; αÞ ¼ i
e−ia

sin a
exp

�
−i

ρ2 þ ρ02
2 tan a

�
J0

� ρρ0
sin a

�
; ð8Þ

where a ¼ π
2 α. The fHT has since been studied in optics

[9] as the limiting form of the two-dimensional (2D) frac-
tional Fourier transform [10,11] in systems having cylind-
rical symmetry. Thus, in order to analyze a cylindrically
symmetric beam into the radial modes fu0pðρÞg, we con-
struct a balanced MZI with an optical implementation of
the fHT in one arm. The fractional-order α is swept and
the output power PðαÞ is recorded, where

PðαÞ ¼ 1þℜ
Z

∞

0

Z
2π

0
E�ðρ; θÞF αfEðρ; θÞgρdρdθ

¼ 1þ
X
p

jc0pj2 cosðpαÞ: ð9Þ

Here, F αfEðρ; θÞg ¼ R
K0ðρ; ρ0; αÞEðρ0; θÞρ0dρ0. The FT of

PðαÞ with respect to α yields the discrete spectrum jc0pj2.
To the best of our knowledge, this is the first time that
such an arrangement has been proposed.
We now turn to the general case of an optical beam

having the decomposition in Eq. (2) that includes
both radial and angular modal structure. The optical

arrangement for analyzing the beam in terms of these
modes is a balanced MZI with a spatial rotator in one
arm and, in the other, an optical implementation of the
fHT of fractional-order α, as shown in Fig. 1(b) (or, alter-
natively, placed in the same arm). The fHT of Bessel-
order ℓ (which applies to beams containing eiℓθ) is given
by [8,9]

K ℓðρ; ρ0; αÞ ¼
eið1þℓÞðπ2−aÞ

sin a
exp

�
−i

ρ2 þ ρ02
2 tan a

�
Jℓ

� ρρ0
sin a

�
:

ð10Þ
This transformation has the properties

Z
K ℓðρ; ρ0; αÞupℓðρ0; θÞρ0dρ0 ¼ eipαupℓðρ; θÞ; ð11Þ

K ℓðρ; ρ0; αÞ ¼
X
p

eipαuℓpðρ; θÞu�
ℓpðρ0; θÞ: ð12Þ

After the spatial rotator and the fHT, the beam is

E0ðρ; θ; α;φÞ ¼
X
ℓp

cpℓeiðℓφþpαÞuℓpðρ; θÞ; ð13Þ

and the resulting 2D interferogram Pðα;φÞ is

Pðα;φÞ ¼ 1þℜ
Z

∞

0

Z
2π

0
Eðρ; θÞE0�ðρ; θ; α;φÞρdρdθ

¼ 1þ
X
ℓ;p

jcℓpj2 cosðpαþ ℓφÞ: ð14Þ

The 2D FT of Pðα;φÞ with respect to α and φ, both of
which change periodically, yields the discrete 2D modal
landscape jcℓpj2.

Several physical implementations of the optical fHT
have been reported [12,13]. The simplest implementation
consists of two spherical lenses where the fHT order is
controlled by adjusting the two focal lengths and separa-
tion between the lenses [12]. A recent report demon-
strates that two spatial light modulators with fixed
separation may be used to implement the fHT with con-
trollable order [13]. This implementation is particularly
useful in our context since no moving parts are needed.
The spatial rotation may be implemented using either a
rotating dove prism or an arrangement of mirrors [14].

To elucidate the operation of this system, we examine
several examples. First consider the case of a pure LG
beam with ℓ ¼ 1 and p ¼ 2, as shown in Fig. 2(a). The
corresponding 2D interferogram Pðα;φÞ, Eq. (14), is a
pure sinusoid whose tilt in the ðα;φÞ plane determines
the modal indices. Taking the FT of the interferogram re-
veals a single peak jc1;2j2 as expected. Our arrangement
clearly distinguishes this beam from the pure LG beam
having the same OAM ℓ ¼ 1 but different radial index p ¼
4 [Fig. 2(b)]. Next consider a multimode beam composed
of a superposition of four modes with equal weights, each
a product of an OAM and an LG mode, such that the
radial and angular modal indices ðℓ; pÞ are correlated,
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fð1; 1Þ; ð2; 2Þ; ð3; 3Þ; ð4; 4Þg, as shown in Fig. 2(c). The
correlation is visible in the 45° tilt in the fringes of
Pðα;φÞ, and its FT reveals the four superposed modes.
Alternatively, a multimode beam that is a superposition
of four equally weighted modes with anticorrelated ðℓ; pÞ

indices, fð1; 4Þ; ð2; 3Þ; ð3; 2Þ; ð4; 1Þg, is considered in
Fig. 2(d). In this case, the interference fringes are tilted
at −45°. Note that these two cases of correlated and antic-
orrelated angular–radial multimode beams would reveal
the same angular spectrum at ℓ ¼ 1, 2, 3, 4, if only OAM
were considered. Furthermore, if the two beams were
subjected to a radial mode analyzer, the results once
again would be identical for these two beams. Only
measuring the radial and angular modal content simulta-
neously, using the arrangement in Fig. 1(b), for instance,
uncovers this additional structure in the modal landscape
and distinguishes the two beams. A superposition of
modes with indices fð1; 1Þ; ð1; 4Þ; ð4; 1Þ; ð4; 4Þg [Fig. 2(e)]
corresponds to a beam that is separable in the radial and
angular coordinates as a result of the separability of the
modal spectrum. Finally, a pure Hermite–Gaussian beam
with indices n ¼ 7 andm ¼ 4 in the Cartesian coordinate
system is analyzed in Fig. 2(f) and is resolved into a
superposition of multiple OAM-LG modes with different
weights.

In conclusion, we have presented an approach to mea-
suring the full angular and radial spatial modal spectrum
of a scalar optical beam based on a novel optical inter-
ferometer that combines a spatial rotator and an optical
realization of the fHT. By varying the rotation angle and
the order of the fHT, we obtain a 2D interferogram whose
FT gives directly the desired modal spectrum.
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Fig. 2. (Color online) Examples of calculated 2D radial and
angular spectra corresponding to the setup in Fig. 1(b). The first
column displays the beam intensity Iðρ; θÞ ¼ jEðρ; θÞj2; each
panel is 25:6 × 25:6 of the Gaussian mode standard deviation.
The second column displays the 2D interferogram Pðα;φÞ
and the third column displays the angular–radial modal spec-
trum jcℓpj2, the 2D FT of Pðα;φÞ. All panels are normalized to
the peak value.
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