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Nonconservative optical forces acting on dipolar particles are considered in longitudinally invariant optical fields. We
demonstrate that the orientation of these forces is strictly dictated by the propagation vector associated with such field
configurations. As a direct consequence of this, it is impossible to achieve a reversal of optical forces in homogeneous
media. We show instead that translation invariant optical tractor fields can in fact be generated in the negative index

environment produced in a special class of fully dielectric waveguide arrays.
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One of the most intriguing properties of light-matter in-
teraction is the ability of an electromagnetic field to exert
mechanical forces upon polarizable objects. Such a phe-
nomenon is a direct consequence of the process of light
scattering and is dictated by a principle as fundamental
as momentum conservation itself.

The first experimental observations of optomechanical
interactions date back to the beginning of the past cen-
tury with the seminal experiments conducted by Lebedev
[1] and by Nichols and Hull [2]. The idea of harnessing
optical forces culminated in the celebrated work of
Ashkin [3] on optical tweezers, which endowed the most
diverse fields of science with a new and powerful tool for
the remote manipulation of microscopic objects.

The amount of momentum transferred to a scattering
and/or absorbing body immersed in electromagnetic radia-
tion can, at least in principle, be exactly calculated by eval-
uating the flux of the Maxwell’s stress tensor through any
arbitrary surface enclosing the object. This in general re-
quires the exact knowledge, not only of the incident field,
but also of the field scattered by the object itself. The for-
mulation becomes substantially simpler when light inter-
acts with particles of dimensions much smaller than the
wavelength of the incident radiation. Under such circum-
stances the scattered field is essentially dipolar. The ex-
pression of the total force acting on the particle is then
amenable to the following simpler expression [4] in terms
of the particle complex polarizability ¢ = a, + 7 a; and the
electromagnetic field at the interaction site:
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Equation (1) represents the average force exerted by a
monochromatic field of frequency w = koc on a dipolar
scatterer. Notice that the imaginary part of the particle po-
larizability is simply related to the total cross section ¢
through o = kya;/€y. The first term in the force of Eq. (1)
is a conservative field contribution derived from the scalar
potential [E|? and is commonly referred to as the gradient
JSorce. The second term, proportional to the average Poynt-
ing vector S, represents the so-called radiation pressure.
Finally, the last contribution is directly related to a nonuni-
form spin angular momentum density of the electromag-
netic field (Lg) = (eo/4w%)E x E*. We will refer to this
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contribution as the spin force throughout this Letter.
The second and the third components of the optical force
are often designated in the literature as nonconservative.

The gradient force offers a high degree of versatility in
trapping or manipulating particles, based on the simple
fact that it will in general push or pull a polarizable object
toward the regions of highest modulus of |E|? [3,5]. More
subtle is harnessing the behavior of the other two com-
ponents in Eq. (1). The very fact that radiation pressure is
proportional to the Poynting vector intuitively suggests
that the effect on a dipolar particle would be to push
it away from the radiation source. Yet, this is not always
the case, due to the complex interplay between radiation
pressure and spin force, as recently shown by Sukhov
and Dogariu [6] using a combination of Bessel beams.
Other possibilities include the use of active particles [7].

In this Letter we would like to address the following
question: Is it possible to devise a translation invariant
field distribution capable of uniformly attracting a dipo-
lar object toward the source of radiation? Requiring a
translation invariant field, such as along z, has important
conceptual and practical implications, most notably the
fact that such a tractor field would exert the same force
on a particle regardless of its axial z position.

From an electromagnetic point of view, any electric or
magnetic component of a z translation invariant field is
constrained to have a general functional dependence of
the form f(x,y) exp(ifz). Such a requirement is in gen-
eral satisfied by waveguide modes, but also by free space
diffraction-free beams like, for example, those of the
Bessel family [8]. Based on these assumptions, it is
straightforward to show that the Maxwell set decouples
into TE(z) and TM(z) modes, expressible solely in terms
of the longitudinal electric and magnetic fields
E.(x,y)e”® and H,(x,y)e'” as follows:
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where V stands for the transverse gradient operator and
e is the dielectric constant of the host medium. Using
Eq. (2) in the general expression in Eq. (1) leads to
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the first conclusion of this work regarding longitudinal
forces in translation invariant fields:
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where 7 is the vacuum characteristic impedance. For pas-
sive particles a; > 0, and therefore the longitudinal force
is the product of a definite positive prefactor and the field
propagation constant . Based on the result [Eq. (3)], the
possibility of translation invariant tractor beams in
homogeneous dielectric media is ruled out, since g > 0.
The present formulation applies to particles with isotro-
pic polarizability, such as nanospheres. The extension to
other geometries such as ellipsoids [9] or more complex
composite nanostructures [10] is straightforward and
leads to similar conclusions.

At this point a question naturally arises as to whether
and under what conditions a translation invariant tractor
field could be obtained. The easiest answer in principle,
but most elusive in practice, would be considering a back-
ground material with a negative index of refraction. In that
case power could flow away from the source while g < 0,
therefore reversing the direction of F,. Unfortunately,
though, the current realizations of bulk optical negative
[11] index metamaterials involve complex and densely
packed inclusions that would, in fact, impede the motion
of a test particle. A more careful consideration of this
problem indicates that the requirement of a negative index
medium is far too stringent and that, indeed, it can be
relaxed by instead considering negative index modes.

Backward-wave propagation is generally achieved in
waveguide configurations by periodic perturbations of
the guiding structure [12]. In these instances the mode
propagation constant f is defined, and is to be under-
stood, as the “crystal momentum” is intended in solid-
state physics [13]. The “modes” of a periodic waveguide
are hence invariant only under discrete translations, as
opposed to the case of longitudinally uniform structures
where the modes display continuous translational sym-
metry. This also marks a departure from negative index
bands in photonic crystals [14]. Based on this, longitud-
inally modulated structures cannot provide the transla-
tion invariance that we are seeking.

Radically different is the case of longitudinally uniform
backward-wave waveguides. To the best of our knowl-
edge, the only configuration falling in this category
(not relying on surface plasmons) is given by the Clarri-
coats—Waldron waveguides [15], sketched in Fig. 1. The
structure consists of a hollow metallic waveguide
coaxially loaded with a high permittivity rod.

Introduced for the first time in 1960 by Clarricoats and
Waldron in the microwave domain, these waveguides have
the unique property of supporting modes with negative
phase velocity without resorting to any longitudinal pertur-
bation or negative index material loading. As an example,
in Fig. 2 we show the dispersion curve of the backward
mode in a square Clarricoats—Waldron waveguide loaded
with a germanium rod and operating around 2 ym.

A field analysis of such configurations [16] reveals
extended regions of reverse Poynting vector in every

Fig. 1. (Color online) Layout of a circular Clarricoats—
Waldron waveguide. Different cross sections are also possible.

transverse cross section. The origin of such a phenomen-
on lies in the vorticity of the magnetic lines of force in-
duced by the strong dielectric discontinuity in the
waveguide interior.

The extension of such interesting configurations to the
optical domain is made difficult by the need for low loss
metallic walls and high permittivity materials for the
waveguide core. Moreover, the fact that such structures
are fully enclosed in metal renders access to the internal
region virtually impossible from outside.

Of interest will be to devise a new class of structures
that could support backward-wave propagation as in a
Clarricoats—Waldron waveguide, without the need for me-
tallic walls or any other reflective enclosures that could
prevent access to the internal regions. In other words, is
there any way to remove the metallic boundaries without
affecting the field distribution of a Clarricoats—Waldron
waveguide? With this idea in mind, the dispersion relation
and the field distribution shown in Fig. 2 were obtained for
a structure enclosed in ideal lossless metal. The single
Clarricoats—Waldron element is, in fact, for our purposes,
just an intermediate theoretical step to the realization of a
new structure where perfect electric conductor boundary
conditions are created by the very symmetry of the mode
propagating in the structure.
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Fig. 2. (Color online) Dispersion of a Ge loaded square Clarri-
coats—Waldron waveguide. Inset: regions of negative Poynting
vector.
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Fig. 3. (Color online) (a) Single square element, (b) two-

dimensional array of isolated elements.

As a consequence of the uniqueness theorem in elec-
trodynamics, a necessary and sufficient condition in or-
der to remove the metallic walls without affecting the
internal field is that the tangential components of both
the electric and the magnetic fields at the waveguide
boundary remain unaltered. To this end we consider
an array of Clarricoats—Waldron waveguides with square
cross sections, as shown in Fig. 3(b). In this case there is
no interaction between adjacent elements, since each
waveguide is fully shielded by a metallic boundary and
independently operates in the backward-wave regime.
We further make the assumption that neighboring wave-
guides are excited z out of phase. These field configura-
tions correspond to Floquet-Bloch modes at the Brillouin
zone boundaries.

Given the fact that the tangential electric field vanishes
at each of the metallic boundaries, it is easy to under-
stand that removing them would not affect the continuity
of the transverse field. Concerning the magnetic field,
eliminating the waveguide walls suppresses the surface
currents that ordinarily extinguish the external field.
With reference to Fig. 3(a), a necessary and sufficient
condition to ensure the continuity of the tangential mag-
netic fields in the absence of the metallic boundary is that
the mode under consideration is endowed with the
following symmetry:

Hx|y:0 :Hx|y:a; Hy|x:0 :Hy|x:a' (4)
If the condition in Eq. (4) holds, all the walls separating
adjacent elements can be removed without affecting the
modal fields. Notice that in principle the external wall en-
closing the whole array is still necessary, except for infi-
nite arrays. Nevertheless, if one considers the elements far
from the periphery of a large array, they will be affected
only marginally by the absence of the external enclosure.
The full-wave finite element simulation presented in Fig. 4
confirms this expected behavior in the dielectric array ob-
tained by removing the internal walls from the structure of
Fig. 2. In this specific example we considered an array of
germanium (¢ = 16) square rods in air, of side length
600nm operating at A = 2 um. The center-to-center dis-
tance between elements is 850 nm. The propagation con-
stant associated with such a mode is f = -85.6 - 10 m™1,
corresponding to an effective mode index of n, = —0.27.
Similar results can be obtained at visible frequencies by
using gallium phosphide rods (n = 3.45 at A = 550 nm).

As a consequence of Eq. (3), a particle placed in the
empty regions between the dielectric rods would be
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Fig. 4. (Color online) Electric field and intensity distribution in
a six-element array of square dielectric rods of permittivity 16.

propelled backward, against the power flow and the ra-
diation pressure. As previously pointed out, such optical
force is uniform along the longitudinal direction. This is,
of course, due to the translation invariance of the modal
field. To the best of our knowledge, this is currently the
only configuration allowing a translation invariant rever-
sal of the nonconservative optical forces.

In conclusion, we have shown that a translation invar-
iant tractor beam cannot be generated in a homogeneous
medium such as free space. Instead we showed that a
negative index environment can be created in a properly
designed dielectric array. A particle immersed in the
modal field of such optical array would be propelled up-
stream, against the power flow and the radiation pres-
sure of the incident mode. A tractor force uniform
with respect to the longitudinal coordinate is ensured
by the longitudinal translation invariance of such an elec-
tromagnetic field distribution.

References

. P. Lebedev, Ann. Phys. 311, 433 (1901).

2. E. F. Nichols and G. F. Hull, Phys. Rev. 13, 307 (1901).

3. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).

4. S. Albaladejo, M. 1. Marques, M. Laroche, and J. J. Saenz,
Phys. Rev. Lett. 102, 113602 (2009).

5. S.-H. Lee, Y. Roichman, and D. G. Grier, Opt. Express 18,

6988 (2010).

. S. Sukhov and A. Dogariu, Opt. Lett. 35, 3847 (2010).

. A. Mizrahi and Y. Fainman, Opt. Lett. 35, 3405 (2010).

. J. Durnin, J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58,

1499 (1987).

9. C. F. Bohren and D. R. Huffman, Absorption and Scattering
of Light by Small Particles (Wiley, 1983).

10. A. Salandrino, A. Al, and N. Engheta, J. Opt. Soc. Am. B 24,
3007 (2007).

11. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A.
Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).

12. R. E. Collin, Field Theory of Guided Wawves, 2nd ed.
(IEEE, 1991).

13. C. Kittel, Introduction to Solid State Physics, 8th ed.
(Wiley, 2005).

14. E. Cubukcu, K. Aydin, C. M. Ozbay, E. Foteinopoulou, and
S. Soukoulis, Nature 423, 604 (2003).

15. P. J. B. Clarricoats and R. A. Waldron, J. Electron. Control
8, 455 (1960).

16. A. Salandrino and D. N. Christodoulides, Opt. Express 18,

3626 (2010).

—

(e IEN o



