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We generalize the traditional concept of temporal optical interferometry to any degree of freedom of a coherent
optical field. By identifying the structure of a unitary optical transformation that we designate the generalized phase
operator, we enable optical interferometry to be carried out in any modal basis describing a degree of freedom. The
structure of the generalized phase operator is that of a fractional optical transform, thus establishing the connection
between fractional transforms, optical interferometry, and modal analysis. © 2012 Optical Society of America
OCIS codes: 260.3160, 120.3180, 030.4070, 050.4865.

Optical interferometry has been crucial in increasing our
understanding of the nature of light and is a technique of
fundamental importance in optical metrology and astron-
omy [1]. In temporal interferometry, for example, a pulse
enters a Mach–Zehnder interferometer (MZI) and a delay
is swept in one arm, thereby producing an interferogram
whose Fourier transform (FT) reveals the power spec-
trum. In this Letter, we generalize the basic concept of
temporal interferometry to other degrees of freedom
(DoFs). A central feature of this approach is the identi-
fication of an optical transformation that generalizes tem-
poral delay to an arbitrary DoF. For DoFs having a
discrete modal basis, we find that the generalized “delay”
is a fractional transform [2] that has this particular mod-
al basis as eigenfunctions. This result establishes a gen-
eral methodology for optical interferometry using any
DoF, and hence modal analysis in any basis. Further-
more, we extend this scheme to multidimensional inter-
ferometry using independent DoFs simultaneously.
Our approach is shown schematically in Fig. 1(a)

where the delay in a balanced MZI is replaced with
an optical transformation Λ�α�, parameterized by a con-
tinuous real scalar α, that we designate the generalized

phase operator (GPO). At the MZI output, the optical sig-
nal is integrated over all DoFs, α is swept, and an inter-
ferogram P�α� is recorded. In the usual scenario, α is a
delay τ and P�τ� is the pulse autocorrelation. Using a
GPO in lieu of the delay, this interferometer may be
used for modal decomposition of a beam in an arbitrary
basis.
We express the field as the superposition of an ortho-

normal set of modes fψn�x�gn, E�x� � P
ncnψn�x�,

cn � R
dxψ�

n�x�E�x�, where x is any DoF of the field.
The set fψn�x�gn need not be countable, whereupon
the summation over n is replaced with integration over
a real number ξ, E�x� � R

dξc�ξ�ψ�x; ξ�, e.g., the FT of a
pulse E�t� � 1

2π
R
dωc�ω�e−iωt. We seek a transformation

Λ that introduces a phase term einα between the modes
indexed by n, thus generalizing the effect of a delay τ. Λ
thus takes the form

Λ�x; x0; α� �
X
n

einαψn�x�ψ�
n�x0�: (1)

After traversing Λ, the field is Eo�x; α� �R
dx0Λ�x; x0; α�E�x0� � P

ne
inαcnψn�x�, and the resulting

interferogram P�α� is

P�α� � 1�ℜ
Z

dxE�x�E�
o�x; α� � 1�

X
n

jcnj2 cos nα:

(2)

Spectral analysis of P�α� thus reveals the modal weights
jcnj2. Note that Λ is unitary,

R
dxΛ�x; x0; α�Λ��x; x00; α� �

δ�x0 − x00�, ∀α, and the set of transformations fΛ�α�g has
the structure of a one-parameter (commutative) group
under the composition rule Λ�α2�◦Λ�α1� � Λ�α1 � α2�
since

R
dx0Λ�x;x0;α2�Λ�x0; x00;α1� �Λ�x;x00;α1 � α2�. The

identity is Λ�x; x0; 0� � δ�x − x0�, and the inverse of
Λ�x; x0; α� is Λ−1�x; x0; α� � Λ�x; x0;−α�. The definition
of Λ in Eq. 1 implies that the group is cyclic with period
2π:Λ�α� 2mπ� � Λ�α�, ∀m integer.

In addition to the group structure of the set fΛg, it is
endowed with the structure of a fractional transform

[2] when the modal set is discrete. Therefore, a fractional
transform having the form of Eq. (1) is aGPO operating on
its eigenfunction basis. We proceed to show that GPOs
corresponding to modal sets of importance in optics
maybe readily realized (seeTable 1). For time-harmonics

fe−iωtgω, Λ1�t;t0;τ�� 1
2π
R
dωe−iω�t−t0−τ� �δ�t− t0−τ�; Λ1 is a

delay, as expected. For spatial harmonics feikxgk,
Λ2�x; x0;Δ� � δ�x − x0 �Δ� is a transverse shift Δ [3],
while for polarization, Λ3�θ� is a wave plate introducing
aphase θ betweenhorizontalH andverticalV polarization
modes. In the orbital angular momentum (OAM) basis
feiℓφgℓ [4], Λ4�φ;φ0; θ� � δ�φ − φ0 � θ� is a rotation θ [5]
(see also Refs. [6,7]). In the radial Laguerre–Gaussian

Fig. 1. (Color online) Generalized interferometry using a ba-
lanced MZI with (a) a transformationΛ in one arm for analyzing
one DoF, or (b) Λ1 and Λ2 for analyzing two DoFs.
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(LG) basis
n
Ljℓj
p �r�

o
p
, one may show that Λ5�r; r0; α; jℓj� �P

pe
ipαLjℓj

p �r�Ljℓj
p �r0� is the fractional Hankel transform

(fHT) [8–10] (implemented using two spherical lenses
L1 and L2 in Table 1). In the 1D Hermite–Gaussian
(HG) basis fHn�x�gn,Λ6�x; x0; θ� �

P
ne

inθHn�x�H�
n�x0� is

the fractional Fourier transform (fFT) of order 2θ
π [2,11]

(implemented using two cylindrical lenses C1 and C2 in
Table 1). Setting θ � π,Λ7�x;x0� �Λ6�x;x0;π� � δ�x� x0�
enables the field to be analyzed into its even (e) and odd
(o) components (i.e., its spatial parity). This GPO is rea-
lized by spatial flip along x [12–15] implemented by a mir-
ror or a Dove prism. We have therefore established that
the construction of GPOs is feasible for typical optical
DoFs and potentially for arbitrary DoFs.
Next we consider a field described by two DoFs, x and

y, expressed in terms of two modal sets, E�x; y� �P
nmcnmψn�x�ϕm�y�. In order to perform 2D optical inter-

ferometry, and hence analyze the field into the sets
fψn�x�gn and fϕm�y�gm, we place the GPOs correspond-
ing to each, Λ1�x; x0; α� and Λ2�y; y0; β�, respectively, in a
balanced MZI [Fig. 1(b)]. The 2D interferogram P�α; β� is

P�α; β� � 1�ℜ
ZZ

dxdyE1�x; y; α�E�
2�x; y; β�

� 1�
X
nm

jcnmj2 cos�nα −mβ�; (3)

here E1 and E2 are the fields after traversing Λ1 and Λ2,
respectively. Performing a 2D FT on P�α; β� thus reveals
the 2D modal weights jcnmj2.
As anexample, consider a field resulting from the super-

position of an OAMmodeE1�r;φ� � eiℓφLjℓj
p �r�, with ℓ � 2

and p � 3, and an HGmodeE2�x; y� � Hn�x�Hm�y�, with
n � 1 and m � 2 [Fig. 2(a) insets]; here �r;φ� and �x; y�
are the polar and Cartesian coordinates, respectively, in
the same plane. The structure of the field E�x; y� �
E1�x; y� � E2�x; y� (intensity distribution shown in

Fig. 2(a)) may be elucidated by analyzing it in two modal
bases, the OAM-LG basis in �r;φ� and the HG basis in
�x; y�. The resulting 2D interferograms P�α; β� in each ba-
sis is shown in Figs. 2(b),2(d). These interferograms are
obtained separately by changing the GPOs, potentially
implemented using spatial light modulators. Taking the
2D FT of each interferogram we obtain the modal coeffi-
cients shown in Figs. 2(c),2(e). The peak associated with
E1 in the OAM-LG modal analysis is distinct [Fig. 2(c)]
while E2 appears as a superposition of multiple modes.
Alternatively, the peakassociatedwithE2 in theHGmodal
analysis is distinct [Fig. 1(e)] while E1 appears as a super-
position of multiple modes. Analysis in multiple modal
bases, by choosing the appropriate GPOs, thus reveals
different and complementary aspects of the field.

Table 1. Realizations of GPOs for Generalized Interferometry

Degree of Freedom Modes GPO Realization Implementation

Temporal spectrum fe−iωtgω Λ1�t; t0; τ� � δ�t − t0 − τ� Delay τ

Spatial spectrum feikxgk Λ2�x; x0;Δ� � δ�x − x0 �Δ� Transverse shift Δ

Polarization fH;Vg Λ3�θ� �
h
eiθ∕2
0

0
e−iθ∕2

i
Retardation θ

Angular momentum feiℓφgℓ Λ4�φ;φ0; θ� � δ�φ − φ0 � θ� Rotation θ

Radial modes fLjℓj
p �r�g Λ5�r; r0; α� � Kp�r; r0; α� fHT of order α

Transverse modes fHn�x�gn Λ6�x; x0; α� � F�x; x0; α� fFT of order α

Spatial parity fe; og Λ7�x; x0� � δ�x� x0� Spatial flip

Fig. 2. (Color online) (a) Intensity I�x; y� � jE�x; y�j2
(25.6wo × 25.6wo; wo is the Gaussian beam width parameter).
Insets show the two superposed modes. (b)–(c) 2D interfero-
gram and modal analysis in the OAM-LG basis and (d)–(e) in
the HG basis. The ranges of α and β are �0; 2π� and �0; 1� in
(b) and �0; 4� and �0; 4� in (d), respectively.
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Both Λ1 and Λ2 in the previous example correspond
to discrete modal bases. A field may alternatively be
analyzed into a hybrid discrete-continuous 2D modal ba-
sis, e.g., discrete spatial modes and continuous spectral
frequency. An example is shown in Fig. 3 for the field

E�x; t� � P3
j�1 ajHj�x�f j�t�; f j�t� � exp

�
−

�t−tj�2
2τ2j

�
is the

pulse envelope after removing a common central fre-
quency. This field is the superposition of three pulses,
each having a different HG spatial mode. Such a field
may arise when a single-spatial-mode pulse propagates
in a multimode waveguide. Modal dispersion may then
result in the separation of different pulsed modes. The
spatiotemporal intensity distribution of this field in
shown in Fig. 3(a), and the spatially integrated temporal
autocorrelation is shown in Fig. 3(b) (for each pulse se-
parately and the total field). It is clear that measurements
of either DoF while averaging over the other do not re-
veal the structure of this field. The 2D interferogram
P�α; τ�, where Λ1 an fFT of order α and Λ2 is a delay
τ, is shown in Fig. 3(c). Taking the FT of P�α; τ� with re-
spect to α alone results in a discrete modal index n (as in
Fig. 2), while τ remains continuous, C�n; τ�. We thereby

isolate the autocorrelations of the pulses associated with
the different spatial modes [see Fig. 3(d)].

Higher-order interferometry may be carried out by
utilizing more GPOs, e.g., temporal interference along-
side 2D spatial interference to obtain a 3D interferogram.
Finally, the observation that a fractional transform is a
GPO defined on its eigenfunctions motivates the con-
struction of new transforms. For example, the fractional
transform that has Bessel functions (of the first kind) as
eigenfunctions enables, in conjunction with the OAM op-
erator, the analysis of the 2D field in a circularly sym-
metric fiber or waveguide. Finally, we note that the
discretization of the parameter α in a GPO sets the main
limitation on the fidelity of the modal analysis.

In conclusion, we have presented a general conception
of optical interferometry using an arbitrary degree or de-
grees of freedom by replacing the optical delay in an in-
terferometer with a generalized phase operator. Placing
multiple GPOs in an interferometer enables multidimen-
sional interferometry and modal analysis. Furthermore,
when the DOF modal basis is discrete, the GPO corre-
sponds to a fractional transform that has this basis as
eigenfunctions.
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Fig. 3. (Color online) (a) Intensity I�x; t� � jE�x; t�j2 of three
superposed pulsed modes with a1 � a2 � a3,

t1
τo � −3, t2

τo � 0,
t3
τo � 3, T1

τo � 1, T2
τo � 1.2, T3

τo � 1.5 (see text); xo is the Gaussian
beam width parameter. The insets are the superposed pulsed
modes; the white dotted lines are the pulse centers; (b) spatially
integrated temporal autocorrelation of each pulse separately
and the superposed pulse; (c) 2D interferogram P�α; τ�;
(d) hybrid discrete-continuous modal analysis in the HG basis
and time.
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