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Hanbury Brown and Twiss correlations of Anderson localized waves

Y. Lahini,1 Y. Bromberg,1 Y. Shechtman,2 A. Szameit,2 D. N. Christodoulides,3 R. Morandotti,4 and Y. Silberberg1

1Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
2Department of Solid State Physics, Technion, Israel

3CREOL/College of Optics, University of Central Florida, Orlando, Florida, USA
4Institute National de la Recherche Scientifique, Varennes, Qubec, Canada

(Received 4 April 2011; published 24 October 2011)

When light waves propagate through disordered photonic lattices, they can eventually become localized due
to multiple scattering effects. Here we show experimentally that while the evolution and localization of the
photon density distribution is similar in the two cases of diagonal and off-diagonal disorder, the density-density
correlation carries a distinct signature of the type of disorder. We show that these differences reflect a symmetry
in the spectrum and eigenmodes that exists in off-diagonally disordered lattices but is absent in lattices with
diagonal disorder.
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The propagation of quantum-mechanical waves in periodic
and disordered media is a fundamental theme in solid state
physics, underlying the transport properties of condense matter
systems. In a perfectly periodic system, the translational
invariance gives rise to extended eigenmodes known as the
Bloch modes. As a result, in periodic systems an initially
narrow wave packet will expand indefinitely and ballistically
(i.e., its width will grow linearly in time). Disorder in an
otherwise perfectly periodic lattice breaks the translational
symmetry and can lead to exponential localization of the
system’s eigenmodes and to the arrest wave-packet expansion
(or diffusion), a phenomenon known as Anderson localization
[1,2].

Traditionally, the localization of waves inside the medium
was not observed directly, but rather inferred indirectly from
transmission or conductance measurements. Recently, a new
approach to localization of light was realized using disordered
photonic lattices [3–7], in which light propagates freely along
one axis, and exhibits localization in the transverse directions
(“transverse” localization [8]). The equations describing the
propagation of light in these systems are identical to the
equations describing the evolution of a single quantum particle
in an atomic lattice, under the tight-binding approximation,
thus allowing for the direct observation of Anderson local-
ization as originally described in [1]. In these experiments,
a localized wave packet, typically a single site wide, was
released inside the disordered lattice and allowed to expand.
In periodic lattices, such experiments led to the observation
of ballistic wave-packet expansion [9,10]. As a result of the
disorder the wave packet exhibited a modified expansion
profile, the features of which depend on the dimensionality
of the system [4,5], eventually settling to an exponentially
localized distribution: the hallmark of Anderson localization.
Recently, a similar approach enabled the direct observation of
Anderson localization of matter waves [11–13] in disordered
optical potentials, also described by the same equations [14].

While it is well established that in Anderson localization the
average density distribution exhibits exponential localization,
not much is known about higher correlations of the localized
fields. Here we show that spatial intensity correlations, also
known as Hanbury Brown and Twiss correlations [15], do not

necessarily display a uniform decay. Moreover, in contrast to
the density distribution, we find that these correlations carry
a signature of the type of disorder: While light localized
in lattices with on-site (diagonal) disorder show decaying
correlations, the correlations in lattices with random tunneling
amplitudes (off-diagonal disorder) exhibit oscillations. We
relate the observed correlation features to a spectral symmetry
that exists in lattices with off-diagonal disorder and is absent
in lattices with diagonal disorder. Specifically, the eigenvalues
in these disordered lattices are antisymmetrically distributed
about the mean value, and eigenmodes associated with
symmetric eigenvalues share several properties. These results
are related to a recent prediction of quantum correlations in
the single particle limit [16], and we now show that some
analogous features can be also be observed in the classical
regime.

The description for Anderson localization of light in one-
dimensional waveguide lattices is given by set of coupled
discrete Schrodinger equations

−i
∂Un

∂z
= βnUn + Cn,n+1Un+1 + Cn,n−1Un−1. (1)

Here n = 1, . . . ,N where N is the number of lattice sites
(waveguides), Un is the wave amplitude at site n, βn is
the eigenvalue (propagation constant) associated with the
nth site, Cn,n±1 are the tunneling amplitudes between two
adjacent sites, and z is the longitudinal space coordinate (for
a more detailed description see, e.g., [5]). These equations
are identical to the equations describing the time evolution
of a single electron in a lattice under the tight-binding
approximation [9,10], where z represents time and Un is the
wave function at site n. Therefore, while the experiments
described in this Rapid Communication were conducted in
the optical domain, the results hold also for other systems
described by the tight-binding model, such as an electron in
crystalline structure or Bose-Einstein condensate in disordered
optical potentials.

In the tight-binding model, the disorder type falls into two
broad categories: diagonal disorder, in which the βn parameters
are randomized, but the tunneling amplitudes Cn,n±1 are fixed
across the lattice. Such disorder was considered by Anderson
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FIG. 1. (Color online) Observation of Anderson localization in
lattices with diagonal and off-diagonal disorders. Top panels show
simulation of the average wave-packet expansion in lattices with (a)
diagonal and (b) off-diagonal disorder, when excited at a single site,
showing similar dynamics. (c, d) Experimental measurements of the
output distributions for the two types of disorder (blue, solid lines) as
compared to the same distribution in a periodic lattice (green, dashed
lines).

in his original work [1], in what is now known as the Anderson
model. With few exceptions [6,7], all the recent experiments
reporting the observation of Anderson localization of light
[4,5] and matter waves [11,12] were conducted using this
type of disorder. A second type of theoretically well-studied
disorder is known as “off-diagonal” disorder, in which the
βn parameters are fixed across the lattice, yet the tunneling
amplitudes are randomized. Such lattices are known to exhibit
several unique spectral properties [17–21]. However, very little
has been achieved so far to experimentally observe a signature
of these properties.

The recent experiments on Anderson localization of light
[3–5] and matter waves [11,12], have reported the direct
measurement of the main features of localization, namely the
crossover from ballistic transport to localization as a function
of time and the level of disorder. For example, Fig. 1 shows
simulations of the wave-packet dynamics in disordered one-
dimensional lattices [5]. This dynamics starts with a ballistic
expansion of the wave packet, similarly to the expansion in
perfectly periodic lattices. After some propagation, a localized
component emerges nearthe origin, coexisting with the tran-
sient, ballistic component. As the waves propagate, the ballistic
component decays and the intensity distribution becomes
exponentially localized in space. Figure 1 compares this
evolution in lattices with diagonal [Fig. 1(a)] and off-diagonal
[Fig. 1(b)] disorders, showing practically identical evolution.

We have fabricated two types of disordered lattices of
waveguides, similar to those used to demonstrate Anderson
localization of light [5]. In one array, the waveguide widths
were identical, but their separations were randomized, model-
ing off-diagonal disorder. The other, a diagonally disordered
array, had random-width waveguides yet constant separations.
Light was launched into individual waveguides and the output
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FIG. 2. (Color online) Measured density-density correlations
�r,q = 〈IrIq〉/〈Ir〉〈Iq〉 for localized wave packets in (a) lattices
with diagonal disorder. The strong diagonal feature reflects finite
coherence length of the waves (see text). (b) The extracted correlation
function. (c) Density correlations in lattices with off-diagonal disor-
der, showing checker-like correlations. (d) The extracted correlation
function, showing oscillating correlations.

distribution was recorded. When the output intensity was
averaged over ∼100 realizations (by launching the light at
different input locations) we reproduced the exponentially
decaying localization shown in Figs. 1(c) and (d). It is shown
in comparison with the ballistic expansion that was measured
in perfectly periodic arrays. We note that the two types of
disorder led to very similar localized states.

A significant difference was observed, however, when we
measured the density correlations of the output distribution.
Figure 2 presents experimental results of density-correlation
measurements in disordered lattices. Here, for each realization
of disorder, the density autocorrelation is measured, and
then averaged over many realizations (again by shifting the
input site). The result is then normalized, so that �r,q =
〈IrIq〉/〈Ir〉〈Iq〉. As can be seen in Fig. 2, both types of disorder
show a distinct diagonal feature in the correlation matrix. The
length scale of this feature along the main diagonal (q = r)
of the matrix is the localization length. The width of the
diagonal feature is given by the correlation length, which is not
represented in the ensemble-averaged density distributions. In
each single realization, the density distribution is not a smooth
exponentially decaying distribution; it is speckled [4,5]. The
width of the diagonal feature reflects the average speckle
size. Since in each realization the speckles patter varies, their
features are smeared out in the averaged distribution, and the
information about their width is lost. However, the fact that
these speckles have a characteristic length scale is recorded in
the averaged correlation function.

We find that the correlations function carried additional
information on the type of disorder in the lattice, information
that is also lost when one considers the average density
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distributions. A closer look at the correlation matrix reveals
that for lattices with off-diagonal disorder [Fig. 2(c)] the
correlations tend to form a checkered pattern. This can be
better seen when looking at the correlation function g(�r),
extracted from the correlation matrix �r,q by summing over
the diagonals, g(�r) = ∑

r �r,r+�r . The density correlation
decays smoothly for lattices with diagonal disorder, yet it
exhibits decaying oscillations for lattices with off-diagonal
disorder. These results were corroborated in numerical simu-
lations (not shown).

To explain the dependence of the density correlations on
the type of disorder, we start by pointing out a symmetry that
exists in periodic lattices that is sustained also in lattices with
pure off-diagonal disorder, but not in lattices with diagonal
disorder [20–23]. Without loss of generality, we can set the
diagonal terms of the Hamiltonian to zero, and we denote
the randomized tunneling terms as Cn. Let (a1, . . . ,aN ) be
an eigenvector with an eigenvalue λ. Then C1 a2 = λ a1;
C1 a1 + C2 a3 = λ a2; C2 a2 + C3 a4 = λ a3, and so on.
Now it is obvious that the vector bn = (−1)n an, is also an
eigenvector with an eigenvalue −λ. That is, the eigenvectors
are paired around the center of the band, where twin
eigenmodes share the same density distribution in absolute
value, but an opposite (staggered) phase structure. It is also
easy to see that this property will not be exhibited by lattices
with diagonal disorder. For a more detailed proof, see [24].

To visualize this symmetry, we show in Fig. 3 the eigen-
values and eigenmodes for a single realization of a disordered
lattice with diagonal versus a lattice with off-diagonal disorder.
In Figs. 3(a) and 3(b), we compare the spectrum (“band”) of
eigenvalues for lattices with N = 50 sites. As was shown for
lattices with diagonal disorder [5], disordered lattices support
two types of tightly localized eigenmodes with eigenvalues at
the edges of the spectral band. At one edge the eigenmodes
are tightly localized in space, each mode occupies a different
location, and they generally have a flat phase profile (zero
phase difference between adjacent sites). At the other edge of
the spectrum the modes are also tightly localized, only they
are staggered: there is a π phase difference between adjacent
sites. The eigenmodes at the center of the band have a more
complicated phase structure, and they are typically wider. As
we concluded above, in lattices with off-diagonal disorder we
find that each eigenmode at one edge of the spectrum had a twin
eigenmode at the other edge. These twin eigenmodes occupy
the same region of the lattice and have the same distribution
of the absolute amplitude, but they differ in phase structure as
shown in Fig. 1(c). This property does not exist in lattices with
diagonal disorder [see Fig. 1(d)].

This special symmetry of the spectrum in the off-diagonal
model can be observed experimentally. Briefly, it is possible to
excite pure localized eigenmodes by using either a flat-phase
or a staggered beam, with the correct width and initial position
at the lattice. Flat-phased and staggered localized eigenmodes
of a lattice with diagonal disorder were measured (see Fig. 2
in [5]), showing indeed that in diagonally disordered lattices
the positions of the lowest-eigenvalues flat-phased eigenmodes
never coincided with the position of the highest-eigenvalues,
staggered localized modes. Figure 3(f) shows an excitation of
a flat-phased eigenmode in a lattice with diagonal disorder. In-
deed, when the same input beam was tilted to excite neighbor-
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FIG. 3. (Color online) Spectral symmetry in disordered lattices.
(a) The spectrum (band) of eigenvalues for lattices with off-diagonal
disorder. Note the symmetry in the eigenvalues with respect to zero,
for every eigenvalue λ there exists a counterpart eigenvalue λ̃ = (−λ)
(see text). (b) In lattices with diagonal disorder no exact symmetry
exists in the spectrum of eigenvalues. (c) An example of the spatial
distribution of a pair of eigenmodes in the off-diagonal case that have
symmetric eigenvalues [in this example the extreme eigenvalues in
the system λmax (solid line) and λmin (dashed)]. The two eigenmodes
occupy the same region of the lattice and have the same spatial
distribution, but vary in phase structure. A similar result can be
observed for all other symmetric pairs. (d) In this diagonal disorder
case, the eigenmodes associated with opposite eigenvalues occupy
different regions of the lattice. (e) Experimental measurement of
two spectrally symmetric eigenmodes in a lattice with off-diagonal
disorder, showing their spatial similarity. (f) Measurement showing
that in the diagonal disorder case the same location in the lattice
cannot host two spectrally symmetric localized modes (see text).

ing sites with a π phase difference, the output density showed
considerable expansion, suggesting that no staggered localized
eigenmode resides in the same location. In contrast, Fig. 3(e),
shows the same procedure in a lattice with off-diagonal disor-
der. Here, the flat-phased beam excited a flat-phased, localized
eigenmode, and a beam with a π phase difference between ad-
jacent sites excited a staggered localized eigenmodes with the
same width, the same spatial profile, and at the same location.

Now, to explain the different density-density correlations
shown in Fig. 2, we need to consider the effect of these
different spectral properties on the expanding wave packets
when they are excited at a single site. The localization effect
arises from the fact that all the eigenmodes that are excited have
a finite extent. It is well known that in infinite one-dimensional
disordered systems all eigenmodes of the system are localized.
In lattices with off-diagonal disorder, an initial excitation
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of a single lattice site necessarily involves the simultaneous
excitations of pairs of “twin” eigenmodes, as they have
identical overlap with the initially excited site. The sum of two
identical amplitude distributions yet with a π -phase difference
in each second site results in a density comb-like pattern that
nulls at every second site. In the dynamic problem several
pairs could be excited simultaneously by the single site initial
condition, and the two modes of the pair accumulate phase in
a different rate (according to their eigenvalues). Nevertheless,
the wave packet will contain a component with an oscillating
intensity pattern, with a spatial frequency of two sites. This
effect is washed out in the density distribution averaged over all
realizations of disorder, as in each realization the oscillations
appear in a different location. However, the fact that such
oscillations appear in each realization will be recorded in the
averaged correlation.

We note a previous publication by our group [16], in which
oscillating quantum correlations were analyzed theoretically
for bosonic or fermionic pairs, predicting checker-like correla-
tions in some cases. Those phenomena are not unrelated to the
results reported here, yet the oscillating correlations reported

there were of quantum origin (i.e., in the case of light they
require the use of nonclassical light), while here the described
effects are purely classical wave effects.

In conclusion, we have experimentally shown that density
correlation measurements can carry a signature of the type
of disorder that exists in a given sample, and we have traced
that signature to the existence of a unique spectral symmetry
that is exhibited by lattices with off-diagonal disorder. Similar
results can be measured in matter waves systems, using
density-correlation measurements [25] in disordered lattices.
It might also be interesting to study the effect of nonlinear
interactions on these correlations, either in the optical or matter
wave experiments. The signature of these results might also be
observed in correlations measurements for multiply scattered
classical [26] and nonclassical [27,28] light, and in lattices
with other types of symmetries [29].

This work was supported by the German-Israel Foundation
(GIF), the Minerva Foundation, and the Crown Photonics
Center. YL acknowledges support from the Israeli Academy
of Science and Humanities.

[1] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[2] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287

(1985).
[3] T. Pertsch et al., Phys. Rev. Lett. 93, 053901 (2004).
[4] T. Schwartz et al., Nature (London) 446, 52 (2007).
[5] Y. Lahini, et al. Phys. Rev. Lett. 100, 013906 (2008).
[6] H. B. Perets et al., Phys. Rev. Lett. 100, 170506 (2008).
[7] A. Szameit et al., Opt. Lett. 35, 1172 (2010).
[8] H. De Raedt, A. Lagendijk, and P. de Vries, Phys. Rev. Lett. 62,

47 (1989).
[9] D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature

(London) 424, 817 (2003).
[10] F. Lederer et al., Phys. Rep. 463, 1 (2008).
[11] J. Billy et al., Nature (London) 453, 891 (2008).
[12] G. Roati et al., Nature (London) 453, 895 (2008).
[13] J. Chabe et al., Phys. Rev. Lett. 101, 255702 (2008).
[14] G. Modugno Rep. Prog. Phys. 73, 102401 (2010).
[15] R. Hanbury Brown and R. Q. Twiss, Nature (London) 177, 27

(1956).
[16] Y. Lahini, Y. Bromberg, D. N. Christodoulides, and

Y. Silberberg, Phys. Rev. Lett. 105, 163905 (2010).
[17] F. J. Dyson, Phys. Rev. 92, 1331 (1953).

[18] C. M. Soukoulis and E. N. Economou, Phys. Rev. B 24, 5698
(1981).

[19] C. M. Soukoulis, I. Webman, G. S. Grest, and E. N. Economou,
Phys. Rev. B 26, 1838 (1982).

[20] A. Komiyama, IEICE Trans. Electron. E83, 736 (2000).
[21] M. Inui, S. A. Trugman, and E. Abrahams, Phys. Rev. B 49,

3190 (1994).
[22] F. Wegner, Z. Phys. B 44, 9 (1981).
[23] C. Mudry, P. W. Brouwer, and A. Furusaki, Phys. Rev. B 62,

8249 (2000).
[24] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.84.041806 for the full proof.
[25] E. Altman, E. Demler, and M. D. Lukin, Phys. Rev. A 70, 013603

(2004).
[26] E. Akkermans and G. Montambaux, Mesoscopic Physics of

Electrons and Photons (Cambridge University Press, Cam-
bridge, England, 2007).

[27] S. Smolka, A. Huck, U. L. Andersen, A. Lagendijk, and
P. Lodahl, Phys. Rev. Lett. 102, 193901 (2009).

[28] J. R. Ott, N. A. Mortensen, and P. Lodahl, Phys. Rev. Lett. 105,
090501 (2010).

[29] Y. N. Joglekar, Phys. Rev. A 82, 044101 (2010).

041806-4

http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/RevModPhys.57.287
http://dx.doi.org/10.1103/RevModPhys.57.287
http://dx.doi.org/10.1103/PhysRevLett.93.053901
http://dx.doi.org/10.1038/nature05623
http://dx.doi.org/10.1103/PhysRevLett.100.013906
http://dx.doi.org/10.1103/PhysRevLett.100.170506
http://dx.doi.org/10.1364/OL.35.001172
http://dx.doi.org/10.1103/PhysRevLett.62.47
http://dx.doi.org/10.1103/PhysRevLett.62.47
http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1016/j.physrep.2008.04.004
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1103/PhysRevLett.101.255702
http://dx.doi.org/10.1088/0034-4885/73/10/102401
http://dx.doi.org/10.1038/177027a0
http://dx.doi.org/10.1038/177027a0
http://dx.doi.org/10.1103/PhysRevLett.105.163905
http://dx.doi.org/10.1103/PhysRev.92.1331
http://dx.doi.org/10.1103/PhysRevB.24.5698
http://dx.doi.org/10.1103/PhysRevB.24.5698
http://dx.doi.org/10.1103/PhysRevB.26.1838
http://dx.doi.org/10.1103/PhysRevB.49.3190
http://dx.doi.org/10.1103/PhysRevB.49.3190
http://dx.doi.org/10.1007/BF01292646
http://dx.doi.org/10.1103/PhysRevB.62.8249
http://dx.doi.org/10.1103/PhysRevB.62.8249
http://link.aps.org/supplemental/10.1103/PhysRevA.84.041806
http://link.aps.org/supplemental/10.1103/PhysRevA.84.041806
http://dx.doi.org/10.1103/PhysRevA.70.013603
http://dx.doi.org/10.1103/PhysRevA.70.013603
http://dx.doi.org/10.1103/PhysRevLett.102.193901
http://dx.doi.org/10.1103/PhysRevLett.105.090501
http://dx.doi.org/10.1103/PhysRevLett.105.090501
http://dx.doi.org/10.1103/PhysRevA.82.044101

